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ABSTRACT
The development of street-level geoviewers become recently

a very active and challenging research topic. In this context,

the detection, representation and classification of windows

can be beneficial for the identification of the respective fa-

cade. In this paper, a novel method for windows and facade

retrieval is presented. This method, based on a similarity of

graph of contours, introduces a new kernel on graph for in-

exact graph matching. We design a kernel similarity function

for structured sets of contours which will take into account the

variations of contour orientation inside a structure set, as well

as spatial proximity. Then we are able to extract a window as

a sub-graph of the graph of all contours of the facade image

and to retrieve similar windows from a database of images of

facades.

Index Terms— Attributed relational graph, kernel on

graphs, window extraction, facade retrieval, inexact graph

matching

1. INTRODUCTION

In the past few years, with the emergence of different ge-

ographical 3D browsers (Google Street View, Geoportail,

Microsoft Live Earth), there has been renewed interest in

cities modeling. Several approaches to model the urban envi-

ronment have focused on a rough model (polyhedron walls,

roof...). Recent approaches of research [1, 2, 3] try to analyze

the real images of facades to provide rich information on

buildings and to add realism for visualization. In this context,

detection and classification of primitives (windows, doors,

signs, cars ...) can improve navigation in these cities. Power-

ful object retrieval methods are based on local features such

as Point of Interest (PoI) [4] or region-based descriptions [5].

Edge fragments appear to be relevant for architecture infor-

mation on building facades. Regarding previous works [6, 7]

which consider exclusively or mainly, contour fragments as

the information support, the weakness of intrinsic information

supported by edges requires to emphasize underlying struc-

ture of the objects in the description. Following the idea of
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perceptual grouping of contours used by Ferrari et al. [8], we

propose to design a kernel similarity function for structured

sets of contours. Objects are then represented by fragments

of contours with their own characteristics and by a relational

graph on these fragments, where the vertices of the graph are

contour segments extracted from the image and the edges of

the graph represent their spatial relationships. This paper is

organized as follows: First, we focus on similarity functions

between objects represented by an attributed relational graph

of segments of contours; to compare these graphs, we adapt

kernels on graphs [9, 10] in order to define a kernel on paths

more powerful than previous ones; then we extract a window

as a sub-graph of the graph of all contours of the facade image

and retrieve similar windows from a database of images of

facades.

2. KERNEL ON GRAPH OF CONTOURS

2.1. Representation of architectural entities by Attributed
Relational Graphs

Contours seem intuitively relevant to hold architecture infor-

mation from building facades. In each image, edges are ex-

tracted, extended and polygonalized (figures 3 (b) (d)). In

order to consider the set of edges as a whole, we represent

it by an Attributed Relational Graph (ARG). Each line seg-

ment Ci is represented by a vertex vi of this graph and the

relative position of line segments Ci Cj is represented by the

edge eij of the graph. The topological information (such as

parallelism, proximity) can be considered only for the nearest

neighbors of each line segment. We use the Voronoi diagram

to find the segments that are the closest to a given segment.

An edge in the ARG represents the adjacency of two Voronoi

cells that is to say the proximity of two line segments.

In order to be robust to scale changes, a segment is

only characterized by its direction (horizontal or vertical).

If Θ is the angle between line segment Ci and the hori-

zontal axis (Θ ∈ [0, 180[), Ci is represented by the vertex

vi = (cos(2Θ), sin(2Θ))T .

The edge (of the graph) eij = (vi, vj) represents the

adjacency between line segments Ci and Cj . It is char-

acterized by the relative positions of the centers of grav-
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ity of segments Ci and Cj , denoted gCi(XgCi , Y gCi) and

gCj (XgCj , Y gCj ). The edge eij is then characterized by

eij = (XgCj
− XgCi

, Y gCj
− Y gCi

)T .

2.2. Graph matching with Kernel

The problem of classifying architectural entities can be con-

sidered as a problem of inexact graph matching. The problem

is twofold : first find a similarity measure between graphs of

different sizes, then find the best match between graphs in an

“acceptable” time. To address this last computational com-

pexity problem, the best matching path is efficiently given by

the “branch and bound” algorithm.

For the former issue, recent approaches of graph compar-

ison [9], [10] propose to consider graphs as sets of paths. A

path h in a graph G = (V,E) is a sequence of vertices of V
linked by edges of E : h = (v0, v1, ...., vn) , vi ∈ V .

