
Dividing permutations in the semiring of
functional digraphs

Florian Bridoux1, Christophe Crespelle1, Thi Ha Duong Phan2, and
Adrien Richard1

1 Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{florian.bridoux,christophe.crespelle,adrien.richard}@univ-cotedazur.fr

2 Institute of Mathematics, Vietnam Academy of Science and Technology, Viet Nam
phanhaduong@math.ac.vn

Abstract. Functional digraphs are unlabelled finite digraphs where each
vertex has exactly one out-neighbor. They are isomorphic classes of fi-
nite discrete-time dynamical systems. Endowed with the direct sum and
product, functional digraphs form a semiring with an interesting multi-
plicative structure. For instance, we do not know if the following division
problem can be solved in polynomial time: given two functional digraphs
A and B, does A divide B? That A divides B means that there exist a
functional digraph X such that AX is isomorphic to B, and many such
X can exist. We can thus ask for the number of solutions X. In this
paper, we focus on the case where B is a permutation, that is, a dis-
joint union of cycles. There is then a naïve sub-exponential algorithm to
compute the number of non-isomorphic solutions X, and our main result
is a polynomial algorithm when A is fixed. It uses a divide-and-conquer
technique that should be useful for further developments on the division
problem.

Keywords: Finite Dynamical Systems · Functional digraphs · Graph
direct product.

1 Introduction

A deterministic, finite, discrete-time dynamical system is a function from a fi-
nite set (of states) to itself. Equivalently, this is a functional digraph, that is, a
finite directed graph where each vertex has a unique out-neighbor. In addition
to being ubiquitous objects in discrete mathematics, such systems have many
real-life applications [5]. In this paper, we consider functional digraphs up to iso-
morphism. An isomorphism class then corresponds to an unlabelled functional
digraph, and we write A = B to mean that A is isomorphic to B.

There are two natural algebraic operations to obtain larger systems from
smaller ones. Given two functional digraphs A and B, the addition A+B is the
disjoint union of A and B, while the multiplication AB is the direct product of
A and B: the vertex set of AB is the Cartesian product of the vertex set of A
and the vertex set of B, and the out-neighbor of (x, y) in AB is (x′, y′) where

2 F. Bridoux et al.

x′ is the out-neighbor of x in A and y′ is the out-neighbor of vertex y in B.
Hence AB describes the parallel evolution of the dynamics described by A and
B. Endowed with these two operations, the set of functional digraphs forms a
semiring, first introduced in [1].

The multiplicative structure of this semiring has been studied in [4,6,2], and
several important problems are highlighted in [6]. A fundamental one is the
division problem: given two functional digraphs A and B, does A divide B, that
is, does there exist a solution X to the equation AX = B. This problem is
trivially in NP, and nothing else is know in the general case (there are better
upper-bounds under some conditions, as explained above). From an applicative
point of view, we can see B has an observed dynamical system, and the division
problem then ask if B corresponds to the parallel evolution of A and an unknown
partX; a positive answer then allows a potentially useful decomposition of B. We
stress that, if a solution X exists, then it is not necessarily unique. For instance,
denoting C` the (directed) cycle of length `, the equation C2 ·X = C2 +C2 has
exactly two (non-isomorphic) solutions X, which are X = C2 and X = C1 +C1;
see (1). Given A and B, it is thus interesting not only to decide if A divides B,
but to compute the number of solutions.

1 2 · a b = 1a 2b + 1b 2a = 1a 2a + 1b 2b = 1 2 ·
(
a + b

)
(1)

A functional digraph A contains two parts: the cyclic part, which is the col-
lection of the cycles of A (these cycles are disjoint and thus form a permutation),
and the transient part, which is obtained by deleting the cycles, and which is a
disjoint union of out-trees. From a dynamical point of view, the cyclic part de-
scribes the asymptotic behavior. In this paper, we focus one this part: we study
the complexity of the division problem when B is a permutation, that is, a dis-
joint union of directed cycles. This restriction has already been considered in [2]
as an important step for solving polynomial equations over functional digraphs.
On the other side, [6] gives a polynomial algorithm to decide if A divides B
when B is a dendron, that is, B contains a unique cycle, of length 1, so that B
consists of an out-tree plus a loop on the root. This result should be very useful
to treat the transient part in the division problem. One may hope that efficient
algorithms for the cyclic and transient parts could be combined to obtain an
efficient algorithm for the general case.

