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Abstract. In the field of biological regulation, models extracted from
experimental works are usually complex networks comprising intertwined
feedback circuits. R. Thomas and coworkers introduced a qualitative de-
scription of the dynamics of such regulatory networks, called the gen-
eralized logical analysis, and used the concept of circuit-characteristic
states to identify all steady states and functional circuits. These charac-
teristic states play an essential role on the dynamics of the system, but
they are not represented in the state graph. In this paper we present an
extension of this formalism in which all singular states including charac-
teristic ones are represented. Consequently, the state graph contains all
steady states. Model checking is then able to verify temporal properties
concerning singular states. Finally, we prove that this new modeling is
coherent with R. Thomas’ modeling since all paths of R. Thomas’ dy-
namics are represented in the new state graph, which in addition shows
the influence of singular states on the dynamics.

1 Introduction

Biological regulatory systems are often complex networks comprising several
intertwined feedback circuits. The behavior of such systems is extremely anti-
intuitive and cannot be solved without adequate formalization. They can be ac-
curately described by non-linear ordinary differential equations [1,2,3,4] which,
however, cannot be solved analytically and use kinetic parameters which are
most often unknown. The generalized logical analysis developed by R. Thomas
and coworkers [5,6,7,8] to describe biological regulatory networks extracts the
essential qualitative features of the dynamics of such systems by logical parame-
ters [9,5] which can take a finite number of values. But some states, the singular
states, are not explicitly represented in the state graph obtained with this for-
malism whereas they can be steady. Even if the steady singular states can be
detected with the concept of circuit-characteristic states [10,11], it is not possi-
ble to use model checking for verifying temporal properties concerning singular
states. This paper provides, in section 2, our extension of R. Thomas’ modeling.
This new formalism considers the singular states and consequently represents all
the steady states of a classic continuous description of regulatory networks. This
continuous description is also the ground of the work of R. Thomas. Section 3



presents this description and shows, by the introduction of a discretisation map,
why our qualitative modeling extracts similarly its essential qualitative features.
Then we study in section 4 how the introduction of singular states gives a new
light on the properties of characteristic states of feedback circuits. Finally con-
clusions and perspectives are presented.

2 Qualitative dynamics of regulatory networks

In our qualitative approach, the entities of a biological regulatory network, often
macromolecules or genes, have discrete expression levels defined as qualitative
values.

Definition 1 (Qualitative Values). A qualitative value, denoted by |a,b|,
is a couple of integers (la,b| € IN?) where a < b. The relations =,<,>,C are
defined for two qualitative values |a,b| and |c,d| by:

— |a,b] =lc,d| if a =c and b =d.

— |a,b] < e, d] if (b<e¢)or(b=c and (a <b orc<d))

la,b] > |e,d| if |e,d| < |a,b]

la,b| C |e,d| if (la,b] =|e,d|) or (a=>band ¢ < a and b < d) or (a <b and
c<aandb<d).

Intuitively, if a < b then |a,b| is said singular and represents the open interval
Ja,b[. Otherwise, if a = b then |a,b| is said regular and represents the closed
interval [a, b] which only contains the integer a. Then two qualitative values are
comparable if the corresponding intervals are not overlapping and the relation C
is simply the inclusion relation between these intervals. To shorten the notation
of the qualitative values we denote by |a| the regular qualitative value |a, al.

Interactions between biological entities are classically represented by directed
graphs, where vertices abstracts biological entities and edges their interactions.
In the sequel we denote by #S the cardinal of a set S and by G~ (v) (resp.
G (v)) the set of predecessors (resp. successors) of a vertex v in a graph G.

