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Abstract: In this paper,we propose a refinement of themodelling of biological
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We refine and automatise the use of delays of activation/inhibition in
order to specify which variable is more quickly affected by a change of its
regulators. The formalism of linear hybrid automata is well suited to allow
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1 Introduction to Biological Regulatory Networks

Biologists often represent their knowledge on a biological system in terms of graphs
(de Jong, 2002). Biological Regulatory Networks (BRN) represent interactions among
biological entities. For example, genetic regulatory networks are graphs where vertices
represent genes or regulatory products e.g., RNA, proteins and edges represent
interactions among them. These interactions are further directed (regulators are
distinct from targets) and signed (+ for activation, − for inhibition).

It is now clear for researchers that the semantics of a biological regulatory system
and more generally an interaction system, is encoded in the dynamics of the system
and not only in the structure of this system. Biologists often need to use the previously
described regulatory graphs as a basis for generating dynamical models using either
continuous representation or discrete ones.

• In differential models the activity of each gene is represented by a concentration
xi of the associated RNA or proteins, and the evolutions of the vector of all
concentrations x = (xi)i∈[1,n] obey a differential equation system dx/dt = f(x).
Observation leads biologists to consider non-linear models with some strong
threshold effects. The derivation of the dynamics from the interaction graph is
not trivial even if the type of each interaction is known, because a lot of
parameters have to be inferred, and a small modification of a parameter can lead
to a strong change in the dynamics.
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• In discrete models, the threshold effects are highlighted and allow modellers to
discretise the concentrations. The first approach has been based on drastic
discretisation since all genes can be either on (present) or off (absent) (Thomas,
1978). This boolean approach has been generalised into a multi-valued approach
(Snoussi, 1989; Thomas, 1991), in which logical identification of all steady
states (Snoussi and Thomas, 1993; Devloo et al., 2003) becomes possible.
The dynamics of these networks are based on abstraction of continuous-time
switching networks which are a special type of hybrid systems as studied in, for
example, control theory. Such continuous-time switching networks have been
used to model dynamics in, for example, the sporulation network of Bacillus
subtilis (de Jong et al., 2004). The derivation of the dynamics from the
interaction graph remains difficult even if the number of possible models is now
finite. Since the formalism consists essentially in the discretisation of the
continuous differential equation system, the state space is divided into set of
domains representing the symbolic qualitative states of the network.
The transitions between the different states depend on discrete parameters that
play the role of limits of the solutions of the differential equation system of each
domain in the continuous space. These limits are sometimes called attractors or
targets (Bernot et al., 2004).

The modelling activities then focus on the determination of parameters of the model
which lead to a dynamic coherent with the specification (formal translation of
experimental facts). Formal verification is not possible in the general framework
of differential equation systems. In de Jong et al. (2003) focus on a particular discrete
model and usemodel checking in order to verify if the temporal properties are satisfied.
Bernot et al. (2004) proposed to consider all possible parameterisations, to generate all
possible dynamics, to call for each of themamodel checker for verification and to select
only models which lead to a dynamic coherent with the specification. The enormous
number of models limits this brute force approach.

One canalsonotice that the transition systemsobtained in the formalismofThomas
(1978) or of de Jong et al. (2003) are not deterministic: they abstract all possible
continuous trajectories but they introduce some traces which do not correspond to
continuous ones. This is due to a complete and total abstraction of time. To overcome
this point Adélaïde and Sutre (2004) showed that under some conditions of equality of
degradation constants, this abstraction can lead to a dynamic which does not present
the same drawback.

Thework ofHill et al. (1998) andKauffman (2003) is amajor contribution towards
the dynamical stability and unstability (chaos) of BRN as we are also interested in the
analysis of the behaviours which lead to cycles.

In this paper we propose to refine activation and inhibition delays (Thomas, 1973)
in the formalism of René Thomas following (Thomas and Kaufman, 2001) where
delays have been introduced to study traces closer to the experimental facts.
After having briefly presenting René Thomas modelling in Section 2, we introduce in
Section 3 the refinement of the concept of delays. In Section 4, a pedagogical example
is introduced whereas Section 5 is devoted to two biological examples: we show that
phage lambda choice between lytic and lysogenic pathways is controlledbydelay values
and that T-cell activation and anergy system can be analysed in the same modelling
framework. These examples allow us to present an algorithm for searching paths
between two specified states (Section 6). Finally, we show how this algorithm can be
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helpful for parameter synthesis (Section 7). In Section 8, we discuss some problems
raised by the presence of unstable cycles. Section 9 is devoted to conclusion.

2 Approach of René Thomas

In a directed graph G = (V, A), we note G−(v) and G+(v) the set of predecessors and
successors of a node v ∈ V respectively.

