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Abstract

In video surveillance systems, when dealing with dy-
namic complex scenes, processing the information coming
from multiple cameras and fusing them into a comprehensi-
ble environment is a challenging task.
This work addresses the issue of providing a global and re-
liable representation of the monitored environment aiming
at enhancing the perception and minimizing the operator’s
effort. The proposed system Virtu4D is based on 3D com-
puter vision and virtual reality techniques and takes benefit
from both the ”real” and the ”virtual” worlds offering a
unique perception of the scene.
This paper presents a short overview of the framework
along with the different components of the design space:
Video Model Layout, Video Processing and Immersive
Model Generation. The final interface gathers the 2D in-
formation in the 3D context but also offers a complete 3D
representation of the dynamic environment allowing a free
intuitive 3D navigation.

1. Introduction

The ineffectiveness of the traditional video surveillance
systems has sparked demand for a shift in the security
paradigm as researchers are looking for new approaches to
enhance situation awareness in video surveillance applica-
tions and monitoring systems. In a classical way (Figure
1), video surveillance systems by means of distributed
architectures of fixed cameras represent the streams mo-
saically in a control viewer and rely on human capabilities
to analyze them which needs expert eyes and can be very
tiring.
Some studies about the effectiveness of human monitoring
of surveillance video, carried out by the US National Insti-
tute of Justice [8] concluded that ”such a task[..manually
detecting events in surveillance video], even when assigned
to a person who is dedicated and well-intentioned, will
not support an effective security system. After only 20
minutes of watching and evaluating monitor screens, the
attention of most individuals has degenerated to well below
acceptable levels. Monitoring video screens is both boring
and mesmerizing. There are no intellectually engaging
stimuli, such as when watching a television program”.

Breaking up with the common matrix representation to
enhance the perception and minimize the operator’s effort



Figure 1. Virtu4D versus the classical video surveillance systems.
Left: classical video surveillance representation. Right: real time
3D virtualization.

is becoming a fundamental issue.
Thus, extensive research has been carried out in order to
tackle this issue [19, 5, 7]. Existing approaches tend at
combining video with the 3D environment to provide co-
herence between video streams and spatial context. Wang
et al. [22] present a comprehensive survey comparing the
different techniques related to contextualized videos.
Contextualizing the video in the 3D environment needs to
address several issues for virtual reality research commu-
nity, mainly related to Video Processing Method, Model
Processing Method, Video-Model Layout Design and
Video Visualization (Navigation Design), identified by
Wang et al. as video design space.

The work in this paper is presented referring to the struc-
ture of design space proposed by Wang et al. [22] and is in
line with the ongoing research concerns. It addresses the is-
sue of providing a global and reliable representation of the
monitored environment.
Indeed, we consider that the increase of computational ca-
pabilities together with the emergence of affordable stereo-
scopic vision systems have opened new opportunities for
the development of innovative approaches based on 3D
computer vision and virtual reality techniques. Consider-
ing stereoscopy provides the powerful context required to
build the perceptual space we propose.

Summary of the achievements and main contribu-
tions

We are presenting in this paper our approach to answer
the issue of visual data representation for surveillance
systems. Based on 3D computational techniques, we
propose to make, in real-time, a virtual copy of the complex
dynamic scene observed by video cameras. The goal
behind this approach is to generate a real-time unique
perception of the scene and thus making the surveillance
task more intuitive and natural.

Figure 2 outlines the main components of the proposed
system. The major design dimensions addressed in this
work are Video Model Layout, Video Processing and Im-

Figure 2. Overview of Virtu4D process

mersive Model Generation. This is consistent with the com-
ponents highlighted in the unified framework proposed by
Wang. The proposed structure contains the following com-
ponents:

• Video Model Layout: addresses the issue of video data
representation within the 3D context. Contextualizing
the video in the 3D environment highlights some cru-
cial issues in virtual reality research, mainly: camera
registration and video visualization.