Definition 2 (QRN). A qualitative regulatory network (QRN for short) is a
labelled directed graph N = (V, E) where:

— each vertex v € V, called variable, represents a biological entity. The set
@y of all possible qualitative expression levels of v is defined as @Q, =
100,10, 11, 1], lg — 11, ba — 1,al,laly o [N+ (o)}

— each edge uw - v € E, called 1nteract10n is labelled by a couple (auv,qm,)
where au,y s the sign of the interaction (o, = + (resp. ayy = —) if
u — v is an activation (resp. inhibition)) and where qu, is an integer in
{1,2, ..., #N*(u)} such that quv # quw for all w € NT(u) distinct from v.
The threshold t,, of the interaction is defined as ty, = |quv — 1, Quo]-

At a given time, the data made of the expression level of each variable is called
the state of the network.



Definition 3 (States of a QRN). Let N = (V, E) be a QRN. A state x of N
is a vector X = (Xy)pey Such that x, € Q, for allv € V. A state is said singular
if one of its component is singular and regular otherwise.

As a majority of biological interactions behave in a cooperative way and have
a sigmoid nature, they are in a QRN labelled by thresholds and they model
switch-like reactions: at a given state x, an interaction u — v is said effective
when x, > tyu,, not effective when x, < t,, and uncertain when x, = tyy.
Thus x,, = |g| means that v is an effective regulator for ¢ of its successors and
Xy = |¢,q + 1| means that w is an effective regulator for the same ¢ successors
and it is an uncertain regulator for the successor v such that t,, = x, (v exists
inevitably).

Definition 4 (Resources). Let N = (V,E) be a QRN, v be a variable of N
and x be a state of N. The sets of regular resources R, (x) and singular resources
Sy(x) of v at the state x are given by:

= Ry(x) ={u € N~ (v) | (xu > tup and auy = +) or (X < tuy and @y = =)}
— Sy(x) ={u € N~(v) | Xy = tuy}

A regular resource of v is a variable which acts positively on v, that is to say an
effective activator or a non effective inhibitor of v. A singular resource is just an
uncertain regulator.

Definition 5 (Qualitative model). A qualitative model M of a QRN N =
(V,E) is a couple M = (N,K) where K ={K,,, |veV andw C N (v)} is a
set of integers, called qualitative parameters, such that :

— ifw="0then K,, =0 and K, ,, € {0,1,..., #N*(v)} otherwise.
— ifw Cw' then Ky < Ky

At a given state x, the expression level of a variable v evolves toward a qualitative
value according to its regular and singular resources. This qualitative value,
called attractor and noted A, (x), is defined with two parameters indexed by the
regular and singular resources of v:

Definition 6 (Attractors). Let M = (N, K) be a qualitative model and x be
a state of N. The attractor A,(x) of v € V at the state x is :

Ay(x) = | Ky R, (x), Ko, R, (x)US. (x)

At a given state x, if v does not have singular resources (S,(x) = @) then it
evolves toward the qualitative value |K, g, (x)|- Otherwise (S, (x) # ) v has sin-
gular resources and evolves toward an expression level greater than |K, g, (x)l,
i.e. the case where all the singular resources are not regarded as regular resources,
and less than K, g, (x)us,(x)|, i-. the case where all the singular resources are re-
garded as regular esources: [, p, (x| < 1Ko my () Ko hu (08| < Ko i (o0s.o
if |[Ky, R, (x)| < [Ky,R, (x)US, (x)|- Naturally, if x,, < A, (x) then v tends to increase,
if x, > A,(x) then v tends to decrease, and otherwise (x, C A,(x)) v is steady.



A steady state is thus a state where all the variables are steady, that is, a state
x such that for all variable v € V:

| Ku.R, ()| = %0 = Ky Ry (x)USu(x)] 0T [Ky R, ()| <%0 <Ky R, (x)usu(x)] (1)

In section 4, we show how these static constraints (in which the dynamics of
the system does not matter) can be used for the detection of homeostasis and
multistationnarity. It can be proved that these constraints are equivalent to those
given by E. H. Snoussi and R. Thomas in [10].

To sum up, we deduce from a model the tendencies of variables at each state,
which is sufficient to define its dynamics with the following state graph.