Definition 1: A biological regulatory network, or BRN for short, is a tuple
G = (V, A, l, s, t, K) where

• (V, A) is a directed graph denoted by G,

• l is a function from V to N

• s is a function from A to {+, −},
• t is a function from A to N such that, for all u ∈ V , if G+(u) is not empty then

{t(u, v) | v ∈ G+(u)} = {1, . . . , l(u)}.
• K = {Kv | v ∈ V } is a set of maps: for each v ∈ V , Kv is a function from

2G−(v) to {0, . . . , l(v)} such that Kv(ω) ≤ Kv(ω′) for all ω ⊆ ω′ ⊆ G−(v).

The map l describes the domain of each variable v: if l(v) = k, the abstract
concentration on v holds its value in {0, 1, . . . , k}. Similarly, the map s represents the
sign of the regulation (+ for an activation, − for an inhibition).

t(u, v) is the threshold of the regulation from u to v: this regulation takes place
iff the abstract concentration of u is above t(u, v), in such a case the regulation is
said active. The condition on these thresholds states that each variation of the level
of u induces a modification of the set of active regulations starting from u. For all
x ∈ [0, . . . , l(u) − 1], the set of active regulations of u, when the discrete expression
level of u is x, differs from the set when the discrete expression level is x + 1.

Finally, the map Kv allows us to define what is the effect of a set of regulators on
the specific target v. If this set is ω ⊆ G−(v), then, the target v is subject to a set of
regulations which makes it to evolve towards a particular level Kv(ω).

Definition 2 (States): A state µ of a BRN G = (V, A, l, s, t, K) is a function from V

to N such that µ(v) ∈ {0, . . . , l(v)} for all variables v ∈ V . We denote EG the set of
states of G.

Whenµ(u) ≥ t(u, v)and s(u, v) = +,we say thatu is a resourceofv since theactivation
takesplace. Similarlywhenµ(u) < t(u, v)and s(u, v) = −,u is also a resourceofv since
the inhibition does not take place (the absence of the inhibition is treated as an
activation).

Definition 3 (Resource function): Let G = (V, A, l, s, t, K) be a BRN. For each v ∈ V

we define the resource function ωv : EG → 2G−(v) by:

ωv(µ) = {u ∈ G−(v) | (µ(u) ≥ t(u, v) and s(u, v) = +) or
(µ(u) < t(u, v) and s(u, v) = −)}.
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As said before, at state µ,Kv(ωv(µ)) gives the level towards which the variable v tends
to evolve. We consider three cases,

• if µ(v) < Kv(ωv(µ)) then v can increase by one unit

• if µ(v) > Kv(ωv(µ)) then v can decrease by one unit

• if µ(v) = Kv(ωv(µ)) then v cannot evolve.

Definition 4 (Signs of derivatives): Let G = (V, A, l, s, t, K) be a BRN and v ∈ V .
We define αv : EG → {+1, 0, −1} by

αv(µ) =




+1 if Kv(ωv(µ)) > µ(u)
0 if Kv(ωv(µ)) = µ(u)
−1 if Kv(ωv(µ)) < µ(u)

. (1)

The signs of derivatives show the tendency of the solution trajectories and these will be
used in the temporal model that we will build in Section 3.

The state graph of BRN represents the set of the states that a BRN can adopt with
transitions among them deduced from the previous rules:

Definition 5 (State graph): Let G = (V, A, b, s, t, K) be a BRN. The state graph of G
is a directed graph G = (EG, T ) with (µ, µ′) ∈ T if there exists v ∈ V such that:

αv(µ) �= 0 and µ′(v) = µ(v) + αv(µ) and µ(u) = µ′(u), ∀u ∈ V \{v}.

3 Refinement of the concept of delays

In the semantics that we use, a state can have several successors, each of them
corresponding to the evolution of the discrete expression level of a unique gene
(the dynamic is asynchronous). We refine and automatise the use of delays in the
model of René Thomas presented in Section 2. To be more precise, when an order
of activation/inhibition arrives, the biological machinery starts to increase/decrease
the corresponding protein concentration, but this action takes time. We use two types
of parameters, d+

v (x) and d−
v (x), to represent the time delay required to change the

expression level of a gene v from the level x to x + 1 and from a level x to x − 1,
respectively, as shown inFigure1.Then,weadd to eachvariablev a continuous clockhv

whose slope at state µ is |αv(µ)|. At a given state µ, if αv(µ) = +1 (resp. αv(µ) = −1),
then, when hv reaches d+

v (µ(v)) (resp. d−
v (µ(v))), the level of v becomes µ(v) + 1 (resp.

