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Abstract. Automata networks can be seen as bare finite dynamical
systems, but their growing theory has shown the importance of the un-
derlying communication graph of such networks. This paper tackles the
question of what dynamics can be realized up to isomorphism if we sup-
pose that the communication graph has bounded degree. We prove sev-
eral negative results about parameters like the number of fixed points
or the rank. We also show that we can realize with degree 2 a dynamics
made of a single fixed point and a cycle gathering all other configurations.
However, we leave open the embarrassingly simple question of whether a
dynamics consisting of a single cycle can be realized with bounded degree,
although we prove that it is impossible when the network is supposed
centralized, and that realizing precisely a Gray code map is impossible
with bounded degree. Finally we give bounds on the complexity of the
problem of recognizing such dynamics.

1 Introduction

TODO: complete/adapt with new results : Theorems 2, 3, 4, 5, 6
TODO: better review of existing litterature
TODO: better blabla
One possible definition for a boolean automata network is simply a self-map

F : {0, 1}n ! {0, 1}n. This definition forgets about the computational aspect of
the model, which consists, through a dual point of view, in a set of n automata
linked by some arcs, each holding a bit that they can update depending on that
of their incoming neighbors.

As a model of computation generalizing finite cellular automata, this com-
munication graph is quite relevant, and it is natural to constrain it, in partic-
ular the possible degrees: a small degree indeed represents simple local com-
putations, whereas a complete communication graph can yield any dynamics
F : {0, 1}n ! {0, 1}n. The minimal communication graph, often called inter-
action graph, plays an important role in automata network theory (see[6] for a
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est plugged to it.

Fig. 1. Three examples of dynamics on 24 configurations.

survey). It was already established that some dynamics require high degree, and
even a dense communication graph [1].

In this paper, we address the question of how restrictions on the communi-
cation graph, and in particular bounding its degrees, can impose restrictions on
the possible dynamics. For instance, in Figure 1, one can see three (families of)
graphs representing possible dynamics. Which are the ones that can be realized
by communication graphs with small degree?

In Section 3, we establish bounds on different parameters of the dynamics
depending on the degree of communication graphs. This in particular allows to
show that the family of dynamics from Figure 1(c) cannot be realized with a
bounded-degree communication graph. In Section 4, we give some constructions
using feedback shift registers, which allow in particular to realize dynamics of
the type from Figure 1(b) with communication graphs of degree 2. Finally, in
Section 6, we give upper and lower bounds for the computational complexity of
recognizing dynamics that can be realized with a bounded-degree communication
graph.

However, we leave open the question about the minimum degree necessary to
realize dynamics from Figure 1(a). Prior to this work, J. Aracena and A. Zapata
formulated the conjecture that such dynamics requires unbounded degree. This
also appears in [2] with various intermediate results.

2 Definitions and notations

Consider a finite alphabet Q with q = |Q| symbols. Without loss of generality,
Q = {0, . . . , q�1}. Consider also a set V = {1, . . . , n} of n nodes. A configuration

x = (xi)i2V 2 QV is a function V ! Q. For every U ✓ V , we denote xU : U ! Q
the restriction of x to U , i.e., (xU )i = xi for every i 2 U . Given a pattern u 2 QU ,
we define the cylinder [u] = {x 2 QV : xU = u}.

An automata network (AN) is a map F : QV ! QV . It can be represented
as a dynamics graph, like those from Figure 1, by linking each configuration x to
its image F (x). This graph is denoted by D(F ). Two ANs are called isomorphic
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if their dynamics graphs are isomorphic. A configuration x such that F (x) = x
is called a fixed point, and the number of fixed points of F is denoted fp(F ).
The rank of F is its number of images and is denoted by rk(F ). The set of ANs
with alphabet of size q and with n nodes is denoted F(n, q).

A communication graph for F is a graph over vertex set V such that for every
i 2 V , and every x, x0 2 QV which agree over the in-neighborhood N�(i) ✓ V of
i, we have F (x)i = F (x0)i. In other words, the value F (x)i is updated thanks to a KP: was

F (x)N�(i) =
F (x0)N�(i)

local function fi : QV ! Q which depends only on the values xN�(i). For U ✓ V ,
we may also denote fU (x) = F (x)U . The interaction graph of F , denoted G(F ),
is the minimal communication graph of F . Its degree is the maximum in-degree
of a vertex in G(F ). By extension, the degree of F is the degree of its interaction
graph. We denote by F(n, q, d) the set of ANs from F(n, q) with degree at most
d.

A first remark is that if u 2 QN�(i), then |[u]| = 2n�|N
�(i)| = 2n�d if the

in-degree of i in the communication graph is d.
Another remark which will be useful is the following lemma.

Lemma 1. Consider F 2 F(n, q, d) and U ✓ V with |U |  bn/dc. Then for any

pattern u 2 QU
,
��F�1([u])

�� is a multiple of qn�|U |d
.

Proof. Since the degree of G(F ) is upper-bounded by d, fU only depends of
Y =

S
i2U N�(i), so that |Y |  |U | d. In other words, for every x 2 QU such that

fU (x) = u, we have fU ([xY ]) = {u}. Hence,
��F�1([u])

�� =
��{v 2 QY | fU ([v]) = u}

�� qn�|Y |.
Since |Y |  |U | d, this is a multiple of qn�|U |d. ut

3 Non-local dynamics

Here we prove that some dynamics are intrinsically non-local in the sense that
they cannot be realized by bounded-degree networks, even up to isomorphism.