If B is a permutation, there is a simple sub-exponential algorithm that com-
putes all the solutions X of AX = B. It works as follows. Let |A| and |B| be the
number of vertices in A and B, respectively (|A|+ |B| is the size of the instance).
If AX = B then A,X are permutations, and X has n = |B|/|A| vertices. Now
remark that isomorphic classes of permutations with n vertices are in bijection
with partitions of n: a permutation with n vertices is completely described, up
to isomorphism, by the sequence of the length of its cycles, which form a parti-
tion of n; and conversely, the parts of a partition of n describe the lengths of the
cycles of a permutation with n vertices. For instance, C1+C3 corresponds to the
partition 1+3 of 4. So to compute the solutions, we can enumerate the partitions
of n, and check for each if the corresponding permutation X satisfies AX = B.

Dividing permutations in the semiring of functional digraphs 3

This gives a sub-exponential algorithm: partitions of n can be enumerated with
polynomial delay and there are at most eO(

√
n) such partitions, the total running

time.
Frustratingly, we were not able to find a faster algorithm, say running in en

o(1)

,
to decide if A divides B. That a polynomial algorithm exists is an interesting
open problem, and [3] gives a positive answer under the condition that, in A
or B, all the cycles have the same length. Here we give a polynomial algorithm
that computes the number of solutions when A is fixed. The precise statement,
Theorem 1 below, involves some definitions. The support of a permutation A is
the set L(A) of positive integers ` such that A contains C`. Given N ⊆ N, lcmN
is the least common multiple of the integers in N , and div(n) is the number of
divisors of n.

Theorem 1. There is an algorithm that, given two non-empty permutations
A,B, computes the number of non-isomorphic permutations X satisfying AX =
B with time complexity

O

(
|A||B|2

(
|B|
|A|

)div(lcmL(A))
)
. (2)

For the proof, we introduce two operations on an instance (A,B) that we hope
to be useful for further progress on the division problem. The first partitions B
into B = B1+B2 so that any solution of (A,B) is obtained by adding a solution
to (A,B1) with a solution to (A,B2). The second reduces (A,B) into a smaller
instance (A′, B′) so that any solution of (A,B) is obtained by multiplying the
length of the cycles of a solution of (A′, B′) by some constant d. Repeating as
much as possible these operations, we obtain a decomposition of (A,B) into few
smaller instances, which can be quickly solved with a brute force approach. The
solutions of (A,B) are then obtained with a simple combination of the solutions
of the instances of its decomposition. This is described in Lemma 2, the main
result, which easily implies Theorem 1.

The rest of the paper is devoted to the proof of Theorem 1 following this
decomposition method. Before going on, let us conclude this introduction by
mentioning that a natural next step concerning the division problem should
consist in proving that, for every fixed functional digraph A (with possibly a
non-empty transient part), there is a polynomial time algorithm that, given a
functional digraph B, decides if A divides B.

2 Preliminaries

Given N ⊆ N, we denote by lcmN and gcdN the least common multiple and the
greatest common divisor of the integers in N , respectively. For n,m ∈ N, we set
n ∨m = lcm{n,m}, and forN,M ⊆ N we set N ∨M = {n∨m | n ∈ N,m ∈M}.
We denote by Div(n) the set of divisors of n and set div(n) = |Div(n)|. We set
Div(N) = ∪n∈NDiv(n) and div(N) = |Div(N)|. For a positive integer p, we

4 F. Bridoux et al.

write p | N to means that p | n for all n ∈ N . We set pN = {pn | n ∈ N} and
we use the rather unusual notation N /p = {n/p | n ∈ N, p | n}.

The unlabelled functional digraph that consists of n cycles of length ` is
denoted by nC`. Given a permutation A and an integer `, the number of cycles of
length ` in A is denoted by A(`). Thus A =

∑
`≥1A(`)C` and |A| =

∑
`≥1 `A(`),

and the support L(A) is the set of ` such that A(`) > 0. One easily check that
CaCb = (ab/(a ∨ b))Ca∨b. One can then prove (see [2]) that the product AX of
two permutations A and X satisfies: for all ` ≥ 1,

AX(`) =
1

`

∑
a,x∈N
a∨x=`

aA(a)xX(x). (3)

Let A,B be non-empty permutations. We call (A,B) an instance, and its
size is |A| + |B|. Recall that a solution of the instance (A,B) is a permutation
X such that AX = B and that |X| = |B|/|A| for every solution X. We denote
by Sol(A,B) the set of non-isomorphic solutions, and sol(A,B) = |Sol(A,B)|. It
is important to note that, by (3), for every permutations A,X we have

L(AX) = L(A) ∨ L(X). (4)

3 Support of an instance

Let us define the support of an instance (A,B) as

L(A,B) = {` ∈ N | L(A) ∨ ` ⊆ L(B)}.