µ(v) − 1) and the clock hv is reset.
The temporalmodel described above belongs to the class of the so-called stopwatch

automata (Cassez andLarsen, 2000)which is a specific typeofLinearHybridAutomata
(LHA) (Alur et al., 1992, 1995). LHA are finite state automata augmented with real
variables whose values evolve continuously in a discrete state. The values of the
continuous variables can be affected by discrete transitions between discrete states.
LHA implies that the solutions to the differential equations are lines. Linear hybrid
automata can be subject to a reachability analysis to verify that a given set of assertions
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is true. However, in general, the reachability problem for linear hybrid automata is
undecidable Thomas et al. (1998).

In the following, we present a method allowing to synthesise constraints on delays
which are necessary and sufficient for the system to follow a given path of the state
graph. Before, the temporal model presented here is illustrated with a pedagogical
example and two biological examples.

Figure 1 The actual evolution of a gene’s expression (a) the discrete model (b) along with the
temporal model (c)

4 Preliminary example of a Toy gene regulatory network

Consider the BRN involving three genes, a, b and c, which interact according to
the signed graph of Figure 2, where l(a) = l(b) = l(c) = 1, and where Ka({c}) =
Kb({a}) = Kc({b}) = 1 and Ka({}) = Kb({}) = Kc({}) = 0. From this BRN,
we obtain the table of resources (Table 1) and state graph as shown in Figure 3.

Figure 2 Example of a BRN

Table 1 gives the set of resources ωv(µ) of gene v ∈ {a, b, c}, and the corresponding
parameter Kv(ωv(µ)), according to the state µ of the BRN. This table helps the reader
to reconstruct the state graph representing the dynamics of the BRN. The edges in the
graph give the possible transitions between states which can occur after certain time
delays. The circuit (010, 011, 001, 101, 100, 110, 010) represents an unstable circuit in
the dynamics and the two states not involved in the circuit are the only two stable
states.

As we have explained in Section 3, we associate a clock hv , with each variable
v ∈ {a, b, c}. All clocks of the system increase continuously and simultaneously with
either slope 1 or slope 0. The guard hv == dα

v , where α ∈ {+, −} is a condition which
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means that the delay has accomplished. The clock of a variable is set to zero when
this variable changes its abstract level. In Figure 4 all the transitions are labelled with
guards and clock initialisations.

Table 1 Table of resources of the BRN of Figure 2

µ(a) µ(b) µ(c) ωa(µ) ωb(µ) ωc(µ) Ka(ωa(µ)) Kb(ωb(µ)) Kc(ωc(µ))

0 0 0 {} {} {} 0 0 0
0 0 1 {c} {} {} 1 0 0
0 1 0 {} {} {b} 0 0 1
0 1 1 {c} {} {b} 1 0 1
1 0 0 {} {a} {} 0 1 0
1 0 1 {c} {a} {} 1 1 0
1 1 0 {} {a} {b} 0 1 1
1 1 1 {c} {a} {b} 1 1 1

Figure 3 State graph of the BRN of Figure 2

5 Biological examples

In this section, we present two biological examples. The first example is the biological
regulatory network of lambda phagewhile the second one is the example of activation
and anergy system of a T-cell. The purpose of introducing two more examples in this
section is to show how useful are our modelling of BRN and its HyTech analysis for
real biological regulatory systems.

5.1 Example of a Biological Regulatory Network of Lambda phage

In this sub-section, we present the example of a biological regulatory network of
lambda phage. This example has been explained in more detail in the thesis report
of Thieffry (1993) as well as in Thomas (1979). First, we briefly describe this example
and then we apply our method to distinguish different paths for lytic and lysogenic
cycles in Section 7.

The lambda phage first attaches to its host Escherichia coli and then after
uncoating, it injects its DNA in its hosts. The DNA circularises and integrates into
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the host DNA and then replicates with the host cell (lysogenic pathway). The phages
will remain in the lysogenic cycle if cI proteins predominate, otherwise, if Cro proteins
predominate, phages enter in the lytic way leading to the cell lysis.

Figure 4 Stopwatch automaton for the BRN of Figure 2

Figure 5 The interaction graph for the regulation of the expression of lambda phage,
containing only the genes (cl, cro, cll and N) directly involved in the feedback
circuit

The biological regulatory network of Figure 5 consists of four genes cl, cro, cll and
N represented by variables x, y, z and u respectively, which are mainly involved in the
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developmental pathways: lytic and lysogenic cycles as shown inFigure 6. The transition
model of this example that consists of 48 states and its behavioural model have been
explained in the previously mentioned dissertation.

In Thieffry (1993), it has been shown that many paths from the initial state 0000
are possible but the one that leads to the lysogenic state (2000) or to the lytic cycle
(around 0θ00) consisting of states 0200 and 0300, as shown in Figure 6, depends on
the values of the corresponding delays. We have shown in Table 3 of Section 7, the
temporal regions in which the trajectories from state 0000 will always arrive at state
2000 (lysogenic cycle) or at states 0200 and 0300 around 0θ001 (lytic cycle).