The identity AN on QV (F (x) = x for all x) has qn fixed points and degree 1.
Our first result shows that if G(F ) has bounded degree and F is not the identity,
then the number of fixed points of F cannot be close to qn.

Proposition 1. Let F 2 F(n, q, d) with fp(F ) < qn. Then fp(F )  qn � qn�d
.

Proof. Since F is not the identity map, there exist i 2 V and x 2 QV such that
fi(x) 6= xi. There are two cases. If i /2 N�(i), then every pattern u 2 QV \{i}

admits two extensions y, y0 2 [u], with yi 6= y0i, but fi(y) = fi(y0), so that
at most one of them is a fixed point. Hence, fp(F )  qn � qn�1  qn � qn�d.
On the other hand, if i 2 N�(i), then let u = xN�(i); for every configura-
tion y 2 [u], fi(y) = fi(x) 6= xi = yi and y is not a fixed point. Therefore,
fp(F )  qn � |[u]|  qn � qn�d. ut

Remark 1. The bound from the previous lemma is tight: indeed let F (x) = x if
x1,...,d 6= 0d and ⇡x1x2,...,n otherwise, where ⇡ is a derangement of Q. Then F is
an AN of degree d with qn � qn�d fixed points. Alternatively, consider the graph



4

G on {1, . . . , n} with arcs {(i, i) : i 2 {1, . . . , n}}[ {(i, 1) : i 2 {2, . . . , d}}. Then
G has degree d and following [?, Theorem 3], there is an AN with interaction
graph G and exactly qn � qn�d fixed points (namely, F given above).

Proposition 1 can be generalised to the powers of F . First, note that if F 2
F(q, n, d) then F k 2 F(q, n, dk) for every k � 1 (because from G(F ) of degree
 d we obtain a communication graph for F k by putting an edge for each path
of length k). By combining this remark and Proposition 1, we obtain that, if
fp(F k) < qn then fp(F k)  qn � qn�dk

.
As an application, we can easily find bijections without fixed points that

force large communication degrees. Suppose for instance that the dynamics of
F 2 F(2, n) consists of 2n�1 � 2 limit cycles of length 2 and one limit cycle of
length 4. Then F 2 has exactly 2n � 4 fixed points. Denoting by d the degree of
G(F ), we obtain that 2n � 4 = fp(F 2)  2n � 2n�d2

and thus d �
p
n� 2.

Remark 2. The number of nonisomorphic bijective ANs is p(qn) (where p is
the partition function), which is asymptotically given by the Hardy-Ramanujan
formula (see [?]):

p(qn) ⇠ 1

4qn
p
3
exp(⇡

p
2qn/3).

However, there are only (qq
d

)n AN with degree  d. So few bijective AN have a
realization with bounded degree.

Our second result shows that if G(F ) has bounded degree and F is not a
bijection, then the rank of F cannot be close to qn. In [2], it is shown that
certain dynamics with rank qn � 1 can only be realised by ANs of degree n.
In particular, we generalise this result by showing that all dynamics with rank
qn � 1 require degree n.

Theorem 1. Let F 2 F(n, q, d) with rk(F ) < qn. Then rk(F )  qn � 2 for

d = n� 1 and rk(F )  qn � n
d+1 for d < n� 1.

Theorem 1 states AN dynamics cannot be close to bijective without being bijec-
tive. In particular, the family of dynamics depicted in Figure 1(c) is impossible
to realize with bounded-degree ANs. However, Theorem 1 fails among bijective
ANs of fixed degree, such as the dynamics depicted in Figure 1(c), as we will see
in Section 4.

To prove the theorem, we need as simple witnessing lemma.
Lemma 2. If Y ⇢ QV

with |Y |  n, and x 2 QV \ Y , then there exists U ⇢ V
with |U |  |Y | and [xU ] \ Y = ;.

Proof. Let us prove the statement by induction on Y . If Y = ;, the trivial
cylinder with U = ; is suitable. Now, let Y and x be such that there exists
U ⇢ V with |U |  |Y | and [xU ]\Y = ;. Let us prove the statement for Y t {y},
where y 2 QV \ (Y t {x}). Since x 6= y, there exists i 2 V such that xi 6= yi.
Note that |U [ {i}|  |U | + 1  |Y | + 1. Hence [xU[{i}] ⇢ [xU ]; by induction
hypothesis, it does not intersect Y . Moreover, [xU[{i}] ⇢ [x{i}] 63 y. It results
that [xU[{i}] \ (Y t {y}) = ;. ut
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For F 2 F(n, q) and k 2 N, let us define Yk =
��F�1(y)

�� = k}. We also note
Y�` =

S
k�` Yk. Remark that QV = Y�0, and that

P
k2N k |Yk| = qn, so that

qn � rkF = |Y0| � |Y�2| � |Y0|maxYk 6=; k. Clearly, rk(F ) < qn () |Y0| >
0 () |Y�2| > 0.

Lemma 3. Let F 2 F(n, q). If |Y |0 � 1 and |Y�2|  bn/dc, then |Y0| �
qn�|Y�2|d.

