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Abstract— Efficient video content management and exploita-
tion requires extraction of the underlying semantics, a non-trivial
task associating low-level features of the image domain and high-
level semantic descriptions. In this paper, a knowledge-assisted
approach for extracting semantics of domain-specific video con-
tent is presented. Domain knowledge considers both low-level
features (color, motion, shape) and spatial behavior (topological
and directional information). During the preprocessing step, a
set of over-segmented homogenous atom-regions is generated
and their low-level and spatial descriptions are extracted. A
genetic algorithm is then applied in order to find the optimal
interpretation according to a specific domain conceptualization.
The proposed approach was tested on the Formula One, Tennis
and beach vacations domains showing promising results.

I. INTRODUCTION

Recent advances in computing technologies have made
available vast amounts of digital video content, leading to ever-
increasing flow of audiovisual information. This results in a
growing demand for efficient segmentation/analysis methods
for extracting semantic information from such content, since
the acquisition of higher-level information in terms of meaning
is the key enabling factor for the management and exploitation
of video content. However, due to the possible different
interpretations and intended uses, the ambiguity that is inher-
ent in visual information renders the development of faster
hardware or the evolution of classic segmentation algorithms
insufficient. This difficulty [1] in mapping semantic concepts
as perceived by humans into a set of automatically extracted
low-level image features, can be alleviated for a particular
application domain by means of domain specific knowledge.
Different approaches have been used for the implementation
of particular parts of the domain knowledge such as formal
knowledge representation theories, semantic web technologies,
Dynamic Belief networks etc. For example, in [2], semantic
web technologies are used, while in [3] a priori knowledge
representation models are used as a knowledge base that
assists semantic-based classification and clustering. In [4], an
object ontology coupled with a relevance feedback mechanism
is introduced, in [5], semantic entities, in the context of
the MPEG-7 standard, are used for knowledge-assisted video
analysis and object detection, while in [6], associating low-
level representations and high-level semantics is formulated
as a probabilistic pattern recognition problem.

In this paper a knowledge-assisted, domain-specific video
analysis framework is presented, using a genetic algorithm
to support efficient object localization and identification. The
localization and identification of the domain salient objects
are prerequisites for extracting accurate semantic informa-
tion. An initial segmentation generates automatically a set
of atom-regions and subsequently their low-level descriptors
are extracted. Analysis may then be performed by using the
necessary processing tools and by relating high-level symbolic
representations included in the ontology to visual features
extracted from the signal domain. Additionally, the genetic
algorithm decides how the atom-regions should be merged in
order to form objects in compliance with the object models
defined in the domain ontology. Following this approach, the
detection of the important objects depends largely on the
knowledge base of the system and as a result it can be easily
applied to different domains provided that the knowledge base
is enriched with the respective domain knowledge.

The remainder of the paper is structured as follows: sec-
tion II considers domain ontology development, section III
contains a presentation of the segmentation and descriptor
extraction algorithms, while in section IV the implementation
of the genetic algorithm is discussed. Experimental results are
presented in section V and finally, conclusions are drawn in
section VI.

II. DOMAIN KNOWLEDGE

The knowledge about the examined domain is encoded in
the form of an ontology. The developed ontology includes
the objects that need to be detected, their visual features
and their spatiotemporal relations. These descriptions provide
the system with the required knowledge to find the optimal
interpretation for each of the examined video scenes, i.e. the
optimal set of mappings among the available atom-regions
and the corresponding domain-specific semantic definitions.
To account for objects of no interest that may be present in
a particular domain and for atom-regions that fail to comply
with any of the object models included in the ontology, the
unknown object concept is introduced. In addition, support
is provided for the definition of associations between low-
level descriptions and the algorithms to be applied for their
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extraction. In the following, a brief description of the main
classes is presented.