Figure 6 (a) A part of state graph showing two pathways for lysogenic cycle and (b) lytic
cycle. The subscribed sign + (resp. −) stands for expressing the possibility for a
concentration to increase (resp. decrease)

5.2 Example of a T-cell activation and anergy system

In this sub-section, first, we briefly present the modelling of the activation and
anergy system of T-cell by the formalism of René Thomas as explained in
Kaufman et al. (1999) and then we will present in Section 7, how to automatically
obtain, using our BRNmodelling approach, the same results as manually obtained in
Kaufman et al. (1999). Readers can find in Kam et al. (2001) the statecharts modelling
of the T-cell activation which mainly addresses the synthesis of different analysis
information about T-cell.

The initiation and regulation of an immune response to an antigen are dependent
on the activation of helper T lymphocytes by an appropriate antigen/major
histocompatibility complex ligand (Ag/MHC). The T-cell antigen receptor (TCR) by
its cognate ligand triggers a series of biochemical events within the cell, which can lead
either to cellular activation, i.e., lymphokine production and cell proliferation, or to
an induction of a state of unresponsiveness termed anergy.

The model of Figure 7 represents a sequence of events, each requiring a
characteristic time to be realised. Binding of free ligand to the TCRs activates the
receptor-associated tyrosine kinases. Receptor engagement together with protein
tyrosine kinase (PTK) activation leads to positive signalling. Activated PTKs
also trigger an inhibitory pathway, which negatively affects the positive response.
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Costimulation participates in signal generation. The positive action of the PTKs
on themselves indicates that once receptor-associated PTK activity is established,
it remains sustained even in the absence of ligand. This autocatalytic maintenance
mechanism is suppressed by interleukin 2 (IL-2) linked signalling and proliferation.
Except for the initial increase in PTK activity, the signal here includes both the early
(calcium rise, protein kinase C, and Ras activation) and late transduction events
(up-regulation of IL-2 receptors, IL-2 production, and cell proliferation). A distinction
between different subsets of transduction events, while allowing to account for a wider
variety of partial responses, does not change the basic properties of the model.

Figure 7 Schematic interaction diagram. f = free; b = TCRs bound to ligand;
k = receptor-associated PTK activity; x = tyrosine kinase-dependent inhibitory
pathway; s = metabolic and mitogenic response. Positive and negative interactions
are indicated by a plus and minus sign respectively

The state of the system is defined in terms of four logical variables that take the logical
values0or1. Thus, b = 1means receptorbound to ligand, otherwise b = 0;k = 1means
receptor-associatedPTKs activated, otherwise k = 0; x = 1means inhibitory pathway
activated, otherwisex = 0; s = 1means activatory pathway activated, otherwise s = 0.

Moreover to each variable b, k, x, and s is associated a boolean function B, K, X ,
and S which represents the activity on the promoters : if the promotor is activated,
then the function is equal to 1. The system is therefore represented in the sequential
logical way, at any time, the future state(s) of the system is the function of the present
state of the system. For the model of Figure 7 the set of logical equations are:




B = 0
K = b + k.s̄

X = k

S = b.k.x̄

.

In the above set of equations, function B describes the natural tendency of a bound
TCR to dissociate from ligand, irrespective of the presence or absence of free ligand.
Function K expresses that receptor-associated tyrosine kinase activity will increase
above basal level if the receptors are bound to ligand (b = 1). It also involves a
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maintenance mechanism, through autophosphorylation, that persists in the absence
of ligand-bound TCRs. This maintenance mechanism is suppressed by the occurrence
of IL-2-linked signalling events and proliferation (s = 1). Thus, K = 1 (and k tends
toward or remains at 1) if either or both b = 1, k = 1; otherwise K = 0. Function X
states that the receptor-associated tyrosine kinases activate, directly or indirectly, an
inhibitory pathway. X = 1 if k = 1; otherwise X = 0. Finally, function S means that
positive signalling (i.e., cellular activation) will occur (S = 1) if the receptors are bound
(b = 1) and the receptor-associated kinases are activated (k = 1) and if their positive
action on cell activation is not inhibited (x = 0); otherwise S = 0.

Figure 8 shows various pathways from state (1000) where the receptor has just
become bound by ligand.

Figure 8 Various pathways leading to full immunocompetence state (0000) and anergic state
(0110)

The variable is aligned with the value of the function if the values of a logical function
and its correspondingvariabledisagree.This alignment is executedafter a characteristic
time delay, unless a counter order is received before the delay has elapsed. For example,
the value of x will align on the value X = 1 after a time delay d+

x , provided there has
not been a counter order,X = 0, before expiration of the delay. Similarly, if x = 1 and
X = 0, then x will shift from x = 1 to x = 0 in a characteristic time d−

x . On and off
delays for the other state variables are denoted similarly.