So L(A,B) ⊆ Div(L(B)) and

L(A) ∨ L(A,B) ⊆ L(B). (5)

This set L(A,B) is interesting since it bounds the support of any solution:

∀X ∈ Sol(A,B), L(X) ⊆ L(A,B). (6)

Indeed, if AX = B then by (4) we have L(A) ∨ L(X) = L(B) and thus
L(X) ⊆ L(A,B). Since L(A,B) bounds the support of any solution, and since
any solution has obviously at most |B|/|A| cycles, we obtain the following result
using a brute force approach.

Lemma 1. There is an algorithm that, given two non-empty permutations A,B,
computes Sol(A,B) with time complexity O(|A||B|(|B|/|A|)|L(A,B)|).

Proof. Suppose that n = |B|/|A| is an integer, since otherwise there is no so-
lution. Suppose that X 6= nC1 is a solution, so X(1) < n. For every ` ≥ 1, we
have `X(`) ≤ n, hence X(`) < n, and if ` 6∈ L(A,B) then X(`) = 0 by (6). Con-
sequently, X corresponds to a function from L(A,B) to {0, . . . , n − 1}. Hence,
to find all the solutions: we enumerate the n|L(A,B)| such functions; we check for
each, in O(|A||B|), if it is a solution; and we then check if nC1 is a solution. �

Dividing permutations in the semiring of functional digraphs 5

Another interesting point is that the support of an instance gives an easy
to check necessary condition for the existence of a solution. Let us say that an
instance (A,B) is consistent if L(A) ∨ L(A,B) = L(B). Then non-consistent
instances have no solution. Indeed, if X is a solution to (A,B) then (A,B) is
consistent since

L(B) = L(AX)
(4)
= L(A) ∨ L(X)

(6)
⊆ L(A) ∨ L(A,B)

(5)
⊆ L(B).

Example 1. Let (A,B) be an instance with L(A) = {6} and L(B) = {6, 12}.
Then L(A,B) = {1, 2, 3, 4, 6, 12} and thus (A,B) is consistent. Let (A,B) be an
instance with L(A) = {6} and L(B) = {5, 6}. Then L(A,B) = {1, 2, 3, 6} and
thus (A,B) is not consistent since L(A) ∨ L(A,B) = {6}.

4 Decomposition lemma

Let us say that an instance (A,B) is basic if L(B) ⊆ Div(lcmL(A)); this is
equivalent to say that for any prime power pα dividing some b ∈ L(B), there
exists a ∈ L(A) such that pα divides a. By the previous lemma, Theorem 1 holds
for every basic instance (A,B) since

L(A,B) ⊆ Div(L(B)) ⊆ Div(lcmL(A)).

The key point is that any instance (A,B) can be decomposed into at most |B|
basic instances, with smaller sizes, in such a way that the solutions of (A,B) can
be easily reconstructed from that of the basic instances. The precise statement,
Lemma 2 below, needs some definitions.

The cycle length multiplication of A by p, denoted A⊗ p, is the permutation
obtained from A by multiplying by p the length of every cycle in A; in other
words: for all a ≥ 1, we have (A ⊗ p)(a) = A(a/p) if p | a and (A ⊗ p)(a) = 0
otherwise. For instance, (2C1 + 3C2 + 5C3) ⊗ 3 = 2C3 + 3C6 + 5C9. Given two
sets of permutations A and B we set

A+ B = {A+B | A ∈ A, B ∈ B}, A⊗ p = {A⊗ p | A ∈ A}.

Lemma 2. There is an algorithm that, given a consistent instance (A,B), com-
putes in O(|A||B|2) a list of k ≤ |B| basic instances (A1, B2), . . . , (Ak, Bk) and
positive integers p1, . . . , pk such that: |Ai| = |A| and lcmL(Ai) | lcmL(A) for all
1 ≤ i ≤ k, |B1|+ · · ·+ |Bk| ≤ |B|, and

Sol(A,B) = (Sol(A1, B1)⊗ p1) + · · ·+ (Sol(Ak, Bk)⊗ pk).

Theorem 1 is an easy consequence of Lemma 2.

Proof of Theorem 1 assuming Lemma 2. The algorithm is as follows. First
we check if (A,B) is consistent; this is done in O(|A||B|). If not, then (A,B) has
no solution and we output 0. Otherwise, we compute in O(|A||B|2) the k ≤ |B|

6 F. Bridoux et al.

basic instances (Ai, Bi) as in Lemma 2. Then, for all 1 ≤ i ≤ k, we use the
algorithm of Lemma 1 to compute in O(|Ai||Bi|(|Bi|/|Ai|)|L(Ai,Bi)|) the number
si of solutions of (Ai, Bi). Finally, we output the product s1 · · · sk, which is
correct by Lemma 2. Since (Ai, Bi) is basic and lcmL(Ai) divides lcmL(A), we
have L(Ai, Bi) ⊆ Div(lcmL(A)). Since |Ai| = |A| and |Bi| ≤ |B|, we deduce
that the computation of each si is done in O(|A||B|(|B|/|A|)div(lcmL(A))), and
we obtain the running time (2) since k ≤ |B|. �

The rest of the paper is devoted to the proof of Lemma 2.