Proof. Let x 2 Y0. Since x /2 Y�2, Lemma 2 gives some U ⇢ QV such that |U | 
|Y�2|  bn/dc and [xu]\Y�2 = ;. One can write

��F�1([xU ])
�� as

��F�1([xU ] \ Y0)
��+��F�1([xU ] \ Y0)

��. The first term is 0, by definition of Y0, and the second is
|[xU ] \ Y0|, by nonintersection with Y�2. Since x 2 [xU ] \ Y0,

��F�1([xU ])
�� =

|[xU ] \ Y0| < qn�|U |. On the other hand, Lemma 1 allows to write
��F�1([xU ])

�� as
↵qn�|U |d, for some ↵ 2 N. Since ↵qn�|U |d < qn�|U |, we get that ↵  q|U |(d�1)�1.
Putting things together, |[xU ] \ Y0| =

��F�1([xU ])
��  (q|U |(d�1) � 1)qn�|U |d =

|[xU ]|� qn�|U |d. We get that |Y0| � |[xU ]|� |[xU ] \ Y0| � qn�|U |d � qn�|Y�2|d.
ut

Proof (of Theorem 1). If rk(F ) < qn, then |Y0| � 1. If |Y�2| > bn/dc, then
|Y0| � |Y�2| > bn/dc and we are done. Otherwise, Lemma 3 gives that |Y0| �
qn�|Y�2|d � qn�|Y0|d. Hence, logq |Y0| � n � |Y0| d and (d + 1) |Y0| � logq |Y0| +
|Y0| d � n (because |Y0| � logq |Y0| when |Y0| � 1). ut

Here is another application of Lemma 1.

Proposition 2. Let F 2 F(n, q, d) such that F is not constant. Then the num-

ber of preimages of any configuration is upper-bounded by qn � qn�d
.

Proof. Let y 2 QV . Let us prove that |F�1(y)|  qn � qn�d. Since F is not
constant, there exists z 2 F (QV ) such that zi 6= yi for some i 2 V . Since
F�1([zi]) 6= ;, by Lemma 1, |F�1([zi])| � qn�d. Furthermore, since F�1([zi]) \
F�1(y) = ;, we conclude |F�1(y)|  qn � qn�d. ut

It is tight because we can have F (x) = 0n if x1,...,d 6= 0d and 10n�1 otherwise.

4 Realization results

4.1 Feedback shift registers

In this section, we are interested in realizing examples of AN with almost degree

1, i.e., whose all but one nodes have degree at most 1.
We use the following important tool. Let g : Qn ! Q, and Fg : Qn ! Qn be

the corresponding feedback shift register (FSR), that is, Fg(x) = Fg(x1, . . . , xn) =
(x2, . . . , xn, g(x)). G(Fg) is thus obtained from the path 1 ! 2 ! · · · ! n by
adding an arc from i to n whenever g depends on input i: it has almost degree
1.

The de Bruijn graph of order n over the alphabet Q has vertex set V = Qn

and arc set E = {(au, ub) : a, b 2 Q, u 2 Qn�1}.
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Proposition 3 ([?]). For any n and any 1  k  qn, the de Bruijn graph of

order n admits a cycle of length k.

Proposition 4. For any n and any 1  k  qn, there exists F : Qn ! Qn
with

almost degree 1 and whose maximum limit cycle has length k.

Proof. Consider some cycle C of length k in the de Bruijn graph of order n over
Q, given by Proposition 3, and the feedback shift register Fg, where

g(x) =

(
b if x = au and au ! ub 2 C;

0 otherwise.

Fg has almost degree 1, and has the cycle C in its dynamics. To conclude the
proof, it is sufficient to observe that the dynamics on the complement of C
consists in adding 0 at node n and shifting node i + 1 to node i for i < n.
Therefore, the only possible cycle created by this part of the dynamics is possibly
the fixed point 0 · · · 0. ut

4.2 Construction of near-Hamiltonian dynamics with in-degree 2

We say F : QV ! QV is near-Hamiltonian if it has one fixed point and a cycle
of length qn � 1. In this section, we let q be a prime power and Q = GF(q)
be the finite field of order q. We can then construct a near-Hamiltonian AN
F : GF(q)n ! GF(q)n with an interaction graph of maximum in-degree 2.KP: the second one

was GF(q)m

Theorem 2. For any prime power q and any n � 2, there exists a near-

Hamiltonian AN in F(n, q, 2).

Proof. Let GF(qn) be generated by the primitive polynomial P (⇠) =
Pn�1

i=0 pi⇠i

and let ↵ be a root of P (⇠), i.e. a primitive element of GF(qn). We then identify
GF(qn) and GF(q)n as follows:

x = (x0, x1, . . . , xn�1) 2 GF(q)n ⇠ � = x0 + x1↵+ · · ·+ xn�1↵
n�1 2 GF(qn).

Then

F (x) = ↵x

is near-Hamiltonian: 0 is a fixed point, and since GF(qn)⇤ is a cyclic group
generated by ↵, we have the cycle 1 7! ↵ 7! · · · 7! ↵qn�2 7! ↵qn�1 = 1.
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For any � 2 GF(qm), we have

↵� = ↵
m�1X

j=0

xj↵
j

=
m�2X

j=0

xj↵
j+1 + xm�1↵

m

=
m�1X

i=0

xi�1↵
i + xm�1

m�1X

i=0

(�pi)↵
i

=
m�1X

i=0

(xi�1 � pixm�1)↵
i.