Table 4 of Section 7.3, contains the parameter constraints of delays for the
transitions in paths of Figure 8. One can compare, in Section 7.3, our HyTech results
of parameter constraints with those manually obtained in Kaufman et al. (1999).

6 Searching paths between two states

The analysis of the hybrid refinement of the BRN is performed by using a linear hybrid
model checker HyTech (Henzinger et al., 1997). The delays are defined as parameters
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whose values are unknown. Our path Algorithm 1 finds all the possible paths between
two qualitative states of a regulatory network. We have implemented this algorithm
in HyTech (see Appendix A.1) for two purposes:

• to find the exact number of paths between any two states of a BRN

• to automatically synthesise parameter constraints for each transition within
a path.

Figure 9 How the algorithm finds the final states from initial state and vice versa. The empty
state shows the accessibility of final state through other path

Algorithm1 is the pseudocodeof theHyTech implementation.pre andpostoperators,
which are the classical predecessor and successor operators of hybrid systems analysis,
return respectively the predecessors and successors of a state including the state itself.
The difficulty of the algorithm lies in the fact that it converts the breadth-first search
(induced by the post operator) into the depth-first search of a path. The algorithm
consists of two main loops. In the outer loop the algorithm exhaustively searches
the final_state from the initial_state and accumulates the accessed states in a
set named states_accumulated. When the algorithm finds the final_state then
it starts the nested loop and begins backward search from final_state and takes
the intersection of each accessed states with the set states_accumulated. If the
intersection is not empty then the algorithm gives the intersection as a state of
the path which is accumulated in a set path_states. Finally the algorithm invokes the
procedure print_path(path_states) to print the states of a path in proper order.

The dashed lines (A), (B) and (C) of Figure 9 represent the successive sets of
accumulated states when the algorithm finds the final state f during the outer loop.
The inner loop is used for backward search and the dashed arrow (D) shows this search
for the first path. In Figure 9, the setA is equal to post(post(010)) and the set of path
states is equal to post(post(010))

⋂
pre(pre(111)).

Algorithm 1 finds the three paths between states (0,1,0) and (1,1,1) in the example
of Figure 4.
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7 Parameters synthesis

In this section, we present the HyTech results of parameters synthesis, for the three
examples presented in Sections 4 and 5. TheHyTech results are presented inTables 2–4.
In these tables, the two/three-columned rows show the transitions and their respective
parameter constraints while the one-columned rows show the labelled paths and their
equivalent temporal regions in terms of delay parameter constraints.

7.1 HyTech results for the example of Toy gene regulatory network

In this sub-section, we present the HyTech result of the parameters synthesis for the
preliminary example of Section 4.

The delay parameters used for the increasing and decreasing of the expression level
of a gene v can be synthesised in HyTech to form timing constraints for each transition
that takes place in paths between two states. The conjunction of constraints along any
sequence of transitions gives the synthesised parameters constraint for the given path.

Now if we desire to find only the path shown by the bold line in Figure 4, then
we use the timing constraints which are synthesised by HyTech for the transitions in
one path starting from a state where ha = hb = hc = 0 (see below). Thus, we draw
an equivalence between a path and the region described by the conjunction of its
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associated constraints. Table 2 shows the constraints synthesised by HyTech for the
example of Section 4.

Table 2 HyTech results of the delay constraints for the path shown by the bold line
in Figure 4 (∧ means logical AND)

Transitions Constraints

010 → 011 d+
c ≤ d−

b

011 → 001 d−
b ≤ d+

a + d+
c

001 → 101 d+
a + d+

c ≤ d−
b + d−

c

101 → 111 d+
a + d+

b + d+
c ≤ d−

b + d−
c

010 → 011 → 001 → 101 → 111
≡ (d+

c ≤ d−
b ) ∧ (d−

b ≤ d+
a + d+

c ) ∧ (d+
a + d+

c ≤ d−
b + d−

c ) ∧ (d+
a + d+

b + d+
c ≤ d−

b + d−
c )

Table 3 HyTech results of the delay constraints for the paths shown in Figure 6

Transitions Constraints

0000 → 0001 d+
u ≤ d+

x ∧ d+
u ≤ d+

y

0001 → 0011 d+
z + d+

u ≤ d+
x ∧ d+

z + d+
u ≤ d+

y

0011 → 1011 d+
x ≤ d+

y

1011 → 2011 2d+
x ≤ d+

y ∧ d+
x ≤ d−

u

2011 → 2010 d+
u ≤ d+

x + d−
z

0000 → 0100 d+
y ≤ d+

x ∧ d+
y ≤ d+

u

0100 → 0200 2d+
y ≤ d+

u

0100 → 0101 d+
u ≥ 2d+

y

0101 → 0201 2d+
y ≤ d+

z + d+
u

0201 → 0200 2d+
y + d−

u ≤ d+
z + d+

u ∧ d−
u ≤ d+

y

0201 → 0301 3d+
y ≤ d+

z + d+
u ∧ d+

y ≤ d−
u

0301 → 0300 d−
u ≤ d−

y

Path a: 0000 → 0001 → 0011 → 1011 → 2011 → 2010 → 2000
≡ (d+

u ≤ d+
x ∧ d+

u ≤ d+
y ) ∧ (d+

z + d+
u ≤ d+

x ∧ d+
z + d+

u ≤ d+
y ) ∧ (d+

x ≤ d+
y )