• Video Processing: aims at extracting salient informa-
tion from the video data. In this step, the system de-
tects, extracts and locates persons in order to generate
a 3D dynamic virtual view of the environment.

• Immersive Model Generation: offers the final inter-
face. The final interface gathers the 2D information
(video streams) in the 3D context but also offers a com-
plete 3D representation of the dynamic environment
allowing a free intuitive 3D navigation.

By generating a real-time unique perception of the scene,
Virtu4D system provides a flexible interface with a natural
visual information display. The remainder of the paper de-
scribes each of these components.

2. Video Model Layout: Network Registration
and Video Visualization Issue

This section details our camera registration approach and
brings forward the limitations of the existing contextualized
video approaches.

2.1. Camera network registration

Camera registration (extrinsic calibration) seems obvi-
ous in the case of a single camera. However, when deal-

2



(a) Picking correspondences between (left) 3D model and (right) IP camera
frame: matches points are represented with colored 3D spheres.

(b) Camera registration in (left) Augmented Reality mode with alpha
blended video on 3D model and (right) Mixed Reality mode, the registered
camera is represented by a red 3D object and the image plane in the sensor
visual field of view.

Figure 3. Registration software based on model to image correla-
tion.

ing with distributed camera network the current techniques
raise some issues mainly related to the definition of a single
absolute referential.
The camera registration is usually estimated by a correla-
tion between a pattern and the image provided by camera
sensor. The pose-camera corresponds then to the transla-
tion and rotation of the camera in the 3D scene referential.
When dealing with a camera network, it is hard to find a
unique referential in the scene that can be observed by each
camera. The use of grid calibration pattern, more than be-
ing impractical, implies a prior knowledge on the absolute
positions of each (moving) object in a common absolute ref-
erential.
Some works have proposed to overcome this issue by mak-
ing use of natural human motion or planar trajectory estima-
tion of one or more objects in motion to recover the relative
pose of several stationary cameras.
These techniques usually suffer from the restriction that the
cameras should have a common area of the scene. The cal-
ibration object should be viewed simultaneously by all the
cameras for a one-step calibration. Otherwise, the calibra-
tion should be processed in multiple steps where each cal-
ibration result has to be merged and transformed in the ab-
solute coordinate frame. In both cases, the area covered by
each camera should intersect with each other’s which makes
the approach not well suited for surveillance systems with

uncovered areas.
In our approach, the designed system allows a fast cam-
era registration by correlating the 3D scene model with
the camera image planes. The method relies on manu-
ally matching corresponding points by picking the virtual
model and the image, as shown in Figure 3(a). The pose
camera can then be estimated from a few correspondences
and allows the different virtual reality representations, as
presented in Figure 3(b). The Mixed Reality (MR) (geo-
localized textures billboards) is generally used for 3D vir-
tual navigation since it does not constraint the pose of cam-
era for user, however the Augmented Reality one allows to
check the accuracy for 3D people localization with calibrate
merge between video-streams and synthetic environment.
The last challenge concerns the video streams visualization
from the referenced cameras. The registration step provides
information about the cameras such as pose and perspec-
tive parameters. Augmenting dynamically the 3D virtual
environment with videos provided from the cameras is then
possible making use of the latter parameters.