The local functions are then given by

fi(x) = xi�1 � pixm�1,

(with x�1 = 0), hence F has degree 2. ut

Example 1. Let q = 2, n = 3, P (⇠) = ⇠3 + ⇠ + 1. Then ↵3 = ↵+ 1, and

GF(23) = {0, 1,↵,↵2,↵3 = ↵+ 1,↵4 = ↵2 + ↵,↵5 = ↵2 + ↵+ 1,↵6 = ↵2 + 1}

(and ↵7 = 1). We identify GF(2)3 and GF(23) as follows:

000 ⇠ 0

100 ⇠ 1

010 ⇠ ↵

001 ⇠ ↵2

110 ⇠ ↵+ 1 = ↵3

011 ⇠ ↵2 + ↵ = ↵4

111 ⇠ ↵2 + ↵+ 1 = ↵5

101 ⇠ ↵2 + 1 = ↵6.

Then F is given as follows:

0 7! 0, 1 7! ↵ 7! ↵2 7! ↵3 7! ↵4 7! ↵5 7! ↵6 7! 1,

or from a Boolean network point of view:

000 7! 000, 100 7! 010 7! 001 7! 110 7! 011 7! 111 7! 101 7! 100.

In terms of local functions, we have

f0(x) = x2

f1(x) = x0 + x2

f2(x) = x1.
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4.3 Rank qn � 2 with d = 2n/3

We have shown in Theorem 1 that rank qn�1 required degree n. For rank qn�2,
however, the bound only yields d � n/2� 1; we now prove that we can achieve
d = d 2

3ne.

Theorem 3. For all n � 3 and all odd q � 3, there exists an AN in F(n, q, d =
d 2
3ne) with rank qn � 2.

Proof. First, we consider the case n = 3 and d = 2. Let q � 3 be odd and
Q = Zq. The local functions of F are given as follows.

f1(x1, x3) =

(
x1 if x1 � 2

(x1 + x3) mod 2 if x1 2 {0, 1},

f2(x1, x2) =

8
>>><

>>>:

x2 if x1 � 2

(x1 + x2) mod q if x1 2 {0, 1}, x2 6= 0

1 if x1x2 = 00

0 if x1x2 = 10,

f3(x2, x3) =

(
x3 if x2 6= 0

(x3 + 1) mod q if x2 = 0.

For instance, for q = 3 we obtain:
x F (x)
000 011
001 112
002 010
010 010
011 111
012 012
020 020
021 121
022 022

x F (x)
100 101
101 002
102 100
110 120
111 021
112 122
120 100
121 001
122 102

x F (x)
200 201
201 202
202 200
210 210
211 211
212 212
220 220
221 221
222 222

We now search for collisions. One can easily check the following two collisions:

F (0, 0, q � 1) = F (0, 1, 0), (1)
F (1, 0, q � 1) = F (1, q � 1, 0). (2)

We now prove that those are the only collisions. Suppose a = a1a2a3 and b =
b1b2b3 are two distinct configurations, say q2a1+qa2+a3 < q2b1+qb2+ b3, such
that F (a) = F (b). We proceed by a case analysis.

1. b1 � 2.
Then f1(a) = f1(b) � 2, hence a1 = f1(a) = f1(b) = b1 � 2. Moreover,
f2(a) = a2 = f2(b) = b2. Thus a2 = b2 and a3 6= b3, which yields f3(a) 6=
f3(b), which is the desired contradiction.
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2. a1 = 0, b1 = 1.
Since f2(a) = f2(b), we obtain a2 2 {2, . . . , q � 1} and b2 = a2 � 1 2
{1, . . . , q � 2}. Since f3(a) = f3(b) and a2, b2 6= 0, we obtain a3 = b3. But
then f1(a) = a3 mod 2 6= (b3 + 1) mod 2 = f3(b), which is the desired
contradiction.

3. a1 = b1 = 0.
First, we have a2 6= b2, since otherwise a2 = b2 and a3 6= b3 thus f3(a) 6=
f3(b). Now, since f2(a) = f2(b), we obtain a2 = 0 and b2 = 1. Then (a3 + 1)
mod q = f3(a) = f3(b) = b3 and a3 mod 2 = f1(a) = f1(b) = b3 mod 2;
those two constraints are both satisfied only if a3 = q � 1 and b3 = 0.
Therefore a and b are the collision in (1).

4. a1 = b1 = 1.
Again, we have a2 6= b2, hence a2 = 0 and b2 = q�1. By the same reasoning
as above, we obtain a3 = q�1 and b3 = 0. Therefore a and b are the collision
in (2).

Having proved the case n = 3, we now move on to the case where n = 3`
for some ` � 1. Let q be odd and let k = q` be odd as well. Consider F 2
F(k, 3, 2) as described above. By identifying Zk with (Zq)`, we obtain a network
F̃ 2 F(q, n = 3`, d = 2`) of rank k3 � 2 = qn � 2.

We now deal with the other case, say n = 3` + r for some r 2 {1, 2}; write
[n] = L[R with L = {1, . . . , 3`} and R = {3`+1, . . . , n}. Let F̃ 2 F (q, 3`, 2`) of
rank q3` � 2 as above. Then let F̂ 2 F (q, n = 3`+ r, d = 2`+ r) choose between
the identity function on L or F̃ , depending on the control bits in R: KP: second line of

f̂L(x) it was f̃(xL)
instead of F̃ (xL)

f̂L(x) =

(
xL if xR 6= 0

F̃ (xL) if xR = 0

f̂R(x) = xR.