∧(2d+
x ≤ d+

y ∧ d+
x ≤ d−

u ) ∧ (d+
u ≤ d+

x + d−
z )

Path b-1: 0000 → 0100 → 0200
≡ (d+

y ≤ d+
x ∧ d+

y ≤ d+
u ) ∧ (2d+

y ≤ d+
u )

Path b-2: 0000 → 0100 → 0101 → 0201 → 0200
≡ (d+

y ≤ d+
x ∧ d+

y ≤ d+
u ) ∧ (d+

u ≥ 2d+
y ) ∧ (2d+

y ≤ d+
z + d+

u )∧
(2d+

y + d−
u ≤ d+

z + d+
u ∧ d−

u ≤ d+
y )

Path b-3: 0000 → 0100 → 0101 → 0201 → 0301 → 0300
≡ (d+

y ≤ d+
x ∧ d+

y ≤ d+
u ) ∧ (d+

u ≥ 2d+
y ) ∧ (3d+

y ≤ d+
z + d+

u ∧ d+
y ≤ d−

u )
∧(2d+

y ≤ d+
z + d+

u ) ∧ (d+
u ≤ d−

y )

7.2 HyTech results for the example of Lambda phage

In this sub-section, we present the HyTech results of the parameter synthesis for
the example of lambda phage of Section 5.1. Here, we show paths leading to lytic
and lysogenic states and their delay parameter constraints, representing equivalent
temporal regions. The equivalent regions give a choice among paths for lysogenesis
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and lysis (of Figure 5), as labelled in Table 3 by Path a and Paths b (b-1, b-2, b-3)
respectively.

7.3 HyTech results for the T-cell activation and anergy system

In this sub-section, we present the HyTech results of the parameter synthesis for the
example of T-cell activation and anergy system of Section 5.2, along with the results
given in Kaufman et al. (1999) for the same system, as shown here in Figure 10.
We notice that HyTech gives the same results of delay constraints as manually
calculated in Kaufman et al. (1999) and therefore this shows the usefulness of BRN
modelling alongwith theHyTech tool for the temporal analysis of regulatorynetworks.

Figure 10 State graph showing the total time to reach a given state, relative to time 0 in terms
of time delays

Various timing dependent signalling properties presented in Kaufman et al. (1999,
pp.3896–3898) are given below.

• Fast ligand dissociation. Path 1 is followed if ligand dissociation precedes
kinase activation (d−

b < d+
k ) and corresponds to what is observed for ‘null’ or

inactive ligands. Path 2 is followed if ligand dissociation is slower than kinase
activation but faster than significant activation of the stimulatory and inhibitory
pathways: d+

k < d−
b < Min (d+

k + d+
s ,d+

k + d+
x ).
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• Absence of costimulation. If d+
x < d+

s and d+
k + d+

x < d−
b , path 3 will be

followed. Here, the receptor-associated kinases are activated but inhibition
precedes significant signal transmission, so that there is no positive signalling.
After ligand dissociation, the system ends up again in the unresponsive state and
restimulation in optimal conditions does not lead to cellular activation.

• Positive signalling. The general conditions for positive signalling are: d+
s < d+

x
and d+

k + d+
s < d−

b . Positive signalling should be faster than significant
inhibition, and the ligand residence time must exceed the time required for
activation of the kinases and signal transmission. These timing conditions
correspond to paths 4–12 and account for signalling upon stimulation with an
activatory ligand in the presence of costimulation. Along paths 8–12
(d−

b < d+
k + d+

x ), the time length of the activation phase essentially is
determined by the ligand residence time on the receptors, whereas along
paths 4–7 (d+

k + d+
x < d−

b ), it is mainly determined by the time lag between
positive signalling and inhibition.

After activation the systemwill end up in one of two stable steady states, corresponding
either to recovery of responsiveness (0000) or to anergy (0110). Independently of the
precise pathway that is followed, the necessary and sufficient conditions to reach each
of these two final states can be determined by using the tools of combinatorial logic.
These additional conditions follow.

• For positive signalling with recovery of responsiveness:

(d−
s > d−

k ) AND (d−
b < d+

k + d+
x + d−

s − d−
k )

which means that the activatory phase will be followed by recovery of
immunocompetence both if the ligand does not bind too strongly and positive
signalling does not decay before inactivation of the kinases.