2.2. Video visualization

Current approaches consider the video stream content as
texture patterns and map it onto the 3D model. In [19],
Sawhney et al. propose to project video stream contents,
from multiple cameras, onto a 3D model of the complex
outdoor scene considered. They have had a very interesting
idea of considering video stream content as texture patterns
to be mapped onto the 3D model: They combine static tex-
ture mapping for the areas not covered by video cameras
and dynamic video projection for the areas covered by cam-
eras. They named this process as “Flashlight video system”
and provided hence a real-time 3D visualization system of
the scene while also detecting and tracking moving objects
in the model space. Similar approaches have been devel-
oped in [16]. Haan et al. [5] also consider projecting video
streams as texture maps as in Sawnhey et al. approach but
they avoid a complete reconstruction in the model space.
Their approach aims at guiding the user into correct view
space reconstructions still considering video streams as tex-
ture maps but projecting them onto 3D canvas modeling the
scene. Hence, they can provide an intuitive visualization
and navigation surveillance system based on the egocentric
point of view of the operator. This method can be seen as a
“view dependent rendering”. Figure 4(a) shows a projection
example. One can notice that the projection viewed from a
near camera position is well aligned and accurate. However,
projecting the acquired image from the camera viewpoint in
the 3D model as a texture presents many limitations. Prob-
ably, the most significant one is that it depends highly of the
user point of view. Our own system is in line with all these
works. However, as mentioned by Girgensohn2007 et al.
[7] and well illustrated by Wang et al. [22], the two afore-
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mentioned methods suffer from projection issues. Indeed,
projecting the video stream of a 3D object onto a 3D envi-
ronment model can lead to serious semantic issues when the
projected model area contains corners or broken walls, e.g.
open doors. The projected video may be even harder to per-
ceive and interpret because the video image is broken into
multiple parts. Other problems can occur, such as scaling,
distortion [22]. As illustrated in figure 4(b), the rendering of
the video appears warped when the user view point moves
away from the camera axis.

(a) Viewed from a near camera po-
sition, the projection is well aligned.

(b) The projection is warped when
viewed away from the camera axis.

Figure 4. View-dependant projective texture mapping.

To overcome these issues, we propose to embed the
video streams in a canvas object that we keep fixed in the
optical axis of the camera. We propose then to extract and
translate the dynamic information from the real environ-
ment to the virtual one. We get hence rid of all the problems
arising from the projective mapping.
The proposed approach restores the positions and the move-
ments of the persons in the generated 3D representation and
endeavors to remain accurate to the reality. This needs to
detect persons in the flow of images and infer their 3D lo-
cations accurately.

3. Video Processing: Real-time people extrac-
tion and 3D localization

Detecting persons in video frames is a challenging issue
due to the large variability in their appearance, clothing,
pose, background and intrinsic camera parameters. Usual
methods tries to develop automatic person detectors based
on local features extracted from a single image. Other de-
tectors try to include motion features to provide a stronger
cues for person presence [2].
The second issue raised in our application is person local-
ization. Although locating detected persons using a monoc-
ular approach is conceivable, using only one view quickly
shows its limits. In fact, inferring the location using a
monocular approach usually needs to add hypothesis such
as the equation of the floor (usually considered not sloped)
or hypothesis regarding the height of the persons (which
obviously cannot be generalized). In this way, people lo-

calization suffers from being very sensitive to the quality of
the detected bounding box which needs to be accurate (in
the foot or/and head). Monocular approaches are thus not
very reliable due to shadowing and occlusion. This led us
think of multiplying the camera point of view for a more
accurate estimation.
Applying stereoscopy provides the opportunity to overcome
the aforementioned technical problems, as no hypothesis re-
garding the floor or the height of the person are needed. It
has also the advantage to overcome the technical issues re-
lated to network synchronization [15]. Using synchronous
image pairs and using the simplification led by the epipolar
geometry, stereo vision algorithms provide an accurate esti-
mation of the 3D location of the objects.
A three staged approach is implemented in our framework:
(1) extraction, (2) classification and (3) localization.
The extraction step aims at extracting the moving objects in
the scene representing potential persons. These candidates
regions are then classified in people/not-people regions us-
ing a real-time boosting-based classifier, in the second step.
Finally, based on the 2D detection of people in a frame, the
depth map is estimated still in real-time using our parallel
implementation on GPU of a belief propagation algorithm.

Figure 5. People detection and localization framework in Virtu4D

3.1. Foreground Extraction

Detecting humans within the images requires scanning
the whole image, with different scales, in order to locate
potential person candidate regions. This process can be
computationally very expensive. The foreground extraction
process targets to reduce the search space for potential hu-
man detection, assuming they are moving. For that purpose,
moving objects are separated from the background. Most of
the approaches from the earliest as in Polana et al. [18] for
instance to more recent ones [7] extract video blocks corre-
sponding to the objects of interest in the data.