Then F̂ (x) = F̂ (y) for some x 6= y if and only if xR = yR = 0 and xL and yL
collide: F̃ (xL) = F̃ (yL). Thus there are only two collisions. ut

5 Further negative results for the Boolean case

In this section, we consider the case of q = 2 and d = 2. This is an interesting
case, as the only balanced functions fi : {0, 1}2 ! {0, 1} on two variables are
affine. Therefore, any permutation in F(n, q = 2, d = 2) must be affine. This
algebraic restriction leads to strong dynamical restrictions, as seen below.

5.1 Non-existence of Boolean Hamiltonian with degree 2

We call an AN F : QV ! QV Hamiltonian if its dynamics consists of a single
cycle of length qn. We prove that F(n, 2, 2) does not contain any Hamiltonian
AN (for n � 3). We use a result that can be applied to any affine AN.
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Theorem 4. If F is an affine AN over GF(q)n with n � 3, then it is not

Hamiltonian.

Proof. Computer search settles the case where n = 3 and q = 2. We now assume
(n, q) 6= (3, 2), which is equivalent to n  qn�2.

Let F be affine, i.e. F (x) = Ax+ v for some matrix A 2 GF(q)n⇥n and some
vector v 2 GF(q)n. For the sake of contradiction, suppose F is Hamiltonian.
Denoting k = qn, we have

F k(x) = Akx+ (Ak�1 +Ak�2 + · · ·+A+ I)v = x,

hence Ak = I.
Let B = A � I. Since A and �I commute, we have Bk = Ak + (�I)k [8,

Theorem 1.46] and hence Bk = Ak + (�1)kI = Ak � I = 0. Thus B is nilpotent
and by simple linear algebra, Bn = 0. Since n  qn�2, we have Bqn�2

= 0, and
hence Aqn�2

= I.
Thus F qn�2

(x) = x+ u for some vector u and

F qn�1

(x) = x+ qu = x,

which contradicts the fact that F is Hamiltonian. ut

Corollary 1. Let q = 2 and n � 3. If F is Hamiltonian, then F has degree at

least 3.

Proof. Suppose F is Hamiltonian of degree 2. All the local functions of F are
balanced, hence F is affine, which contradicts Theorem 4. ut

5.2 Upper bound on the rank

We can significantly refine the bound in Theorem 1 for the case q = 2, d = 2.

Proposition 5. Suppose F 2 F(n, 2, 2) with rk(F ) < 2n. Then rk(F )  2n �
2n�2

.

Proof. Suppose F is a non-bijective AN in F(n, 2, 2). First, if all its local func-
tions are balanced, then F is affine, hence rk(F )  2n�1 < 2n � 2n�2. Second,
if the local function fv(xu, xv) is not balanced, then there exists b 2 {0, 1} such
that |f�1

v (b)| � 3. Let A = {x : xuv 2 f�1
v (b)} and B = {x : xv = b}. Denoting

Ā = {0, 1}V \A, we obtain

|f({0, 1}V )|  |f(A)|+ |f(Ā)|  |B|+ |Ā|  2n�1 + 2n�2 = 2n � 2n�2.

ut

Remark 3. This bound is also tight. Indeed, let F 2 F(n, 2, 2) be defined by
f1(x1, x2) = x1^x2 and fi(x) = xi otherwise. Then F ({0, 1}V ) = {x 2 {0, 1}V :
x1x2 6= 10} so that rk(F ) = 2n � 2n�2.
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5.3 Hamiltonian dynamics on centralized interaction graphs

To be more concise in the following, we use the following notations: x+ y on
configurations to mean addition modulo 2 componentwise, ei the configuration
equal to 1 at node i and 0 elsewhere. We also denote [n] = {1, 2, . . . , n}.

Aracena and Zapata conjectured that for all n � 3, if F 2 F(n, 2) is Hamil-
tonian, then F has degree n. Equivalently, there is no Hamiltonian function in
F(n, 2, d) when d < n. Actually, we need to impose n � 3 since the function
F 2 F(2, 2) defined by F (x1, x2) = (x2, x1 + 1) is Hamiltonian and belongs to
F(2, 2, 1). In this section, we prove the conjecture under the assumption that
G(F ) is centralized, that is, G(F ) has a node whose deletion leaves the graph
acyclic. In the following, we abusively say that F is centralized when G(F )
is. Note that FSRs are centralized networks. So we will prove that there is no
centralized Hamiltonian function in F(n, 2, d) when d < n. We actually prove
something stronger.

Theorem 5. Let F 2 F(n, 2, d) be a centralized bijection. If n � 3 and d < n,

then F has an even number of limit cycles.

The main tool is a swap operation on F , taken from [4], defined (in our
setting) as follows. Given distinct x, y 2 {0, 1}n, let (x $ y) the permutation of
{0, 1}n that swaps x and y: (x $ y)(x) = y, (x $ y)(y) = x and (x $ y)(z) = z
for all z 6= x, y. Given F 2 F(n, 2), we say that F 0 = F � (x $ y) is a swap of F .
Let p(F ) 2 {0, 1} be the parity of the number of limit cycles in F , and suppose
that F is a bijection. Then F 0 is a bijection and the swap operation changes the
parity of the number of limit cycles: p(F 0) 6= p(F ). Indeed, let Cx and Cy be
the limit cycles of F containing x and y, respectively, and let ` and `0 be the
numbers of limit cycles in F and F 0, respectively. Clearly every limit cycle of F
distinct from Cx, Cy is also a limit cycle of F 0. Then, we have two cases. First, if
Cx = Cy, then the swap operation splits this limit cycle into two limit cycles so
that `0 = `+ 1; see Figure 2(a) for an illustration. Second, if Cx 6= Cy, then the
swap operation joins the two limit cycles into one limit cycle so that `0 = `� 1;
see Figure 2(b) for an illustration. Thus in any case p(F ) 6= p(F 0).