Class Object is the superclass of all objects to be detected
during the analysis process: when the ontology is enriched
with the domain specific information it is subclassed to the
corresponding domain salient objects. Class Object Inter-
relation Description describes the objects spatiotemporal
behavior, while Low-Level Description refers to the set of
their representative low-level visual features. Since real-world
objects tend to have multiple different instantiations, it follows
that each object prototype instance can be associated with
more than one spatial description and respectively multiple
low-level representations. Different classes have been defined
to account for the different types of low-level information
(color, shape, motion etc.). These are further subclassed to
reflect the different ways to represent such a feature (e.g.
color information could be represented by any of the color
descriptors standardized by MPEG-7, the distribution models
of the respective color space etc.) The actual values that
comprise the low-level descriptors (e.g. the DC value elements,
color space) are under the Low-Level Descriptor Parameter
class.

Providing domain-specific spatiotemporal information
proves to be particularly useful for the identification of
specific objects, since it allows discrimination of objects
with similar low-level characteristics as well as of objects
whose low-level features alone are not adequate for their
identification. The applied spatial relations consider two-
dimensional, binary relations, defined between regions with
connected boundaries. In the current implementation the
included spatial relations are the eight topological relations
resulting from the 9-intersection model as described in earlier
works on spatial relations representation and reasoning [7],
[8], enhanced by the four relative directional relations, i.e.
right, left, above, below. Other qualitative spatial relations
such as near, far, between etc. can be easily defined combining
the ones previously mentioned. Symmetricity and transitivity
properties as well as the inverse of each of the defined spatial
relations are specified. Consequently, more complex spatial
descriptions can be inferred, reducing at the same time the
number of required explicit descriptions. The used low-level
descriptors are the MPEG-7 Dominant Color and Region
Shape descriptors, the motion norm of the averaged global
motion-compensated block motion vectors for each region
blocks and the ratio between a region’s area and the square
of its perimeter (compactness).

Enriching the ontology with domain specific knowledge
results in populating the ontology with appropriate instances,
i.e. prototypes for the objects to be detected. The presented
system interprets the provided information (i.e. the low-level
and spatial relation descriptions) as a conjunctive normal
form clause, with one conjunct for each description category.
Each conjunct is the disjunction of the respective category
descriptors associated with the particular prototype instance.
As will be explained in section IV, fuzzy matching criteria
are incorporated in the fitness function used to determine

the plausibility of each interpretation. The followed approach
proves twofold advantageous as it also allows to tackle the
inevitable loss of objects connectivity in the 2D image plane:
over-segmented atom-regions belonging to the same object
class are appropriately merged to form a single instance of
the respective concept.

III. PREPROCESSING

A. Color and motion initial segmentation

The color segmentation is based on the extraction of up to
eight dominant colors in the frame, as proposed in the MPEG-
7 Dominant Color descriptor [9], used to initialize a simple
K-means algorithm as detailed in [10].

The motion segmentation is based on a two step algorithm.
The first step follows the segmentation methodology of [4],
considering a block matching approach, in order to obtain a
coarse but very fast segmentation. Indeed, an iterative rejection
scheme [11] based on the bilinear motion model is used
to effect foreground/background segmentation. Meaningful
foreground spatiotemporal objects are formed by initially
examining the temporal consistency of the output of iterative
rejection, clustering the resulting foreground macroblocks to
connected regions and finally performing region tracking.
Furthermore, this first step provides an efficient estimation of
the 8 parameters of the bilinear camera motion model. As
a second step, the previous motion segmentation is used to
initialize a region-based motion segmentation algorithm based
on smoothing spline active contours [12]. Smoothing splines
offer a robust active contour implementation to overcome
the problem of noisy data that working with MPEG streams
implies. Hence, improved accuracy over the first step motion
segmentation is achieved. Furthermore, the contour defining
the extracted moving regions is given by a parametric equation
which allows a fast computation for geometric curve features
such as perimeter, area, or moments, involved in the low-level
feature descriptor extraction.