5 Instance partitions

Let A be a permutation, and L ⊆ N. We denote by A[L] the permutations ob-
tained from A by removing every cycle of A whose length is not in L: for all
a ≥ 1, A[L](a) = A(a) if a ∈ L and A[L](a) = 0 otherwise. Here is a simple suffi-
cient condition for an instance (A,B) to be decomposable into two independent
instances (when we consider partitions, parts are always non-empty).

Lemma 3. Let (A,B) be a consistent instance. Let L1, L2 be a partition of
L(A,B), and let Bi = B[L(A)∨Li] for i = 1, 2. Suppose that L(B1)∩L(B2) = ∅.
Then B = B1 +B2. Furthermore, (A,B1) and (A,B2) are consistent, and

Sol(A,B) = Sol(A,B1) + Sol(A,B2). (7)

Proof. We deduce from (5) that L(B1) = L(A)∨L1 and L(B2) = L(A)∨L2, and
from that we deduce that (A,B1) and (A,B2) are consistent. Since L1 ∪ L2 =
L(A,B) and (A,B) is consistent, we have

L(B1) ∪ L(B2) = (L(A) ∨ L1) ∪ (L(A) ∨ L2) = L(A) ∨ L(A,B) = L(B).

Hence, L(B1), L(B2) is a partition of L(B) and thus B = B1 +B2.
It remains to prove (7). If X1, X2 are solutions of (A,B1), (A,B2) then

A(X1 +X2) = AX1 +AX2 = B1 +B2 = B,

thusX = X1+X2 is a solution of (A,B). Conversely, letX be a solution of (A,B)
and let us prove that X = X1+X2 for some solutions X1, X2 of (A,B1), (A,B2).
Let Xi = X[Li ∩ L(X)] for i = 1, 2. By (6) we have L(X) ⊆ L(A,B). Hence,
L(X1) ∪ L(X2) = L(X). Thus X = X1 +X2 and using (4) we obtain

L(B) = L(AX) = L(A) ∨ L(X)

= (L(A) ∨ L(X1)) ∪ (L(A) ∨ L(X2)) = L(AX1) ∪ L(AX2).

For i = 1, 2, we have L(Xi) ⊆ Li and thus, using (4),

L(AXi) = L(A) ∨ L(Xi) ⊆ L(A) ∨ Li = L(Bi).

Dividing permutations in the semiring of functional digraphs 7

Since L(B1), L(B2) is a partition of L(B), we deduce that L(AXi) = L(Bi) for
i = 1, 2. Hence, to prove that Xi is a solution of (A,Bi), it is sufficient to prove
that AXi(b) = Bi(b) for all b ∈ L(Bi). So let b ∈ L(Bi). For every a ∈ L(A) and
x ∈ L(X) with a ∨ x = b we have x ∈ Li and thus x ∈ L(Xi). Consequently,

AXi(b) =
1

b

∑
a∈L(A)
x∈L(Xi)
a∨x=b

aA(a)xXi(x) =
1

b

∑
a∈L(A)
x∈L(Xi)
a∨x=b

aA(a)xX(x)

=
1

b

∑
a∈L(A)
x∈L(X)
a∨x=b

aA(a)xX(x) = B(b) = Bi(b).

�

We now prove that a non-basic instance (A,B) with gcdL(A,B) = 1 is
decomposable; we will then prove that, in some sense, the condition on the gcd
can be suppressed, leading to a decomposition of every non-basic instance. For
a positive integer n, and a prime p, let νp(n) be the greatest integer α such that
pα divides n.

Lemma 4. Let (A,B) be a non-basic consistent instance with gcdL(A,B) = 1.
Let b ∈ L(B) and a prime p such that νp(b) > νp(a) for all a ∈ L(A) (these exist
since (A,B) is not basic). Let L1 be the set of x ∈ L(A,B) with νp(x) = νp(b),
and L2 = L(A,B) \ L1. Let Bi = [L(A) ∨ Li] for i = 1, 2. Then (A,B1) and
(A,B2) are consistent instances such that B = B1 +B2 and

Sol(A,B) = Sol(A,B1) + Sol(A,B2).

Proof. Since (A,B) is consistent, there exists a ∈ L(A) and x ∈ L(A,B) such
that a ∨ x = b. Since νp(a) < νp(b) we have νp(x) = νp(b) and thus x ∈ L1; so
L1 is not empty. Since p | gcdL1 and gcdL(A,B) = 1, we have L1 6= L(A,B)
and thus L2 is also non-empty.