In this paper, we consider a statistical color image seg-
mentation modeled by an adaptative mixture of Gaussians.
This approach has been proposed first by Grimson et al [9].
This online per-pixel and low-level method makes the as-
sumption of a color difference between moving objects and
the background, similarly to a human eye responding to dif-
ferent wavelengths of light. The final algorithm developed
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in Virtu4D comes up with some improvements regarding
this reference method:

• a variable number of Gaussians to model the back-
ground. Each pixel is modeled by a mixture of a
variable number of Gaussians depending on the com-
plexity of the background thus optimizing computation
time and avoiding concurrence between Gaussians.

• Shadows and sudden luminosity changes may lead to a
false foreground map. A shadowed pixel is character-
ized by a small color distortion and a lower brightness
compared to the background model. A highlighted
pixel, however, is characterized by a low color dis-
tortion and a higher brightness compared to the back-
ground model of the pixel [10]. We introduce a conic
shape model to tackle this issue as in [11].

Figure 6 presents the foreground extraction results
through different frames. One can notice that the search re-
gion is highly focused which significantly reduces the num-
ber of person region candidates and thus minimizes tests
we would further potentially need to process. Thanks to
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Figure 6. Some foreground extraction results. Foreground ele-
ments are in black, shadows are in red and highlights are in green.
Left: foreground extraction of the 241th frame of PETS’2006
Dataset [14]. Center and right: foreground extraction results in a
MPEG-4 medium quality video from our camera network. Right:
sudden highlight detection.

the foreground extraction, a set of candidate pedestrians is
then spotted in different images to further classification as
possible person detection.

3.2. Person boosting-based classifier

The deformable shape of the human body, combined
with illumination and pose variations contribute to the com-
plexity of person detection task.
The leading approaches for this task use boosting classifi-
cation techniques which consists in a linear combination of
weak classifiers to build a “strong” classifier. The most well
known example of applying these algorithms is the face de-
tection method proposed by Viola and Jones [] where the

weak classifiers are defined by a tuple of (Haar-filter re-
sponse, the size of the filter, the threshold over the response
for which the face is detected). Other weak classifiers than
Haar-like features [17] have been proposed as Histograms
of Gradient (HoG) or even SIFT descriptors [4, 3]. More
recently, these boosting techniques have shown their poten-
tial to address person detection in images through the works
of Laptev [13], based on HoG features and weighted Fisher
linear discriminant similarity measure between HoG, and
Felzenszwalb [6] which enriches Laptev approach by as-
sembling local HoG detectors of body parts, according to
geometric constraints to form the final human model. For
its good low complexity properties, we focus here on Laptev
approach.
In all these approaches, each weak classifier (Haar-filters,
HoG...) is evaluated for all possible parameter settings and
scanning the whole image. In our work, based on the re-
sults of previous step (foreground extraction), we can re-
strict scanning and evaluation of the weak classifiers on
candidate regions which speed up a lot this classification
process. As in Laptev method, we use a structure of co-
operating Weighted Fisher Linear Discriminant (WFLD),
for which parameter settings are generated using the well
known Adaboost method on a database of 700 true and 7000
false samples taken from our camera network. The perfor-
mance of the overall strong classifier is improved by itera-
tively applying to the next weak classifier a reweighted ver-
sion of the training data in order to emphasize data which
were wrongly classified by the previous weak classifier.
The features are histograms of oriented gradients (HoG)
computed separately in subdivided parts of the rectangular
sub-image of candidate region (24x9 pixels).
The detection is finally achieved on the region of interest
through different scales. As a single pedestrian is likely to
be detected multiple times, we generate a mean bounding
box that surround the final detected pedestrians.