This situation requires that the ligand residence time be in an optimal range and
is related to a memory-type response.

• For positive signalling followed by anergy:

(d−
s < d−

k ) OR (d+
k + d+

x + d−
s − d−

k < d−
b )

which means that the activatory phase will be followed by anergy if either both
the positive signal decays rapidly or ligand dissociation is very slow. This
situation corresponds to ‘activation-induced anergy’.

� End of (Kaufman et al., 1999) quotation.

One can notice that the constraints, as shown in bold faced, in the HyTech Table 4
and in Kaufman et al. (1999) are exactly the same for all paths.

8 Cycles in BRN

The state graph of a BRN is not a simple tree like graph: it frequently contains cycles.
It has been stated and then shown that cycles play a crucial role in the dynamics:
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Table 4 HyTech results for the delay constraints of the transitions of paths shown in Figure 8

Transitions Paths Constraints

1000 → 0000 1 d−
b ≤ d+

k
1000 → 1100 2–12 d+

k ≤ d−
b

1100 → 0100 2 d−
b ≤ d+

k + d+
s ∧ d−

b
≤ d+

k + d+
x

1100 → 1110 3 d+
x ≤ d+

s ∧ d+
k + d+

x ≤ d−
b

1100 → 1101 4–12 d+
s ≤ d+

x ∧ d+
k + d+

s ≤ d−
b

1101 → 1111 4–7 d+
k + d+

x ≤ d−
b

1101 → 0101 8–12 d−
b ≤ d+

k + d+
x

1111 → 1110 4 d+
k + d+

x + d−
s ≤ d−

b

1111 → 0111 5–7 d−
b ≤ d+

k + d+
x + d−

s

0111 → 0110 5 d+
k + d+

x + d−
s ≤ d−

b + d−
k

0111 → 0011 6–7 d−
b + d−

k ≤ d+
k + d+

x + d−
s

0011 → 0001 6 d−
b + d−

k + d−
x ≤ d+

k + d+
x + d−

s

0011 → 0010 7 d+
k + d+

x + d−
s ≤ d−

b + d−
k + d−

x

0101 → 0111 8–10 d+
k + d+

x ≤ d−
b + d−

k ∧ d+
k + d+

x

≤ d−
b + d−

s

0101 → 0100 11 d−
s ≤ d−

k ∧ d−
b + d−

s ∧ d+
k + d+

x

0101 → 0001 12 d−
k ≤ d−

s ∧ d−
b + d−

k ≤ d+
k + d+

x

0111 → 0110 8 d−
s ≤ d−

k
0111 → 0011 9–10 d−

k ≤ d−
s

0011 → 0001 9 d−
k + d−

x ≤ d−
s

0011 → 0010 10 d−
s ≤ d−

k + d−
x

Path 1: 1000 → 0000 ≡ d−
b ≤ d+

k

Path 2: 1000 → 1100 → 0100 → 0110
≡ (d+

k ≤ d−
b ) ∧ (d−

b ≤ d+
k + d+

s ∧ d−
b ≤ d+

k + d+
x )

Path 3: 1000 → 1100 → 1110 → 0110
≡ (d+

k ≤ d−
b ) ∧ (d+

x ≤ d+
s ∧ d+

k + d+
x ≤ d−

b )

Path 4: 1000 → 1100 → 1101 → 1111 → 1110 → 0110
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d+
k + d+

x ≤ d−
b ) ∧ (d+

k + d+
x + d−

s ≤ d−
b )

Path 5: 1000 → 1100 → 1101 → 1111 → 0111 → 0110
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d+
k + d+

x ≤ d−
b ) ∧ (d−

b ≤ d+
k + d+

x + d−
s )

∧(d+
k + d+

x + d−
s ≤ d−

b + d−
k )

Path 6: 1000 → 1100 → 1101 → 1111 → 0111 → 0011 → 0001 → 0000
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d+
k + d+

x ≤ d−
b )

∧(d−
b ≤ d+

k + d+
x + d−

s ) ∧ (d−
b + d−

k ≤ d+
k + d+

x + d−
s ) ∧ (d−

b + d−
k + d−

x ≤ d+
k + d+

x + d−
s )

Path 7: 1000 → 1100 → 1101 → 1111 → 0111 → 0011 → 0010 → 0000
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d+
k + d+

x ≤ d−
b ) ∧ (d−

b ≤ d+
k + d+

x + d−
s )

∧(d−
b + d−

k ≤ d+
k + d+

x + d−
s ) ∧ (d+

k + d+
x + d−

s ≤ d−
b + d−

k + d−
x )

Path 8: 1000 → 1100 → 1101 → 0101 → 0111 → 0110
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d−
b ≤ d+

k + d+
x ) ∧ (d+

k + d+
x ≤ d−

b + d−
k )