Definition 7 (State graph). The state graph of a qualitative model M =
(N, K), is a directed graph where the sel of vertices is the set of states of N, and
where X =y is an edge, called transition, if there is a variable v verifying :

_ Vo = At (xy) if xp < Ay(x)
fOT' all u # 'U, Yu = Xy and {yv = A_(XU) Zf Xy > A'U(X)

with AT and A~ the evolution operators defined by:

1| if a =q| - lg —1,q| if o =|q|
At(a) = {100 F d A=(a)={1""
() ﬁﬂ#azm—Lﬂ and A7(@) = gl if o = lg,q + 1]

In this definition two variables cannot evolve simultaneously towards their re-
spective attractors, the state graph is thus asynchronous and can be deduced
from a synchronous one as in [6]. Indeed, when several variables tend to evolve at
a given state, additional information (time delays associated to each transition
[8]) is needed to select which one first changes. As this information is most often
unknown, all possible transitions are considered. Thus the system is non de-
terministic and can translate the stochastic character of biological interactions.
Consequently, a state for which n variables tend to evolve has n successors. In
particular, if n = 0 then the state is steady and does not have any successor.

A qualitative model in R. Thomas’ approach can be defined in the same way
but the state graph deduced from it just gives transitions between regular states.
Indeed, in R.Thomas’ state graph of a model M = (N, K) the vertices are all
the regular states of V and x — y is a transition if there is a variable v verifying:

vo = g+ 1] if x, < 4,(x)

o= la—1ifx, > Ay() Vit lal=x

for all u #v, y, =x, and {
As we can see in figure 1, for a given model, R. Thomas’ state graph is present
in our state graph: our state graph can be viewed as a refinement of R. Thomas’
one formally expressed in theorem 3.

We now illustrate our formalism with the QRN N = (V, E)) whose representa-
tion is given in figure 1. It represents a small genetic network controlling the mu-
cus production of Pseudomonas aeruginosa [12,13,14]. We have V' = {u, v} and
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Fig. 1. The table gives, all the states of the QRN, the attractors of variables at each
state, the values of the attractors deduced from the qualitative model where K, 3 = 0,
Ku’{v} = 2, Ku,{u} = 2, Ku,{u,v} = 2, KU,@ = 0 and KU,{u} = 1, and finally the
corresponding tendencies (N if z, < Ay(x), \(if T, > A, (x) and ~ if x, C A, (x)).
These tendencies allow us to construct our state graph and R. Thomas’ one.

E ={u — u,u — v,v — u}. Variable u activates v and itself (a,, = Qyy = +)
when its expression level respectively reaches the thresholds t,, = |0,1] and
tuw = |1,2|. In return, variable v inhibits u (ay, = —) when its expression
level reaches the threshold ¢,, = |0,1|. Consequently, the possible expression
levels of w are @, = {|0|, tuv,|1|; tuu,|2|} and those of v are @, = {|0], tyu, |1|}
Thus 15 states are associated to the network, 6 are regular and 9 are singular
(see the table of figure 1). The qualitative parameters corresponding to N are
Ku’@,K%{u},Ku’{v},Ku’{u’v} € {0,1,2} and Kv,(B:Ku,{u} € {0,1}. The attrac-
tors expressed with the qualitative parameters are given in the table of figure 1.
For a given model, the values of attractors allows us to deduce the tendencies of
each variable at each state and to build, for both formalisms, the corresponding
state graphs. For example, at the state ([1],]0|) both u and v have an expression
level less than their attractors (respectively equal to |2| and |1]) and thus both
variables tend to increase. Consequently ([1],|0|) has two successors:

— in our state graph we have (|1],]0]) = (|1,2],]0|) for the increase of v and
(11, 10]) = (|1],]0,1|) for the increase of v.