3.3. Depth Map Estimation

Once a person is located in an image plan, depth map es-
timation allows recovering his/her 3D location in the scene.
Depth map estimation has been extensively studied in the
stereo vision field [20]. Stereo matching algorithms are
generally classified into two classes, local algorithms and
global algorithms based on the cost computation method.
Local approaches are based on a correlation criterion over
a local window containing the element to match. While be-
ing fast, these methods generally do not perform well on
occluded or low textured regions.
To overcome this, global approaches minimize an over-
all cost function that involves all the pixels of the image.
Though, such algorithms are known to be computationally
expensive and hence may cause a performance bottleneck
for a real-time system. To overcome this major problem, we
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take profit of a parallel implementation of the beliefs propa-
gation algorithm on a programmable graphic hardware [1].
The beliefs propagation is a recursive inference algorithm
that minimizes an energy function to estimate the disparity
field. In our case, the energy function is formulated as a sum
of two terms (Eq 1). The first term is a data driven energy.
The second one enforces smoothing depth estimation. Let P
be the set of pixels in an image and L be the disparity values
set. A disparity field d assigns a disparity value dp ∈ L to
each pixel p ∈ P. To measure the quality of a disparity field
d, we consider the global energy function

E(d) = ∑
p∈P

Dp(dp)+ ∑
(p,q)∈N

Up,q(dp,dq) (1)

Dp and Up,q are the data cost and smooth cost respectively.
The data cost encodes the log-likelihood function. The
smooth cost encodes the prior distribution. N is the set of
neighboring pixels couples.
To compute the data cost, we use a truncated absolute dif-
ference as the matching cost. We aggregate this cost over a
square window with constant disparity (Eq 2).

Dp(dp) = ∑
(x,y)∈N(p)

min(|IL(x,y)− IR(x−dp,y)|,T ) (2)

N(p) is a p-centered square window. IL and IR are respec-
tively the left and the right images. T is a threshold. The
smooth cost is also computed using a truncated absolute dif-
ference with threshold λ (Eq 3).

Up,q(dp,dq) = min(|dp−dq|,λ ) (3)

The minimization of this energy function is achieved re-
cursively by passing ”messages” between neighboring pix-
els. A pixel p sends to each of its four neighbors qi, i ∈
{1,2,3,4} a message mk

p→qi
at every iteration k (Eq 4).

Each message is a vector, with each component being pro-
portional to how likely the pixel p ”believes” that the pixel
qi will have the corresponding disparity. After convergence,
we compute the ”beliefs” vector for each pixel p (Eq 5), and
we select the disparity that corresponds to the component of
the beliefs vector with the minimum value (Eq 6).

mk
p→qi

(dqi) = min
dp

(Dp(dp)+Up,qi(dp,dqi) (4)

+ ∑
j∈{1,2,3,4}, j 6=i

mk−1
q j→p(dp))

bp(dp) = Dp(dp)+ ∑
i∈{1,2,3,4}

mK
qi→p(dp) (5)

d∗p = arg min
dp∈L

bp(dp) (6)

Given the person 2D location within the image plane and
d̃ the mean value of the disparities within the person blob,

Figure 7. Depth map estimation result.

the 3D location with respect to the stereo sensor referential
is recovered by triangulation following the equation 7. The
parameters f and b corresponds respectively to the focal
length of the sensor and the stereo baseline.

Z =
f ∗b
d̃

(7)

The implementation of this algorithm on a pro-
grammable graphic hardware using NVIDIA CUDA tech-
nology [1] unlocks the processing power of the GPU to of-
fer accurate and real-time estimation of the depth map. The
table 1 reproduces the classification by the benchmark Mid-
dlebury of our results compared to some algorithms listed
in the benchmark. It is noteworthy that our algorithm is the
23rd place in the overall standings, and 2nd in the ranking
algorithms real time.