More generally, for k � 1, we say that F 0 is a k-swap of F if there exists
configurations x1, y1, . . . , xk, yk, with xi 6= yi for all 1  i  n, such that

F 0 = F � (x1 $ y1) � · · · � (xk $ yk).

By convention, the 0-swap of F is F itself. The k-swap operation preserves the
bijectivity, and since each individual swap changes the parity of the number of
limit cycles, we obtain the following lemma.

Lemma 4. Let F 2 F(n, 2) be a bijection, and let F 0
be a k-swap of F . Then

p(F ) = p(F 0) if and only if k is even.

In [4], Fredricksen gives a survey of Hamiltonian FSRs and, given a bijective
FSR F 2 F(n, 2), the swap operation is used to connect p(F ) and the weight
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Fig. 2. Illustration of the swap operation.

of F defined (in our setting) as the number w(F ) of configurations x 2 {0, 1}n
such that xn < F1(x). Let � 2 F (n, 2) be the circular shift, defined by

�(x) = (xn, x1, . . . , xn�1).

Fredricksen proves that � is a w(F )-swap of F . He also says, without proof,
that p(�) = 0. From these two properties and Lemma 4, we obtain that p(F )
is the parity of w(F ). An unmentioned and easy to prove consequence is that
if node 1 has in-degree at most n � 1 in G(F ), then w(F ) is even (this will be
generalized in Lemma 9) and thus F has an even number of limit cycles: this
proves Theorem 5 (and thus Aracena-Zapata’s conjecture) for FSRs.

In addition to this simple observation, our contribution is an extension of the
mentioned results to centralized networks, giving Theorem 5. We start by giving
a simple proof that � has an even number of limit cycles (when n � 3), which
already used the swap technic.

Lemma 5. For all n � 3, we have p(�) = 0.

Proof. Let �̄ 2 F(n, 2) defined by �̄(x) = �(x)+e1. Since �(x+y) = �(x)+�(y)
we have, �̄2(x) = �(�̄(x)) + e1 = �(�(x) + e1) + e1 = �2(x) + �(e1) + e1. More
generally, for all k � 1,

�̄k(x) = �k(x) + �k�1(e1) + · · ·+ �0(e1).

In particular, since �n is the identity, we have

�̄n(x) = x+ �n�1(e1) + · · ·+ �0(e1) = x+ en + en�1 + · · ·+ e1 = x+ 1,

so �̄n is the negation. Suppose that �̄ has exactly r limit cycles, with length
c1, . . . , cr. Since �̄n is the negation, �̄2n is the identity. Thus �̄ is a bijection and
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each ci divides 2n but not n. Let ↵ � 0 be the integer such n/2↵ is odd; since
n � 3 we have n > ↵ + 1. The fact that ci divides 2n but not n means that
ci = 2↵+1qi for some odd integer qi. Since �̄ is a bijection, we have

2↵+1
rX

i=1

qi =
rX

i=1

`i = 2n

and thus q1 + · · · + qr = 2n�↵�1 � 2. Since every qi is odd we deduce that r
is even, that is, p(�̄) = 0. Let X be the set of configurations x 2 {0, 1}n with
xn = 0, and let x1, . . . , xk be an enumeration of X, so k = 2n�1. Let F be the
k-swap of �̄ defined by

F = �̄ � (x1 $ x1 + en) � · · · � (xk $ xk + en).

For all x 2 X we have �(x + en) = �(x) + e1; hence F (x) = �̄(x + en) =
�(x + en) + e1 = �(x) and F (x + en) = �̄(x) = �(x) + e1 = �(x + en). Thus
F = � is a k-swap of �̄ and since k is even, by Lemma 4, p(�) = p(�̄) = 0. ut

We now extend the notion of weight to the centralized case. We need the
following property.

Lemma 6. If F 2 F(n, 2) is a centralized bijection, then G(F ) is Hamiltonian.

Proof. Let F 2 F(n, 2) be a bijection. Gadouleau proves in [5] that G(F ) con-
tains a spanning subgraph which is a disjoint union of cycles. In G(F ), this
spanning subgraph necessarily consists of a single cycle, and thus G(F ) is Hamil-
tonian. ut

Let F 2 F(n, 2) be a centralized bijection, and let C be a Hamiltonian cycle
in G(F ). Let i 2 [n] and let j its in-neighbor in C. We denote by wi(F,C) the
number of configurations x 2 {0, 1}n such that xj < Fi(x), and we set

w(F,C) =
nX

i=1

wi(F,C).

Note that if F is a FSR, there is a unique Hamiltonian cycle C (whose vertices
are 1, 2 . . . , n in order) and since wi(F,C) = 0 for all i 6= 1, we have w(F ) =
w1(F,C) = w(F,C) and we recover the previous definition.