The generated color and motion segmentation masks are
merged giving priority to color information. That is to say, if a
motion-based segmented region consists of two or more color-
based segmented atom-regions, this region is split according
to the color segmentation. Finally, a region-based smoothing
spline active contour is applied to the resulted segmentation
mask in order to provide the parametric contour equation of
each atom-region.

B. Low-level descriptors extraction

The low-level descriptors defined in section II are extracted
for each atom-region as follows. We compute the Domi-
nant Color descriptor applying the MPEG-7 eXperimentation
Model (XM) [9]. The region motion feature, based on the
aforementioned motion segmentation algorithm, is defined by
the norm of the average global-motion-compensated motion
vectors evaluated on the blocks belonging to the atom-region
considered. To extract the compactness descriptor, we com-
pute the area and the perimeter of each region using a fast
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algorithm, proposed in [13], based on spline properties of the
parametric contour description.

Another spline contour property provides the means to cope
with one of the main issues of the region shape descriptor
extraction. Indeed, the Angular Radial Transform involved in
the MPEG-7 region shape computation considers the evalua-
tion for each region of specific normalized central moments.
These moments are defined considering that each region is
included into the unit disk. This normalization process can be
efficiently managed using the spline structure affine invariance,
since a spline curve subjected to an affine transformation
is still a spline curve whose parameters (the control points)
are obtained by subjecting the original spline curve control
points to that affine transformation. Thus the first geometric
moments of the considered region (its area, its centroid,...) can
be computed using fast algorithms [13] in order to evaluate
the parameters of the affine transformation corresponding to
the normalized contour and then extract the MPEG-7 region
shape descriptor.

IV. GENETIC ALGORITHM

As previously mentioned, the initially applied color and mo-
tion segmentation algorithms, result in a set of over-segmented
atom-regions. Assuming for a single image NR atom regions
and a domain ontology of NO objects, there are NNO

R possible
scene interpretations. To overcome the computational time
constraints of testing all possible configurations, a genetic
algorithm is used [14]. Genetic algorithms (GAs) have been
widely applied in many fields involving optimization prob-
lems, as they proved to outperform other traditional methods.
They build on the principles of evolution via natural selection:
an initial population of individuals (chromosomes encoding the
possible solutions) is created and by iterative application of the
genetic operators (selection, crossover, mutation) the optimal,
according to the defined fitness function, solution is reached.

In our framework, each individual represents a possible
interpretation of the examined scene, i.e. the labelling of all
atom-regions either as one of the considered domain objects
or as unknown. An object instantiation is identified by its
corresponding concept and an identifier used to differentiate
instances of the same concept. The domain ontology contains
information about the maximum allowed number of detected
instances for each object. In order to reduce the search space,
the initial population is generated by allowing each gene to as-
sociate the corresponding atom-region only with those objects
that the particular atom-region is most likely to represent. For
example in the domain of Tennis a green atom-region may
be interpreted as a Field, Wall or Unknown object but not as
Ball or Player. Therefore, for each individual included in the
initial population, the corresponding gene is associated with
one of the three aforementioned object concepts (instead of the
available NO). The set of plausible candidates for each atom-
region is estimated according to the low-level descriptions
included in the domain ontology.

The following functions are defined to estimate the degree
of matching in terms of low-level visual and spatial features

respectively between an atom-region ri and an object concept
oj .

• the interpretation function It
M (ri, oj), assuming that gene

gt associates region ri with object oj , to provide an
estimation of the degree of matching between oj and
ri. It

M (ri, oj) is calculated using the descriptor distance
functions realized in the MPEG-7 XM and is subse-
quently normalized so that It

M (ri, oj) belongs to [0, 1],
with a value of 1 indicating a perfect match.

• the interpretation function It
R(ri, oj , rk, ol), which pro-

vides an estimation of the degree to which the spatial
relation between atom-regions ri and rk satisfies the
relation R defined in the ontology between objects oj , ol

to which ri and rk are respectively mapped to by gene
gt.