∧(d+
k + d+

x ≤ d−
b + d−

s ) ∧ (d−
s ≤ d−

k )

Path 9: 1000 → 1100 → 1101 → 0101 → 0111 → 0011 → 0001 → 0000
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d−
b ≤ d+

k + d+
x )

∧(d+
k + d+

x ≤ d−
b + d−

k ∧ d+
k + d+

x ≤ d−
b + d−

s ) ∧ (d−
k ≤ d−

s ) ∧ (d−
k + d−

x ≤ d−
s )

Path 10: 1000 → 1100 → 1101 → 0101 → 0111 → 0011 → 0010 → 0000
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d−
b ≤ d+

k + d+
x )

∧(d+
k + d+

x ≤ d−
b + d−

k ∧ d+
k + d+

x ≤ d−
b + d−

s ) ∧ (d−
k ≤ d−

s ) ∧ (d−
s ≤ d−

k + d−
x )

Path 11: 1000 → 1100 → 1101 → 0101 → 0100 → 0110
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d−
b ≤ d+

k + d+
x )

∧(d−
s ≤ d−

k ∧ d−
b + d−

s ∧ d+
k + d+

x )

Path 12: 1000 → 1100 → 1101 → 0101 → 0001 → 0000
≡ (d+

k ≤ d−
b ) ∧ (d+

s ≤ d+
x ∧ d+

k + d+
s ≤ d−

b ) ∧ (d−
b ≤ d+

k + d+
x )

∧(d−
k ≤ d−

s ∧ d−
b + d−

k ≤ d+
k + d+

x )
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a positive circuit (resp. negative circuit) in the interaction graph is necessary to observe
multistationarity (resp. homeostasis) (Thomas and Kaufman, 2001; Thomas et al.,
1995; Cinquin and Demongeot, 2002; Soulé, 2003). For example, homeostasis is
expressed in the state graph by oscillatory behaviours (sustained or not), which are
often abstracted by cycles. Then it becomes important to analyse the entrance into
such cycles. The delay constraints in Section 7 that can select a certain pathway can be
synthesised in similar way to enter a cycle (Ahmad et al., 2006), as shown in Figure 3
by bold arrows. But introducing delays in BRN modelling can make the cycle to be
stable or unstable, depending on values of these delays (Bernot et al., 2007; Thomas
and D’Ari, 1990). To remain stable in the cycle, some initial conditions in terms of
constraints of delay parameters and clocks have to be synthesised such that some timed
trajectories from these initial conditions remain viable in a cycle. This is supposed
to introduce the notion of invariance kernel Schneider (2004) that requires further
modelling of BRN.

In real situations, however, the initial state is usually not in the cycle. It is therefore
important to analysewhich initial states can lead the system into the cycle, to determine
the constraints on the time delays which will effectively allow the system to enter the
cycle and then to verify that these constraints are compatible with the conditions for
remaining in the cycle.

Fixing the values for delays is also an issue in the context of time delays. If nothing
is said about the time delays the whole graph remains indeed open, but if one assigns
values to the delays (e.g., on the basis of biological data), only one well-defined
transition path will remain. Biological execution of such models are in fact subject to
some variations due to slight differences between delay parameters chosen by different
cells even in the homogeneous population (Thomas andD’Ari, 1990). Further analysis
with probabilistic models of these variations on delay parameters would be able to
separate different behaviours.

9 Conclusion

We propose in this paper a refinement of the concept of delays for BRN modelling.
The introduction of delays allows one to distinguish paths from one state to another
one. This refinement reintroduces time in the abstraction of R. Thomas, and this way is
different from the refinement of Batt et al. (2005) and Adélaïde and Sutre (2004) which
split the state space by partitioning the domains of the state space. The present work
describes how the introduction of time can be helpful for modelling such networks,
allowing the modeller to verify temporal properties. It is now important to confront
this modelling with even more complex real systems where the underlying processes
are not yet already known. Our experience in modelling in a multidisciplinary context
will help to initiate biological modelling with delays.

In addition, we plane to deepen the following points:

• parameter synthesis: we have to check when a path is equivalent to an empty
region and what this really means

• cycles: we have to look for invariance kernels in the state graph of BRN.
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1In Figure 6, this cycle oscillates around a particular point named 0θ00. Theta generally
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Appendix A

In this appendix, we show the HyTech file for the example of Section 4. The HyTech
file consists of two parts: the hybrid automaton and the analysis commands.

A.1 Hybrid automaton

The following HyTech codes implement the stopwatch automaton of Figure 4.
Here, the variables ha, hb and hc, represent the clocks associated to genes a, b and c
respectively. These clocks evolve towards delay parameters dpa, dna, dpb, dnb, dpc and
dnc during the activation and inhibition periods of their respective genes.
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A.2 Analysis commands

The following HyTech codes implement Algorithm 1 of Section 6.
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