Let �C 2 F(n, 2) defined by: for all i 2 [n] and x 2 {0, 1}n, �C
i (x) = xj where

j is the in-neighbor of i in C. Obviously, �C is isomorphic to � and has thus an
even number of limit cycles, and �C = � when the vertices of C are 1, 2, . . . , n in
order. That � is a w(F )-swap of a bijective FSR F is then generalized as follows.

Lemma 7. Let F 2 F(n, 2) is a centralized bijection and let C be a Hamiltonian

cycle of G(F ). Then �C
is a w(F,C)-swap of F .
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Proof. Suppose without loss that the vertices of C are 1, 2, . . . , n in order, so
that �C = �. For all i 2 [n] and x 2 {0, 1}n, we have

wi(F,C) = 0 ) Fi(x) = xi�1 (3)

where x0 means xn. Indeed, let X be the set of x 2 {0, 1}n with xi�1 = 0. Since
wi(F,C) = 0, if xi�1 = 0 then Fi(x) = 0. Hence X ✓ F�1

i (0). Since F is a
bijection we have |F�1

i (0)| = |F�1
i (1)| = 2n�1 and since |X0| = 2n�1 we deduce

that F�1
i (0) = X. Consequently, if xi�1 = 1 then Fi(x) = 1. This proves (3).

We now prove, by induction on w(F ), that � is a w(F,C)-swap of F . If
w(F,C) = 0 then F = � by (3). This prove the base case. For the induction,
suppose that w(F ) > 0. Since each node i in G(F ) with wi(F,C) = 0 is, by (3), of
in-degree one, and since G(F ) is centralized, there is a node i with wi(F,C) > 0
whose deletion leaves G(F ) acyclic. Suppose, without loss, that this node is node
1. Then 1 is the unique out-neighbor of n since otherwise there is a cycle which
does not contain node 1. We deduce that, for all x 2 {0, 1}n,

F (x+ en) = F (x) + e1. (4)

Indeed, since 1 is the unique out-neighbor of n, F (x+en) and F (x) differ at most
in component 1, and since F is a bijection this forces F (x + en) = F (x) + e1.
Let y 2 {0, 1}n such that yn < F1(y), which exists since w1(F,C) > 0, and let

F 0 = F � (y $ y + en).

Then F 0(y) = F (y + en) = F (y) + e1, and thus F 0
1(y) = 0. Furthermore, F 0(y +

en) = F (y) = F (y + en) + e1 and for all x 2 {0, 1}n with x 6= y, y + en we have
F 0(x) = F (x). Hence G(F 0) has an arc from n to 1, and since F 0

i = Fi for all
i 6= 1 we deduce that C is contained in G(F 0), and that w(F 0, C) = w(F,C)� 1.
By induction, � is a w(F 0, C)-swap of F 0 and since F 0 is a 1-swap F we deduce
that � is a w(F,C)-swap of F . ut

Putting things together we obtain the following.

Lemma 8. Let F 2 F(n, 2) be a centralized bijection and let C be a Hamiltonian

cycle of G(F ). Then p(F ) is the parity of w(F,C).

Proof. By Lemma 7, �C is a w(F,C)-swap of F . Since �C is isomorphic to �, by
Lemma 5 we have p(�C) = p(�) = 0. By Lemma 4 p(F ) = 0 if and only w(F,C)
is even. Thus p(F ) is the parity of w(F,C). ut

To conclude, we need the following easy lemma.

Lemma 9. Let F 2 F(n, 2, d) be a centralized bijection and let C be a Hamil-

tonian cycle of G(F ). If d < n then w(F,C) is even.

Proof. Suppose that d < n. Let i 2 [n] and j its in-neighbor in C. Let X be
the set of x 2 {0, 1}n with xj < Fi(x). Thus |X| = wi(F,C). Since d < n, there
exists k 2 [n] such that G(F ) has no arc from k to i. Let x 2 X. Since there is
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an arc from j to i we have k 6= j thus (x + ek)j = 0, and since there is no arc
from k to i we have Fi(x + ek) = Fi(x) = 1, thus x + ek 2 X. We deduce that
x 2 X if and only if x+ ek 2 X, which proves that |X| = wi(F,C) is even. Thus
each wi(F,C) is even, and so is w(F,C). ut

The proof of Theorem 5 is now straightforward.

Proof (of Theorem 5). Let F 2 F(n, 2, d) be a centralized bijection. By Lemma 6,
G(F ) has a Hamiltonian cycle C. If d < n then w(F,C) is even by Lemma 9 and
thus p(F ) = 0 by Lemma 8. ut

Theorem 5 suggests the following strengthening of Aracena-Zapata’s conjec-
ture: if F 2 F(n, 2, d) is bijective and d < n, then F has an even number of limit
cycles.

5.4 Gray codes

A Gray code is an enumeration of the configurations in {0, 1}n such that two
successive configurations differ in one component, and such that the first and last
ones also differ in one component. Gray codes are well known structures with
many applications [9]. In our setting, a Gray code is a Hamiltonian function
F 2 F(n, 2) such that, for all x 2 {0, 1}n, x and F (x) differ in one component.
In this section, we prove the following.

Theorem 6. If F(n, 2, d) contains a Gray code then d � log n.

This provides a proof, for gray codes, of the following weaker form of Aracena-
Zapata’s conjecture: for any fixed d, if n is large enough, then F(n, 2, d) has no
Hamiltonian function.

For the proof we need the following definitions. Let �(x, y) be the Hamming

distance between x and y, that is, the number of i 2 [n] such that xi 6= yi. Given
F 2 F(n, 2) we set

�(F ) =
X

x2{0,1}n

�(x, F (x)).

