

ARTificial Intelligence-based Cloud network control (ARTIC)

ANR JCJC 2019

Coordinateur: Ramon Aparicio-Pardo

Lucile Sassatelli

Frederic Precisoso

Université Côte d'Azur, CNRS, I3S

ANR - Réunion de démarrage des projets sélectionnés – Paris, 2 Dec. 2019

CONTEXT: Network control evolution

➤ Stage 1: Legacy network

Control based on dedicated hardware and distributed algorithms

CONTEXT: Network control evolution

➤ Stage 1: Legacy network

Control based on dedicated hardware and distributed algorithms

➤ Stage 2: Network softwarisation

- Control based on general purpose (programmable) hardware and centralized algorithms.
- Enabling technologies
 - 1. Network Function Virtualization (NFV) & Software Defined Networking (SDN)
 - 2. Network monitoring

CONTEXT: Network control evolution

- **>**Stage 1: Legacy network
- **≻Stage 2: Network softwarisation**
- ➤ Stage 3: Knowledge Defined Networking
 - ❖ aka Artificial Intelligence enabled SDN
 - Control is learnt by Machine Learning (ML)
 - Enabling technologies
 - 1. Network Function Virtualization (NFV) & Software Defined Networking (SDN)
 - 2. Network monitoring
 - 3. Machine Learning (ML) & Artificial Intelligence (AI)

PROJECT OBJECTIVES

Under the AI-based SDN (or KDN) paradigm, we aim to design a unified *ML-based framework* to learn efficient *cloud network control algorithms*

- >Two identified AI tools:
 - 1. Deep Learning (DL)
 - *native data* representations \rightarrow *control problem-fitted* representations
 - intuition: to replace **deep** layers **for images** with layers **for graphs**

PROJECT OBJECTIVES

Under the AI-based SDN (or KDN) paradigm, we aim to design a unified *ML-based framework* to learn efficient *cloud network control algorithms*

>Two identified AI tools:

- 1. Deep Learning (DL)
 - *native data* representations \rightarrow *control problem-fitted* representations
- 2. Reinforcement Learning (RL)
 - to learn the optimal control by interacting with the network

THANKS!

QUESTIONS!