— in R. Thomas’ state graph we have (|1],|0]) = (|2],]0]) for the increase of u
and ([1],]0]) = (|1],]1]) for the increase of v.

One can notice that our state graph contains two more steady states than R.
Thomas’ one (they are both singular states).

3 Discretization map

R. Thomas’ approach has been built as a discretization of the continuous ap-
proach presented in this section. Our formalism can also be viewed as a dis-
cretization of this description, which gives the dynamics of the regulatory net-
works defined as follow.

Definition 8 (RN). A regulatory network (RN for short) is a labelled directed
graph N' = (V, E) where :

— each vertex v of V, called variable, represents a biological entity,
— each edge u — v of E, called interaction, is labelled by a couple (auyy,Ouv)
where o, is the sign of the interaction and where 0, € R4 is its threshold.

To each variable v of NV = (V, E) is associated a continuous variable z, € R4
which represents its expression level. At a given time, each variable x, has a
unique expression level and the vector z = (z,),ecv defines the state of the
RN. The continuous dynamics of A can be given by the following system of
piecewise-linear differential equations [9]:

dz,

3 =Sv@) =Xy VeV with Sy(z) = S I () (2)

ueN ~ (v)
where A, > 0 is the degradation coefficient of v, S,(x) is its synthesis rate and

I is a step function (figure 2) describing the effect of u on the synthesis rate
of v:

0 ifx, <O
kuo if Ty > Oue

kyo if 24 < Bus

) ~ - _
T (0, Bun) = { L (@, bur) = {0 if 2y > fu

With such a definition, Z%» is undefined for x, = 0,,. A state in which there is
at least one variable on a threshold is thus called a singular state. To define the
system (2) for the singular states E. H. Snoussi and R. Thomas proposed in [10]
to represent the uncertain influence of u on v when z,, = 6,,, by an open interval:
T (B, Ouw) =0, kyy[. This interval represents the set of possible effects of u
on v strictly included between the case where u acts on v (z, > 6y,) and the
case where it does not (z, < €,,). Then the system has to be seen as a system
of differential inclusions [15]:

dzy

" € Sp(x) — Apzy, YW EV  with Sy(z) = Z % (Ty,0uw)  (3)

weN ~(v)



Definition 9 (Model). A model M is a tuple M = (N, k,\) where N' =
(V,E) is a RN, k = {kuy}u—sver is the set of parameters associated to each
interaction, and X = {\, byev is the set of degradation rates associated to each
variable.

Definition 10 (Discretization map). Let N be a RN and u a variable. The
discretization map d,, : 28+ \ ) — IN? is defined for all non empty open intervals
I =)a, B[ and for all singletons I = [a, ] with « = 8 by :

du(D)=| #{0 €0, |0<al, #{6 €0, |0<p}

where Oy = {0yy | v € NT(u)} is the set of out-thresholds of u.

Let us highlight some properties of d,, which are useful in the sequel. The order
relations <, > and C on non empty open intervals and singletons are defined
similarly to the corresponding order relations on qualitative values. Thus, d,, is
an increasing function: if A < B then d,(A) < d,(B). Then if d,([o, a]) = |a]
and d,([8, ]) = |b| with a < § we have d,, (o, B]) = |a, b|. Finally d,,(A) C d,(B)
ifft A C B, in particular d,([a,a]) C d,(B) iff @ € B. In the remainder, for a
singleton [, a], d,(a) denotes dy([a, a]) by abuse of notation.

Definition 11 (Qualitative form). The qualitative form of a RN N = (V, E)
is the QRN N = (V,E) such thal each interaction w — v has the sign of the
corresponding interaction in N and is such that t,, = dy(0uy).

According to the previous definition, a RN has a qualitative form iff it has
no variable which acts on two successors with the same threshold, but it is a
marginal case since thresholds are real values a priori different.