Let a ∈ L(A). For all x ∈ L1, we have νp(a) < νp(b) = νp(x), thus νp(a∨x) =
νp(b), and for all y ∈ L2 we have νp(a), νp(y) 6= νp(b) thus νp(a ∨ y) 6= νp(b).
Consequently, L(A) ∨ L1 is disjoint from L(A) ∨ L2. By Lemma 3 we have B =
B1 +B2, and the instances (A,B1) and (A,B2) have the desired properties. �.

Example 2. Let A = C6 and B = 3C6 + 8C12. Then (A,B) is consistent but
not basic, and gcdL(A,B) = 1 (see Ex. 1). Applying Lemma 4 with b = 12
and p = 2 we obtain L1 = {4, 12} and L2 = {1, 2, 3, 6}, giving B1 = 8C12 and
B2 = 3C6. Since the support of any solution X1 of (A,B1) is included in L1,

C6X1 = 8C12 ⇐⇒ C6(X1(4)C4 +X1(12)C12) = 8C12

⇐⇒ 2X1(4)C12 + 6X1(12)C12 = 8C12

⇐⇒ 2X1(4) + 6X1(12) = 8.

8 F. Bridoux et al.

Thus each solution X1 corresponds to a partition of 8 with parts in {2, 6}: these
are 2+6 and 2+2+2+2+2, giving X1 = C4+C12 and X1 = 4C4. Proceeding
similarly, since the support of any solutions X2 of (A,B2) is included in L2, we
have C6X2 = 3C6 iff X2(1)+2X2(2)+3X2(3)+6X2(6) = 3. Thus each solution
X2 corresponds to a partition of 3 with parts in {1, 2, 3, 6}: these are 3, 1+2, and
1 + 1 + 1, giving X2 = C3, X2 = C1 +C2 and X2 = 3C1. By Lemma 4, we have
Sol(A,B) = Sol(A,B1) + Sol(A,B2). Hence (A,B) has 6 solutions, obtained by
adding a solution X1 to (A,B1) with a solution X2 to (A,B2).

6 Instance reduction

We say that an instance (A,B) is compact if gcdL(A,B) = 1. This condition is
used in Lemma 4 to decompose non-basic instances, but in this section we show
that every instance can be reduced to an “equivalent” compact instance, which
can then be decomposed. For this reduction, we need two operations.

The cycle length division of a permutation A by a positive integer p, denoted
A� p, is the permutation obtained from A by deleting every cycle whose length
is not a multiple of p, and by dividing by p the length of the remaining cycles;
in other words: for all a ≥ 1, (A� p)(a) = A(pa). Note that L(A� p) = L(A)/p
and if p | L(A) then L(A) = pL(A� p). For instance,

(2C1 + 3C3 + 5C4 + 7C6)� 3 = 3C1 + 7C2.

The cycle length division � is the inverse of the cycle length multiplication ⊗.

Lemma 5. Let A be a permutation and let p be a positive integer. Then (A ⊗
p)� p = A, and if p | L(A) then (A� p)⊗ p = A.

Proof. For all a ≥ 1, we have ((A ⊗ p) � p)(a) = (A ⊗ p)(pa) = A(a). Suppose
that p | L(A) and let a ≥ 1. If p - a then A(a) = 0 and ((A � p) ⊗ p)(a) = 0
(since p | L((A�p)⊗p)). If p | a then ((A�p)⊗p)(a) = (A�p)(a/p) = A(a). �

The second operation is for the moment only defined when p is a prime; it
will be extended to every positive integers later. The contraction of A by a prime
p is the sum of cycle A� p defined by: for all a ≥ 1,

(A� p)(a) =

{
A(a) + pA(pa) if p - a
pA(pa) otherwise. (8)

This operation transforms each cycle of length pa into p cycles of length a (and
thus keeps the number of vertices unchanged). Note that L(A� p) is the set of
integers a such that either a ∈ L(A) and p - a or pa ∈ L(A). For instance,

(2C1 + 3C3 + 5C4 + 7C6) � 3 = 2C1 + 9C1 + 5C4 + 21C2

= 11C1 + 5C4 + 21C2.

Our interest for these two operations lies in the following property.

Dividing permutations in the semiring of functional digraphs 9

Lemma 6. Let A,X be permutations. If p | L(X) for some prime p, then

(A� p)(X � p) = (AX)� p.

Proof. Suppose that p | L(X) for some prime p, and let A′ = A � p and X ′ =
X � p. We have to prove that A′X ′ = AX � p, that is, for all ` ≥ 1, A′X ′(`) =
(AX � p)(`) = AX(p`). Let us fix ` ≥ 1. We have

p`A′X ′(`) =
∑
a,x

a∨x=`

paA′(a)xX ′(x) =
∑
a,x

a∨x=`

aA′(a)pxX(px).