Kashima et al. proposed [10] to compare two graphs G
and G′ by comparing all possible paths of same length of both

graphs. The problem of this kernel is its high computational

complexity, acceptable with graphs of chemical molecules

which have symbolic values, but unaffordable with our at-

tributed graphs. Other kernels on graphs were proposed by

Lebrun et al. [9], which are faster than Kashima kernel.

We design a new kernel based on [9]:

Kstruct(G, G′) =
1
|V |

|V |∑
i=1

max
hvi

,h′
KC(hvi

, h′)

+
1

|V ′|
|V ′|∑
i=1

max
h,h′

v′
i

KC(h, h′
v′

i
) (1)

with hvi path starting from vi.

KC represents a kernel on paths. Several KC were pro-

posed [9] (sum, product...). We tested all these kernels and

the best results were obtained with the following one, where

ej denotes edge (vj−1, vj) :

KC(hvi
, h′) = Kv(vi, v

′
0) +

|h|∑
j=1

Ke(ej , e
′
j) Kv(vj , v

′
j)

Kv and Ke are the minor kernels which define the vertex

similarity and the edge similarity. We propose these minor

kernels:

Ke(ej , e
′
j) = 〈ej ,e′

j〉
||ej ||.||e′

j || + 1 and Kv(vj , v
′
j) = 〈vj ,v′

j〉
||vj ||.||v′

j || + 1

Our kernel aims at comparing sets of contours, from the point

of view of their orientation and their relative positions. How-

ever, some paths may have a strong similarity but provide no

structural information. For example, paths whose all vertices

represent segments almost parallel. To deal with this prob-

lem, we can increase the length of paths, but the complexity

of calculation becomes quickly unaffordable. Thus the so-

lution we propose is to add a weight Oi,j in the kernel KC

Fig. 1. Examples of graphs with a path in dot lines. The scale

penalty will decrease the similarity of G′ with G

which penalizes the paths whose segment orientations do not

vary.

Oi,j = sin(φij) =
√

1
2 (1 − 〈vi, vj〉)

with φij the angle between vertices i and j.

Moreover the perceptual grouping of sets of contours is

crucial for the recognition. For example in figure 1, the ques-

tion is: has the rightest contour of graph G′ to be clustered

with the other contours to form an object or not? To model

this information, we add a scale penalty Sei.

Sei = min( ||ei||
||ei−1|| ·

||e′
i−1||

||e′
i|| , ||ei−1||

||ei|| · ||e′
i||

||e′
i−1|| )

Although Oi,j and Sei are illustrated in the case of graph of

window contours, theses weights remain relevant for other

objects since no real perceptual information could be ex-

tracted from a set of only parallel contours.

Our final kernel KC becomes (Sei ∈ [0, 1] and Oi,j ∈
[0, 1]):

KC(hvi , h
′) = Kv(vi, v

′
0) (2)

+
|h|∑
j=1

SejOj,j−1Ke(ej , e
′
j) Kv(vj , v

′
j)

3. CLASSIFICATION OF WINDOW CANDIDATES
WITH PRIOR KNOWLEDGE

3.1. Detection of window candidates

Lee et Nevatia [11] proposed a profile projection method to

extract windows by exploiting the geometric property of 2D

rectangles and alignment of the building windows. We used

this method to extract windows candidates, and obtained a

database with 70 windows and 230 false detections (negative

examples). We tested our method based on kernel on graph

of contours to remove the false detections on this database

of 300 images. Each image contains between 10 and 30 line

segments. We tried paths of lengths between 3 and 10. With a

3-edges length, we do not fully take advantage of the structure

of the graph, and with a 10-edges length, the time complexity

becomes problematic. We set up : |h| = 8.
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3.2. Active classification of window candidates

We first evaluate our kernel, the interest of weights proposed

in this paper and compare with a method based on sets of

features using point of interest (combination of MSER region

detectors and SIFT descriptors [4]). We simulated an active

learning scheme using Support Vector Machines classifiers,

where the user annotates a few images at each iteration of rel-

evance feedback, thanks to the interactive retrieval system [9].

Each retrieval session is initialized with one image containing

an example of window. The system labels at each iteration

one image either as window or as false detection, and the sys-

tem updates the ranking of the database according to these

new labels. The whole process is iterated 100 times with dif-

ferent initial images and the Mean Average Precision (MAP)

is computed from all these sessions (figure 2).
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Fig. 2. Comparison of various kernels on paths with weight-

ing by scale and/or orientation of the contours and the MSER

method

We compared our kernels with and without the various

weights proposed in section 2.2. With only one example of

window and one negative example, we obtain 42 % of correct

classification with the kernel without weighting. This per-

centage goes up to 54% with the scale weighting, to 69% with

the orientation weighting, and to 80 % with both weightings.