Let N be a RN and N its qualitative form. The discretization d,(z,) of
a continuous expression level x, is a qualitative expression level of u in N:

I (@, Ouv)
Ko {rrorrnnnes
v
+,0uv 0 Tu
0 Ouw
u T (2w, Ouw)
—N K
w
0 . Ty
0 Oy
Discretization: } t Xy

[of o, 1 1 [1,2] |2

Fig. 2. Step functions associated to the interactions u — v and v — w with 6y, < Oyw
and discretization of the expression levels of .



dy(zy) € Q, (figure 2). Thus each continuous state of A/ corresponds to one
qualitative state of IV but a qualitative state of N can correspond to an infinity
of continuous states of A/. To link the states of N with those of ' we define
Dy :Qy — 2B+ and D : [Toev Qv = [loev 2B+ by:

Dy(xy) = {2y € Ry | dy(xy) =%y} and D(x) = (Dy(x0))vev

D,(x,) and D(x) are respectively called the domains of x, and x. Let M =
(N, k, ) be a model. The differential equation system (3) has one analytic solu-
tion on each domain D(x) where x is regular. For the initial state of the system
2% € D(x), the solution is:

Sy(x)

Ty (t) = Ap(2°) — (A, (2°) = 20)e ™™ Vo eV with A, (z) = \

Thus all continuous states of the domain D(x) tend to the same constant state
A(z%) = (A, (2°))pev called the attractor of the domain D(x). If A(z°) € D(x),
all states of D(x) will never go out of the domain D(x) and they will reach (in
+00) the continuous steady state A(x°). Otherwise, if A(z°) ¢ D(x), then a
state x of D(x) will evolve towards A, (z°) until it goes out of the domain D(x).
Outside the domain, the solution of the system is not the same and the attractor
is modified. In such a case the state A,(z°) can never be reached. To sum up,
at the state z if x, < A,(z) (resp. z, > A,(z)) then v tends to increase (resp.
decrease) and if z, = A, () then v is steady.

If z € D(x) with x a singular state then z is also singular and there is at
least one variable u such that x, = 6, with v € N7 (u). Thus A, (z) is an open
interval and the tendencies of v are defined in the same way except that v is
considered steady if z, € A, (z).

Definition 12 (Qualitative form of a model). The qualitative form of a
model M = (N,k,\) is the qualitative model M = (N, K) such that N is
the qualitative form of N and such that for all parameters K, , of K we have

|I(U¢A ::dv(E:UEW %ﬁ) .

Notice that M has a qualitative form iff (3, ., bu) & @, for all v and w which is
a reasonable hypothesis. By setting down |Ky .| = dy(3,,c,, %) we respect the
constraints given in the definition of qualitative parameters. Indeed, if w = () then
Ky =0and d,(3,,., %) = d,(0) = |0]. Otherwise, K, € {0,1,...,#N*t(v)}

UEW Ay
and since (3°,c,, k;v”) ¢ O, we have d,(},c., k):*v”) e {[0],|1], ..., [#NT(v)|}.
Then, if w C w' we have ) k;” <D vcw k;” and since d, is an increasing
map we have d, ()., k;v”) < dy(Quen ’”ﬁ”), that is Ky < Ky .

Theorem 1. Let M be a model and M its qualitative form. For all variable u,
for all qualitative state x of M and for all continuous state x € D(x) of M, we
have Ay, (x) = dy(Ay()).

Proof. According to the definition of d,, we have x,, > ty, iff 4, > Oy, X4 < tyo
iff , < Oup and xy = typ iff Ty = Oyy. Thus u € Ry(x) iff Z% (1y,0u) =



kuyw and uw € Sy(x) iff Z% (zy,0us) =)0, kyy[. Thus, if S,(x) = @ we have
AU(X) = |Kv,Rv(x)| and AU(CE) = ZueRv(x) k)\u_vu Since ZueRv(x) k)\u: g O, we
have A, (x) = dy(Au(x)). If Sy (x) # 0 we have A, (x) = | Ky g, (x)» Ko, R, (x)US, (x)|

and Ay (z) = > cr, ) Buw D ues,(x) % Thus A, (z) is equal to the open

interval Jo, B[=] X e k. (0) R Duc ko (s, (x) 2 [- Since a and § are not in O,

we have A,(x) = d,(Ay(z)).