Table 1. Classification by the benchmark Middlebury
Algorithm Rank % false matching

TsukubaVenusTeddyCones
AdaptingBP [12] 2.8 1.11 0.10 4.22 2.48
RealtimeBP [23] 21.9 1.49 0.77 8.72 4.61
Our implementation 23.2 1.59 1.13 12.6 6.27
RealTimeGPU [21] 26.8 2.05 1.92 7.23 6.41
BP+MLH [20] 32.5 4.17 1.96 10.2 4.93

Figure 7 shows the result of the depth map estimation
coupled with foreground extraction on a frame containing
two persons. The grey level in the disparity map is inverse
proportional to the depth of the person. The 3D location
of persons within a global referential can then be computed
using the registration parameters of the camera network.

4. Immersive Model Generation
Video surveillance systems often provide multiple inter-

faces/views to help monitoring and understanding differ-
ent situations. DOTS system [7] provides mainly two user
interfaces. The first, a 2D interface ”multi-stream video
player”, displays multiple video streams (camera bank)
along with a timeline and a floor plan. The second is a 3D
viewer that displays billboards representing detected people
within a 3D model of the surveillance area.
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Virtu4D provides the user with three main complemen-
tary ”views” in only one user interface. First, the 3D envi-
ronment model and information from the sensors network
are fused in one 3D dynamic virtual representation. De-
tected and localized persons are represented by dynamic
avatars to enrich the environment model. Second, video
streams are added to the 3D virtual world. Their locations
follow the physical locations of the cameras, allowing an in-
creasing understanding of observed situation and the spatial
relationships between streams. A third view allows the user
to watch 2D video from one camera in augmented reality
mode.

4.1. Virtual Reality Mode

Virtu4D system takes benefit from both the ”real” and
the ”virtual” worlds offering a unique perception of the
scene. Detected persons are represented by 3D avatars
(cylinders in Figure 8, humanoid models in 9) in the vir-
tual world. The 3D locations of the avatars reflect the ac-
tual humans’ positions in the real scene. This representa-
tion mode gives a simple and computable duplicate of the
real world making possible the further exploitation of data
in ”operational” algorithms like people tracking, detection
of abnormal behaviors in crowd, etc. Furthermore, the gen-
erated scene is freely navigable without any constraints with
respect to the position of the observer.

Figure 8. Virtual reality representation.

4.2. Mixed Reality Mode

The proposed system does not break totally with the clas-
sical surveillance systems. Indeed, live video streams are
also reported in the 3D visualization as video walls in front
of the registered cameras (Figure 10). This allows recover-
ing the amount of information that image processing algo-
rithms fail to extract from the video streams, due to either
the medium/poor quality and low resolution of cameras or
the high complexity of the observed scene. The operator can
then switch smoothly between the virtual representation and
the real one by navigating within the 3D environment.

Figure 9. Humanoid avatar

(a) (b)

Figure 10. Two successive frames in the mixed reality representa-
tion. The 3D trajectories help the observer understand the scene.

4.3. Augmented Reality Mode

In Virtu4D system, switching between the 3D and the
2D representation is straightforward. Within the same user
interface, when moving the observation point to meet the
physical location of a camera, the observer can watch the
corresponding video stream. This view is obtained by plac-
ing the 3D viewer in the place of a camera. Using al-
pha blending between the video wall and the dynamic 3D
model, we get merged visualization between video and 3D
model.

Figure 11. Augmented reality representation
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5. Conclusion
We presented in this paper a new surveillance system that

provides a coherent live visualization of a dynamic complex
scene captured by passive video cameras. Using a stereo vi-
sion algorithm coupled with foreground extraction and hu-
man detection, the disconnected moving elements captured
by each camera are gathered into a single animation accu-
rately to the reality, hence allowing an unique perception of
the scene. This virtual copy allows a free intuitive naviga-
tion in the environment and hence making the supervision
systems easier.

Future work will focus on pushing further the virtualiza-
tion of the real world in the perspective of reducing the need
of video streams to better understand the situations. Such
achievement can be done by adding a re-identification mod-
ule that will attribute the same ID to the same person when-
ever he/she reappears in a supervised zone. Such module
will allow people tracking even with a surveillance system
containing non-supervised zones.
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