Results with weightings are much more improved after a few

steps of relevance feedback than without weighting, to reach

90 % with 40 examples (20 positive and 20 negative), instead

of 100 examples without weighting. The results with MSER

are not as good as the results with kernel on graph on con-

tours. The structure of the object is better taken into account

with graph on contours than with MSER.

(a) (b) (c) (d)

Fig. 3. Find the subgraph of window the most similar to
graph of facade (a) Window query. (b) Graph of window (a).

(c) Facade.(d) Graph of facade (b).

4. EXTRACTION OF WINDOWS WITHOUT PRIOR
KNOWLEDGE

4.1. Detection of windows in facade

In section 2.2, we used kernels on graph of contours in or-

der to classify graphs according to their similarities. In this

section we want to avoid the preliminary stage (3.1) and we

propose to exploit directly the graph of facade segments in or-

der to detect window position. We want to find the subgraph

of G′ the most similar to graph G. In our case, G is the graph

of a window and we look for windows within a facade ( Fig.3

).

In our kernel (eq. 1), for each vertex vi of G we search

for the best match between hvi
∈ G (path starting from vertex

vi) and h′ ∈ G′ (in this section, we set up |h| = 8). From this

best path h′, we define a bounding box Bhvi
,h′ around path

h′ as a region of interest (figure 4 (a)). In order to extract the

windows, we assign a value to each pixel within this region

of interest. All best paths h′, each corresponding to one hvi

of G will thus vote for a set of pixels of G′. The value is

the similarity of each h′. The result is an accumulation of

similarities in several bounding boxes (figure 4 (b)). For each

pixel (x,y) of image I we have:

I(x, y) =
|V |∑
i=1

Bhvi
,h′(x, y) (3)

where Bhvi
,h′(x, y) = KC(hvi

, h′) if pixel (x,y) is in the

bounding box and 0 otherwise.

In figure 4 (b), we note that the best paths are accumulated

on two windows, but other windows are missed. To detect

more windows, we need more paths. That is the reason why

we propose for each vertex vi to select the k best matches

between hvi and h′. For each vertex vi in graph G, we take

not only the best match, but the k best matches with paths
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(a) (b) (c)

Fig. 4. Extraction of windows from one example (a) Best

path and its bounding-box.(b) Accumulation of regions of in-

terest with 1 path by vertex. (c) Accumulation of regions of

interest with 10 paths by vertex

starting from vertex vi. The result is :

I(x, y) =
|V |∑
i=1

k∑
j=1

Bj
hvi

,h′(x, y) (4)

We extract thus more region of interest (Figure 4(c)).

4.2. Retrieving similar windows from a facade database

This kernel framework can also be used to retrieve images of

facade containing similar windows. In the following experi-

ments we took, as query, the graph of window of figure 3 (a).

The database is composed of 200 urban images including 50

facades. Facades are ranked according to eq.(1). In eq.(4),

we set up k = 10 which gives a good compromise between

several true negative (k = 1) and several false detections.

(a) (b) (c)

Fig. 5. Facade retrieval and extraction of windows Three

first retrieved images. Window query belongs to facade (a)

and in facades (b) (c) similar windows are found. Windows

detected have the same structure (balconies and jamb).

First results of window extraction and retrieval are shown

in figure 5. Among these best facades retrieved, we have with

the rank 1 the facade containing the query window (5 (a))

and the facades ranked next contain some similar windows (5

(b)(c)). Windows detected have the same structure (balconies

and jamb).

5. CONCLUSIONS

In this paper, we addressed the problem of inexact graph

matching, window detection and facade retrieval by working

out a new contour-based method using graph on contours.

We have also shown that objects can be represented by

sets of contours. The new kernel we proposed is able to take

into account orientations and proximity of contours in the

structure. We are able to extract a window as a sub-graph

of the graph of all contours of the image. Moreover we can

retrieve images of facade containing similar windows.

To improve the extraction method, we will propose an-

other voting system to segment the building and find more

windows. A further step will also be to extend our kernel-

based system to other more complex “urban objects”, cars or

pedestrians.
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