Consequently we have, for all € D(x) and for each variable v, x, < A,(x) iff
Ty < Ayp(z) and x, > A,(x) iff , > A,(z). Thus if v is not steady, it tends
to evolve in the same way at the state x and at the state € D(x). Moreover,
xy C Ay (x) iff there exists € D(x) such that z, = A,(z) or z, € A,(z). So if
v is steady at the state x then v can be steady in D(x). Thus, a qualitative state
x is steady iff there is a continuous steady state in D(x). We can sketch these
properties by saying that the dynamics of M extracts the essential qualitative
features of the dynamics of M, and in particular both kinds of dynamics have
the same number of steady states.

In practice, the values of the kinetic parameters k& and A are most often
unknown. If we want to carry out a continuous modeling of a biological system,
an infinity of models has to be considered corresponding to all the possible values
of real parameters. The qualitative parameters K which define the dynamics of
a QRN (definition 5) are also most often unknown but they can take a finite
number of qualitative values. Then we can use the following fruitful exhaustive
strategy to model a system: to generate all the models with the aim to select
those which give a dynamics coherent with the experimental knowledge of the
system. We have developed a software, called SMBioNet [16], which automatically
carries out this generation and selection of models using three approaches :
feedback circuit functionality, temporal logic and model checking. It has been
used successfully to model the mucoidy and the cytotoxicity of Pseudomonas
aeruginosa [13,14].

4 Circuit characteristic states

The most important generalized logical analysis concepts are certainly those
of positive and negative circuits, which respectively generate multistationar-
ity and cycle in the state graph, when the corresponding circuit is functional
[17,18,19,20,21]. These concepts are especially important when modeling bio-
logical systems where differentiation and homeostasis need to be represented
[13,14]. A circuit is said positif (resp. negatif) when it contains an even (resp.
odd) number of inhibitions. It is said functionnal when there is a steady circuit
characteristic state (which is singular by definition) associated to it [10]. Con-
sequently, the steady singular states play an essential role on the dynamics of a
system. A characteristic state of a circuit is a singular state in which the set of
uncertain interactions is equal to the set of edges of the circuit. This notion of
characteristic state can be extended to the union of disjoint circuits.



Definition 13 (Characteristic state). Let N be a QRN and C be a circuit
of N. A state x is a characteristic state of C' if C' = J,c{u = v | u € Sy(x)}.

Some examples of circuits with their characteristic states are given in Figure 3.
E. H. Snoussi and R. Thomas proved for their formalism that a singular state can

Cy = {u— u} Coy ={v > v} C3 ={u—v,v—u} CpUCs

2
N Xu Xy Xu Xy Xu X Xu X
C“ O 0,11 [o] 0] [1,2] 1.2 [0,1] 10,11 [1,2]
~ 0 1] [1] 1] 12|
! 0, 1] |2] 2] |1, 2]

Fig. 3. Characteristic states of all the circuits and unions of disjoint circuits in a QRN
(C1 and C3 have three characteristic states and the others only one). The interac-
tions of are not labelled by any sign since they do not play a role in the definition of
characteristic states.

be steady only if it characterizes a feedback circuit. This property is preserved
in our qualitative modeling.

Theorem 2. Among singular states, only characteristic ones can be steady.

Proof. Let N = (V,E) be a QRN and let x a non characteristic singular state.
Then there is an edge v — w such that v is a singular resource of w and such
that all resources of v are regular. Then x, is a singular value and the attractor
Ay(x) is a regular qualitative value: A,(x) = |K, g, (x| since Sy(x) = 0. A
singular qualitative value cannot be contained in a regular one, thus x, Z A, (x)
and x cannot be steady.