Since each individual represents the scene interpretation, the
Fitness function has to consider the above defined low-level
visual and spatial matching estimations for all atom-regions.
As a consequence the employed Fitness function is defined as
follows:

Fitness(gt) = (
NR∑

i

It
M (ri, om))

NR∏

i

∏

j∈Si

It
R(ri, om, rj , ol)

where Si denotes the set of neighboring atom-regions of ri,
since the spatial relations used have been defined only for
regions with connected boundaries as mentioned in II. It
follows from the above definitions that the optimal solution
is the one that maximizes the Fitness function. This process
elegantly handles the merging of atom-regions: any neigh-
boring such regions belonging to the same object according
to the generated optimal solution are simply merged. In our
implementation, the following genetic operators were used:
roulette wheel selection, in which individuals are given a
probability of being selected that is directly proportionate to
their fitness and uniform crossover, where genes of the parent
chromosomes are randomly copied.

V. EXPERIMENTAL RESULTS

The proposed approach was tested on a variety of Formula
One and Tennis domain MPEG-2 videos. As illustrated in
Fig.1 the system output is a segmentation mask outlining
the semantic interpretation, i.e. a mask where different colors
representing the objects defined in the ontology are assigned to
each of the produced regions. The objects of interest included
in each domain ontology along with their low-level models and
spatial relations are illustrated in table I. For all experimental
domains, the low-level descriptors values included in the
corresponding knowledge base were extracted from a training
set of manually annotated images.

The time required for performing the previously described
tests was between 5 and 10 seconds per frame, excluding the
process of motion information extraction via block matching
for which efficient and inexpensive hardware implementations
exist [15]. More specifically, the time to perform pixel-level
segmentation was about 2 seconds, while the time required

III-443



by the genetic algorithm to reach an optimal solution varied
depending on the number of atom-regions and the number of
spatial relations. The extraction of the low-level and spatial
descriptions is performed before the application of the ge-
netic algorithm. In general, the proposed approach proved to
produce satisfactory results as long as the initial color-based
segmentation did not segment two objects as one atom-region.

TABLE I

FORMULA ONE, TENNIS AND BEACH VACATIONS DOMAIN DEFINITIONS

(dominant color descriptor (DC), motion descriptor (MOV ), compactness

descriptor (CPS), externally connected relation (EC), below relation

(BEW ) and inclusion relation (INC))

Concept Visual models Spatial relations
Road DC1

road ∨DC2
road ∨DC3

road Road EC Grass,Sand
Car MOV 1

car ∧ CPS1
car Car INC Road

Sand DC1
sand ∨DC2

sand Sand EC Grass, Road
Grass DC1

grass ∨DC2
grass ∨DC3

grass Grass EC Road,Sand
Field DC1

field ∨DC2
field ∨DC3

field Field EC Wall
Player MOV 1

P layer Player INC Field
Line DC1

line ∧ CPS1
line Line INC Field

Ball DC1
Ball ∧ CPS1

Ball Ball INC Field
Wall DC1

W all ∨DC2
W all ∨DC2

W all Wall EC Field
Sea DC1

sea ∨DC2
sea ∨DC3

sea Sea BEW Sky
Sand DC1

sand ∨DC2
sand Sand EC Sea, BEW Sky

Sky DC1
sky ∨DC2

sky ∨DC3
sky Sky ¯BEW Sea, Sand

VI. CONCLUSIONS

In this paper, a knowledge-assisted domain-specific video
analysis approach, which exploits the fuzzy inference capabil-
ities of a genetic algorithm, is presented. Domain knowledge
includes both low-level visual descriptors and spatial interre-
lations, and is encoded in the form of an ontology. The ge-
netic algorithm provides a fundamentally different framework
compared to knowledge-based systems using formal rules. By
encoding the object models defined in the ontology in the form
of constraints (fitness function definition), a global optimal
interpretation of the examined scene is reached. The developed
domain ontology provides a flexible conceptualization that
allows the easy addition of new low-level and spatiotemporal
descriptors, i.e. supports different abstraction levels.
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