Denoting by Ω the of couples (a, x) ∈ N2 with p | x and a ∨ x
p = `, we obtain

p`A′X ′(`) =
∑

(a,x)∈Ω

aA′(a)xX(x).

By splinting the sum according to the definition of A′ we obtain

p`A′X ′(`) =
∑

(a,x)∈Ω
p-a

(
aA(a) + paA(pa)

)
xX(x) +

∑
(a,x)∈Ω
p|a

paA(pa)xX(x)

=
∑

(a,x)∈Ω
p-a

aA(a)xX(x) +
∑

(a,x)∈Ω
p-a

paA(pa)xX(x) +
∑

(a,x)∈Ω
p|a

paA(pa)xX(x).

Denoting by Ω′ the set of (a, x) ∈ N2 with p | x, p | a and a
p ∨

x
p = `, we obtain

p`A′X ′(`) =
∑

(a,x)∈Ω
p-a

aA(a)xX(x) +
∑

(a,x)∈Ω′

p- ap

aA(a)xX(x) +
∑

(a,x)∈Ω′

p| ap

aA(a)xX(x).

If p - a then a ∨ x
p = ` iff a ∨ x = p`; and a

p ∨
x
p = ` iff a ∨ x = p`. Consequently

p`A′X ′(`) =
∑
a,x
p|x

a∨x=p`

aA(a)xX(x).

Since p | L(X), if p - x then X(x) = 0, so

p`A′X ′(`) =
∑
a,x

a∨x=p`

aA(a)xX(x) = p`AX(p`).

Thus A′X ′(`) = AX(p`) for all ` ≥ 0, as desired. �.

We obtain that every non compact instance can be reduced.

Lemma 7. Let (A,B) be a consistent instance, and suppose p | L(A,B) for
some prime p. Then (A� p,B � p) is consistent with support L(A,B)/p, and

Sol(A,B) = Sol(A� p,B � p)⊗ p. (9)

10 F. Bridoux et al.

Proof. Let A′ = A�p and B′ = B�p. We first prove (9). Let X be a solution of
(A,B). By (6) we have L(X) ⊆ L(A,B) and since p | L(A,B) we have p | L(X).
Hence, by Lemma 6, A′(X � p) = AX � p = B � p = B′, that is, X � p is a
solution of (A′, B′). Since p | L(X), by Lemma 5 we have (X � p)⊗ p = X and
thus X ∈ Sol(A′B′)⊗ p.

We now prove the converse direction. Let X ′ be a solution of (A′, B′), and
let X = X ′ ⊗ p. We have to prove that X is a solution of (A,B). By Lemma 5
we have X�p = X ′ thus A′(X�p) = B′ = B�p. Since p | L(X), by Lemma 6,
we have A′(X � p) = (AX) � p. Thus (AX) � p = B � p. Since p | L(A,B)
and (A,B) is consistent, we have p | L(B). Since X = X ′ ⊗ p we obviously have
p | L(X). Thus p divides L(A) ∨ L(X) = L(AX). Using Lemma 5 we obtain
AX = ((AX)� p)⊗ p = (B � p)⊗ p = B. Thus X is a solution of (A,B). This
proves (9).

We now prove that L(A,B)/p ⊆ L(A′, B′). For that, we fix x ∈ L(A,B)/p,
and we prove that a ∨ x is in L(B′) for any a ∈ L(A′). Indeed, if pa ∈ L(A)
then pa ∨ px = b for some b ∈ L(B) and we deduce that a ∨ x = b/p ∈ L(B′).
If pa 6∈ L(A), then p - a and a ∈ L(A). Thus a ∨ px = b for some b ∈ L(B) and
since p - a we deduce that a ∨ x = b/p ∈ L(B′).

We now prove the converse inclusion. For that, we fix x ∈ L(A′, B′), and we
prove that a ∨ px is in L(B) for any a ∈ L(A). Indeed, if p | a then a/p ∈ L(A′)
and thus (a/p) ∨ x = b for some b ∈ L(B′) so that a ∨ px = pb ∈ L(B). If p - a
then a ∈ L(A′) and thus a ∨ x = b for some b ∈ L(B′), and since p - a we have
a ∨ px = pb ∈ L(B).

We finally prove that (A′, B′) is consistent. By (5) we only have to prove
that L(B′) ⊆ L(A′) ∨ L(A′, B′). Let b ∈ L(B′). Then pb ∈ L(B) and since
(A,B) is consistent, there is a ∈ L(A) and x ∈ L(A,B) with a ∨ x = pb.
Hence x/p ∈ L(A′, B′). If p | a then (a/p) ∨ (x/p) = b and we are done since
a/p ∈ L(A′). If p - a then a ∨ (x/p) = b and we are done since a ∈ L(A′). �

Applying several times the previous lemma we obtain a compact “equivalent”
instance. Let us first extend the contraction operation from primes to any pos-
itive integer, inductively as follows: A � 1 = A, if p is a prime then A � p is
defined as previously (see (8)), and if p is composite, we take the largest prime
q that divides p and set

A� p = (A� p/q) � q.