We now compare the dynamics of models for which some circuits are functional
in both modelings with the aim to hightlight how the presence of singular states
makes more explicit the functionality. Let us start with the example of figure
4. In both formalisms, homeostasis induced by the stationarity of the negative
circuit characteristic state is represented. But the steady characteristic state to-
wards which tends the softened oscillation, representing the homeostasis, in the
continuous description is represented in our state graph while the homeostasis is
reflected as an infinite oscillation in R. Thomas’ one. Thus, our state graph ex-
tracts more precisely the qualitative features of the continuous formalism. Notice
that the paths of R. Thomas’ state graph do not correspond to paths between
regular states in our state graph. The presence a of steady characteristic state of
a negative loop is the only case where R. Thomas’ state graph is not “included”
in our state graph (see theorem 3 for formal explanation). In a general way, the
softening generated by the functionality of negative circuits is not represented
in R. Thomas’ modeling. That can lead to a confusion about the interpretation
of the circuit functionality. Let us consider the QRN of figure 1 containing a
negative and a positive circuit. The model presented in the same figure makes
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Fig. 4. State graphs, in the two approaches, deduced from the model M = (N,{K, y =
0, K, ;,3 = 1}) which makes functional the negative circuit N.

functional both circuits, there is two steady singular states (equation 1) which
are characteristic of both circuits, and thus multistationarity and homeostasis
are predicted. For the homeostasis let us remark that our state graph describes a
dynamics in which infinite and softened oscillations are possible. For the multi-
stationnarity, in R. Thomas’ state graph there is only one steady state and from
each state it is possible to reach it. The state graph does not really illustrate
the multistationarity. In our state graph, the presence of all the steady states
(two singular steady states and the previous regular one) makes more explicit
the multistationarity. In both state graphs, the paths between regular states are
coherent. Indeed, each transition x — z of R. Thomas’ state graph corresponds,
in our state graph, to a path x — y — z where y is the singular state adjacent
to the regular states x and z. Note that, according to the following theorem, for
all models deduced from this network, R. Thomas’ state graph is “included” in
our one since the network does not contain a negative loop.

Theorem 3. Let x — z be a transition of R. Thomas’ state graph deduced
from a qualitative model, and let v be the only variable which evolves during the
transition x — z (X, # 2, ). Lel'y be the singular state adjacent to x and z defined
by : yu = Xu = 2y for all u # v and, setting down x, = |q|, yo» = |¢,q + 1] if
7y =g+ 1] and y, = |¢ —1,q| if 2y = |¢ — 1|. Then our state graph contains the
path x =y = z if yo € Au(y) (yo C Ay(y) imposes that y is a characteristic
state of the negative circuit v — v).

Proof. As x is a regular state, we have A, (x) = |K, g, (x)|- Let us suppose that
xy = |q| < |Ky,Rr,(x)|- We have y, = |q,q+ 1| and so x — y is a transition of our
state graph. Moreover, z, = |¢ + 1| since x — z is a transition of R. Thomas’
state graph.

As y, is the only component of y which is singular, y is not a characteristic
state if v does not regulate itself or if it regulates itself with a threshold not
equal to y,. In this case, S,(y) = 0 and A,(y) = |Ky r,(y)| = [Ku Rr,(x)|- Thus
y — z is a transition of our state graph since |¢| < |Ky g, (x)| implies that
|q,q + 1| < |Ku,Ru(x)|'