So if F is a Gray code then �(F ) = 2n. Given i 2 [n], let us say that Fi is a
trivial component of F if Fi is constant or Fi(x) = xi for all x 2 {0, 1}n. For
instance, if F is a bijection with an odd number of limit cycles, then F has no
trivial component.

Lemma 10. Let 0 < ✏  1 and F 2 F(n, 2) without trivial component. If

�(F )  n(1�✏)2n then G(F ) has at least ✏n log n arcs.

Proof. Suppose that �(F )  n(1�✏)2n. Let Ni be the in-neighbors of i in G(F )
and di = |Ni| its in-degree. Let Xi be the set of x 2 {0, 1}n with Fi(x) 6= xi.
Note that Xi is non-empty since otherwise Fi is a trivial component. Note also
that

nX

i=1

|Xi| = �(F )  n(1�✏)2n. (5)
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If i 62 Ni then, for all x 2 {0, 1}n, we have Fi(x) = Fi(x+ ei) thus exactly one of
x, x+ ei belongs to Xi, and thus |Xi| = 2n�1 � 2n�di since di � 1 (because Fi

is not constant). Suppose that i 2 Ni, and let x 2 Xi. For any y with yNi = xNi

we have yi = xi 6= Fi(x) = Fi(y) so y 2 Xi, and we deduce that |Xi| � 2n�di .
Thus in any case

di � n� log |Xi|.

Hence the number e of arcs in G(F ) is

e =
nX

i=1

di � n2 �
nX

i=1

log |Xi| = n2 � log
⇣ nY

i=1

|Xi|
⌘
.

Using the AM-GM inequality and then (5) we have

nY

i=1

|Xi| 
✓Pn

i=1 |Xi|
n

◆n


✓
n(1�✏)2n

n

◆n

= 2n
2�✏n logn.

We deduce that
e � n2 � log(2n

2�✏n logn) = ✏n log n.

ut

Proof (of Theorem 6). Let F 2 F(n, 2, d) be a Gray code. Since F has no trivial
component, and since �(F ) = 2n, by Lemma 10 (applied with ✏ = 1), G(F ) has
at least n log n arcs, and thus the average in-degree is log n  d. ut

6 Complexity of recognizing bounded-degree dynamics

Fix d and q, and consider the following decision problem called BDD (bounded-
degree dynamics): given F 2 F(n, q) represented by Boolean circuits, is there
some F 0 2 F(n, q, d) such that D(F ) and D(F 0) are isomorphic?

Theorem 7. The problem BDD is in PSPACE for every d, q, and co-NP-hard

for any q � 2 and d � 1.

Proof. For the upper bound, a naive algorithm solving BDD consists in guessing
F 0 2 F(n, q, d) (whose size is polynomial in F thanks to the bounded-degree
condition) and checking that D(F ) and D(F 0) are isomorphic. Given that planar
graph isomorphism is computable with a LOGSPACE Turing machine M [3] and
that D(F ) and D(F 0) are at most exponentially larger than the input (Boolean
circuit for F ), we can test isomorphism of D(F ) and D(F 0) in PSPACE by
simulating each reading step of the read-only input tape of M by an evaluation
of circuit in polynomial time (testing F (x) = y is the same as testing the presence
of the corresponding arc in D(F )). This gives an algorithm in NP with an oracle
in PSPACE, i.e., an algorithm in the complexity class PSPACE.

For the co-NP-hardness we reduce from UNSAT. Given a propositional for-
mula � on p variables v1, . . . , vp, we construct F 2 F(n, q) on |V | = p + d
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automata, with P = {v1, . . . , vp}, D = {t1, . . . , td} and V = P [ D. Let
Q = {0, . . . , q � 1}, and for x 2 QV , consider the valuation ✓(xP ) sending each
0 to false and other symbols to true. Set the local functions to be the identity
fi(x) = xi for every i 2 V \ {td}, and:

ftd(x) =

(
xtd + 1 mod q if xD = ad and �(✓(xP )),

xtd otherwise.

If � is unsatisfiable, then td depends only on D and F has degree d, hence it is
a positive instance of BDD. Otherwise, F is not the identity, and it has:
– (qd � 1)qp = qn � qn�d fixed points with xD 6= ad,
– at least one additional fixed point with xD = ad and ✓(xP ) satisfying �.

Proposition 1 then implies that it is a negative instance of BDD. ut

If we drop the isomorphism condition from the above problem, we get another
one called BDIG (bounded-degree interaction graph): given F 2 F(n, q) repre-
sented by Boolean circuits, is there some F 0 2 F(n, q, d) such that D(F ) = D(F 0)?
or, equivalently, is the degree of the interaction graph of F bounded by d?

Theorem 8. The problem BDIG is co-NP-complete.

Proof. The lower bound is given by the same reduction as in the proof of The-
orem 7. For the upper bound, a simple co-NP algorithm consists in guessing an
automaton i 2 V , d+1 configurations x1, . . . , xd+1, and d+1 distinct automata
i1, . . . , id+1, then checking for each j 2 {1, . . . , d+ 1} that fi(xj) 6= fi(xj + eij ).
For each j, it checks whether xj witnesses the effective dependency of i on au-
tomaton ij . It is possible to guess d+1 such witnesses if and only if the interaction
graph of F has degree at least d+ 1. ut
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