Note that, for every positive integers p, q, we have

(A⊗ p)⊗ q = A⊗ pq, (A� p)� q = A� pq, (A� p) � q = A� pq. (10)

The first two equalities are obvious. The third results from the following easy to
check commutativity property: (A�p)�q = (A�q)�p when p and q are primes.

Lemma 8. Let (A,B) be a consistent instance and d = gcdL(A,B). Then (A�
d,B � d) is a compact consistent instance with support L(A,B)/d, and

Sol(A,B) = Sol(A� d,B � d)⊗ d.

Dividing permutations in the semiring of functional digraphs 11

Proof. Suppose that d > 1 since otherwise there is nothing to prove. Let us write
d as the product of k ≥ 1 primes, not necessarily distinct, say d = p1p2 . . . pk
with p1 ≤ p2 ≤ · · · ≤ pk. Let A0 = A, B0 = B and, for 1 ≤ ` ≤ k, let
A` = A`−1 � p` and B` = B`−1 � p`. By Lemma 7, (A`, B`) is a consistent
instance and Sol(A`−1, B`−1) = Sol(A`, B`) ⊗ p`. By (10) we have Ak = A � d,
Bk = B � d, L(Ak, Bk) = L(A,B)/d and Sol(A,B) = Sol(Ak, Bk) ⊗ d. Since
L(Ak, Bk) = L(A,B)/d, we obviously have gcdL(Ak, Bk) = 1. �

Example 3. The support of (C6, 8C12) is {4, 12}. We have C6 � 4 = (C6 � 2) �
2 = 2C3 � 2 = 2C3, and 8C12 � 4 = 8C3. By Lemma 8, Sol(C6, 8C12) =
Sol(2C3, 8C3)⊗ 4. Since the support of (2C3, 8C3) is {1, 3},

2C3X
′ = 8C3 ⇐⇒ 2C3(X

′(1)C1 +X ′(3)C3) = 8C3

⇐⇒ 2X ′(1)C3 + 6X ′(3)C3 = 8C3

⇐⇒ 2X ′(1) + 6X ′(3) = 8.

Thus each solution X ′ corresponds to a partition of 8 with parts in {2, 6}: these
are 2 + 6 and 2 + 2 + 2 + 2 + 2, giving X ′ = C1 + C3 and X ′ = 4C1. Hence the
solutions of (C6, 8C12) are (C1+C3)⊗4 = C4+C12 and (4C1)⊗4 = 4C4, which
is consistent with the direct computation given in Ex. 2.

7 Proof of Lemma 2

We start with a definition. Let (A,B) be a consistent instance. A decomposition
of (A,B) is a list L of triples (Ai, Bi, pi), 1 ≤ i ≤ k, such that

• (Ai, Bi) is a compact and consistent instance, and pi is a positive integer,
• |Ai| = |A| and lcmL(Ai) divides lcmL(A),
• |B1|+ · · ·+ |Bk| ≤ |B|,
• Sol(A,B) = (Sol(A1, B1)⊗ p1) + · · ·+ (Sol(Ak, Bk)⊗ pk).

We call k the length of L; note that by the third point, k ≤ |B|. Furthermore, we
say that L is basic if (Ai, Bi) is basic for all 1 ≤ i ≤ k. We will prove that we can
compute in O(|A||B|2) a basic decomposition, which clearly proves Lemma 2.
For that we first prove that if (A,B) has a non-basic decomposition, we can
obtain a longer decomposition by partitioning a non-basic instance (Lemma 4)
and then contracting its parts (Lemma 8).

Lemma 9. There is an algorithm that, given a consistent instance (A,B) and
a non-basic decomposition L of (A,B) of length k, computes in O(|A||B|) a
decomposition L′ of (A,B) of length k + 1.

Proof. The algorithm is as follows. Let (A1, B1, p1), . . . , (Ak, Bk, pk) be the triples
of L. Since L is not basic, we find inO(|A||B|) a non-basic instance (Ai, Bi). Since
(Ai, Bi) is compact and consistent, by Lemma 4, we can compute in O(|A||B|)
two consistent instances (Ai, Bi1) and (Ai, Bi2) such that Bi = Bi1 +Bi2 and

Sol(Ai, Bi) = Sol(Ai, Bi1) + Sol(Ai, Bi2).