If y is a characteristic state (v regulates itself and ¢,, = y,) then S, (y) = {v}.
Thus, ifOévv = + then Av(y) = |Kv,Rv(y)aKv,Rv(y)u{v}| = |Kv,Rv(x)aKv,Rv(x)U{v}|-
So y, = |g,q + 1| < |Ky R, (x), Kv,R,(x)u{v}| and y — z is a transition of our
state graph (if a,,, = + then v cannot be steady at the state y). Otherwise, if
vy = — then Ay (y) = |Ko,p, () Ko, ru oo}l = Eo,ru 0\ (0} Ko, Ro |- S0, i
v is not steady at the state y we have y, = [q,q + 1| Z |Ky g, 0\ {v}> Ko, Ry (x0)]



which implies that ¢ < K, g, (x)\{s} equivalent to ¢ +1 < K, g, (x)\{v}- Thus
lg,q + 1| < |Ky R, (x)\{v}> Kv,R,(x)| and y — 7 is a transition of our state graph.
In the other case, if x, = |q| > |Ky R, (x)|, the proof is similar.

5 Conclusions and perspectives

In this paper we present a new qualitative modeling based on the generalized
logical analysis of R. Thomas which allows us to represent the singular states
in the dynamics. Both modeling are built as a dicretization of a piecewise-linear
differential equations system but our modeling, taking into account the singular
states, permits us to represent all the steady states of the continuous dynamics.
In spite of an exponential increase in the number of states, there is not an increase
in the number of models associated to a network. Moreover, the state graph
reflects the softening of the negative functional circuits and it is a refinement of
the dynamics of R. Thomas.

The representation of all steady states is essential to confront with precision
the models to biological knowledge. The concepts of circuit functionality allow us
to select models which present homeostasis and/or multistationarity with only
static constraints, that is inequality constraints for the steadiness of singular
states.

To still go further such static conditions must be reinforced by properties
on the dynamics. To achieve the selection of the acceptable models (with tem-
poral properties coherent with all available biological knowledge) we will take
advantage of the corpus of formal methods. We have already implemented a
user-friendly software, SMBioNet [13,14,16] (Selection of Models of Biological
Networks), which allows one to select models of given regulatory networks ac-
cording to their temporal properties. The software takes as input a QRN (with
a graphical interface) and some temporal properties expressed as CTL formulae
and a set of functional circuits. It generates all models associated to the network
which makes functional the specified circuits and gives as output those whose
corresponding R. Thomas’ state graph satisfy the specified temporal properties
(using the NuSMV model checker [22]). Then, the selected models can be used to
make and formally test hypotheses or to run simulations. The input of SMBioNet
not consists to a complex file with several reaction-rules or parameters assign-
ment as in several other tools using a qualitative approach to model biological
regulatory networks [23,24,25,26,27]. Indeed, R. Thomas’ formalism catches the
qualitative structure of a system in a simple graphical object (a QRN) easily
extractable from present biological data. Nevertheless, it is difficult to represent
with this approach a physical change of state of biological entities after an in-
teraction or the formation/breakage of complexes. However, the effectiveness of
the generalized logical analysis has been demonstrated in the study of a number
of genetic regulatory systems [28,29,5,30,31,32,13,14].

Naturally, a short term perspective is to introduce in this software our new
formalism. The generation of the models making some circuits functional will
remains the same but the increase in the number of states will makes more dif-



ficult to check a CTL formula. However, this formula will be able to express
temporal properties concerning regular and singular states. To struggle against
this increase of states, we can already propose to automatically remove from
the state graph some singular states, for example those whose the set of succes-
sors is reduced to a single regular state (the states (|1],]0,1|), (|1,2], 0, 1]) and
(|2],10,1]) can be removed from the state graph of figure 1).

More generally the formal methods can be applied in the field of biological
regulatory networks in order to explicit some behaviors or to take into account
not yet modelled biological knowledge. Let us mention for example that the
introduction of transitions in the regulatory graph could help to specify how
the different regulators cooperate for inducing or repressing their common tar-
get [33]. One can also separate inhibitors from regulators [34] to increase the
readability of the approach, or take into account time delays [8] between the be-
ginning of the activation order and the synthesis of the product and conversely
for the turn-off delays. These constitute ongoing or future works of our genopole®
and G? research groups.
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