12 F. Bridoux et al.

For j = 1, 2, we compute in O(|A||B|) the integer pij = gcdL(Ai, Bij) and the
permutations Aij = Ai�pij and B′ij = Bij�pij . Finally, we output the list L′ of
length k+1 obtained from L by deleting (Ai, Bi, pi) and adding (Ai1, B

′
i1, pipi1)

and (Ai2, B
′
i2, pipi2). So the runnig time is O(|A||B|).

Let us prove that L′ is a decomposition. By Lemma 8, (Aij , B′ij) is compact
and consistent. Furthermore, |Aij | = |Ai| = |A| and since Aij is a contraction
of Ai, each member of L(Aij) divides some member of L(Ai), thus lcmL(Aij)
divides lcmL(Ai), which divides lcmL(A). Thus lcmL(Aij) divides lcmL(A).
Next, since |B′i1|+|B′i2| ≤ |Bi1|+|Bi2| = |Bi|, the third point of the definition of a
decomposition is preserved. Finally, by Lemma 8, Sol(Ai, Bij) = Sol(Aij , B

′
ij)⊗

pij . Consequently,

Sol(Ai, Bi)⊗ pi = (Sol(Ai, Bi1)⊗ pi) + (Sol(Ai, Bi2)⊗ pi)
= (Sol(Ai1, B

′
i1)⊗ pipi1) + (Sol(Ai2, B

′
i2)⊗ pipi2)

and this proves that the last point of the definition of a decomposition is pre-
served. So L′ is indeed a decomposition of (A,B).

Iterating the previous lemma, we get the following, which implies Lemma 2.

Lemma 10. There is an algorithm that, given a consistent instance (A,B),
computes in O(|A||B|2) a basic decomposition of (A,B).

Proof. The algorithm constructs recursively a list L1, . . . ,L|B| of decompositions
of (A,B), where the length of Lr is at most r, and output L|B|. First we compute
L1 = {(A� d,B � d, d)} where d = gcdL(A,B) in O(|A||B|); by Lemma 8, L1

is a decomposition of length one. Now, suppose that the decomposition Lr of
length k ≤ r < |B| has already been computed. If Lr is basic, we set Lr+1 = Lr.
Otherwise, using Lemma 9, we compute in O(|A||B|) a decomposition Lr+1 of
length k + 1. Hence the running time is O(|A||B|2). It remains to prove that
L|B| is basic. If Lr = Lr+1 for some r < |B| then Lr is basic and Ls = Lr
for all r < s ≤ |B| thus L|B| is basic. Otherwise, L1, . . . ,L|B| are all distinct
thus the length of L|B| is |B|. If L|B| is not basic, by Lemma 9, (A,B) has a
decomposition of length |B|+ 1, a contradiction. Thus L|B| is basic. �

Example 4. Let A = C6 and B = 3C6 + 8C12. Combining Ex. 2 and 3, we
get that the basic decomposition of (A,B) is (2C3, 8C3, 4), (C6, 3C6, 1) and so
Sol(A,B) = (Sol(2C3, 8C3)⊗ 4) + Sol(C6, 3C6).

Acknowledgments This work has been funded by the HORIZON-MSCA-2022-
SE-01 project 101131549 ”Application-driven Challenges for Automata Networks
and Complex Systems (ACANCOS)”.

References

1. Alberto Dennunzio, Valentina Dorigatti, Enrico Formenti, Luca Manzoni, and An-
tonio E Porreca. Polynomial equations over finite, discrete-time dynamical systems.

Dividing permutations in the semiring of functional digraphs 13

In Cellular Automata: 13th International Conference on Cellular Automata for Re-
search and Industry, ACRI 2018, Como, Italy, September 17–21, 2018, Proceedings
13, pages 298–306. Springer, 2018.

2. Alberto Dennunzio, Enrico Formenti, Luciano Margara, and Sara Riva. An algo-
rithmic pipeline for solving equations over discrete dynamical systems modelling
hypothesis on real phenomena. Journal of Computational Science, 66:101932, 2023.

3. Alberto Dennunzio, Enrico Formenti, Luciano Margara, and Sara Riva. A note on
solving basic equations over the semiring of functional digraphs. arXiv preprint
arXiv:2402.16923, 2024.

4. Caroline Gaze-Maillot and Antonio E Porreca. Profiles of dynamical systems and
their algebra. arXiv preprint arXiv:2008.00843, 2020.

5. AS Jarrah and R Laubenbacher. Finite dynamical systems: A mathematical frame-
work for computer simulation. In Mathematical Modeling, Simulation, Visualization
and e-Learning, pages 343–358. Springer, 2007.

6. Émile Naquin and Maximilien Gadouleau. Factorisation in the semiring of finite
dynamical systems. arXiv preprint arXiv:2210.11270, 2022.

	Dividing permutations in the semiring of functional digraphs

