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Functional digraphs

Each vertex has exactly one out-neighbor
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Functional digraphs

Each vertex has exactly one out-neighbor
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e Periodic part = disjoint union of cycles = permutation

e Transient part
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Semiring on functional digraphs [pennunzio, Dorigatti, Formenti, Manzoni, Porreca 2018]

Given two functional digraphs A, B:
e the addition A + B is the disjoint union of A and B,
e the product A x B (AB) is the direct product of A and B.
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Semiring on fUnCtional digraphs [Dennunzio, Dorigatti, Formenti, Manzoni, Porreca 2018]

Given two functional digraphs A, B:
e the addition A + B is the disjoint union of A and B,
e the product A x B (AB) is the direct product of A and B.
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Given two functional digraphs A, B:
e the addition A + B is the disjoint union of A and B,
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Complexity issues regarding the product [Antonio E. Porreca]

1) Almost all functional digraphs X are irreducible, even for permutations

X=AB = A=CiorB=C
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Complexity issues regarding the product [Antonio E. Porreca]

3) Division is not unique: Given A, B we can have many X satisfying
AX = B, even when A, B are permutations.

(jjfg X (::22 = 23(::@2
~— =~ =~
A X B
02 X 201 = 202
~— =~ =~
A X B
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3) Division is not unique: Given A, B we can have many X satisfying
AX = B, even when A, B are permutations.

— Complexity of deciding if A | B, or enumerating solutions X?

Polynomial algorithm to decide if A | B when
e B is a dendron. [Naquin, Gadouleau 24]

e A, B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

Proposition (unpublished) For infinitely many permutations A, B, the
number of solutions X to AX = B is at least

o(1)
el ATBI"Y.
— Is this lower bound tight?
4) Are there prime X? — |s primality decidable?

X|AB = X|AorX|B
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Division problem for permutations

instance = couple (A, B) of ; its size is |A + B|
solution = permutation X such that AX =B

Sol(A, B) = set of solutions

sol(A4, B) = number of solutions

° complexity of deciding if a solution exists (A | B)?
° complexity of computing the nb of solutions?

° complexity of enumerating the solutions?
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Brut force enumeration

Proposition
The solutions X to AX = B can be enumerated in eO(V |BV|A|),
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Proposition
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Brut force enumeration

Proposition
The solutions X to AX = B can be enumerated in eo( |BV‘A|)_

A solution X is a permutation of size n = |B|/|A].

A permutation X of size n can be regarded as a partition of n:
205+ C54+3C5 =2,2,3,5,5,5 (partition of 22)

It is well known that:
o the number of partitions of n is €©(V") (Hardy-Ramanujan)

e partitions can be enumerated with polynomial delay.

For each partition of n:
e we take the corresponding permutation X,
e we check if AX = B in O(|4]|B|).

Annoying situation: no better algo, even to if A| B!
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Product in more details

pq
Cp X Oq = <m) Cp\/q
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Product in more details

Cp x Cy = <ppqu) Chv

The support Lx of a permutation X is the cycle lengths in X:

X =5C5 +7C5 4+ 3C5 Lx = {iil, 3, 53}'

Important property: If AX = B then

pelyjandgqeLx = pVqeLp.
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Product in more details

Cp x Cy = (p‘”qu) Chv

The support Lx of a permutation X is the cycle lengths in X:

X =5C5 +7C5 4+ 3C5 LX:{2,3,5}

If AX = B then
pELjyandgeLx = pVgqé€Lpg.

The cross-lcm between L4 and Lx isin Lpg:

LoV Lx CLg.
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Support of an instance

The support of an instance (4, B) is the largest set L 4 p satisfying

LoV LyspClLp
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Brut force approach on the support

Lemma The solutions X to AX = B can be enumerated in

0 (|A||B| ('j:))

A solution X is a partition of n = |B|/|A| with parts in L4 p.

These partitions can be enumerated in O(nlt4.21),
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Brut force approach on the support

Lemma The solutions X to AX = B can be enumerated in

0 (|A||B| ('j:))

A solution X is a partition of n = |B|/|A| with parts in L4 p.
These partitions can be enumerated in O(nlt4.21),
For each partition:

e we take the corresponding permutation X,

e we check if AX = B in O(|A||B|).
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Main result

Theorem We can compute the number of solutions X to AX = B in

B| div(lemL 4)
ollA BZ<|—) :
<| I8 (17

— Polynomial when A fixed.
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Main result

Theorem We can compute the number of solutions X to AX = B in

B| div(lemL 4)
ollA BQ<|) :
<| I8 (i

Two cases:
e (A,B) basic: Ly g CDiv(lem L) — brut force approach
e (A, B) non-basic — divide-and-conquer technique
e split the instance (A, B) into few basic instances (4;, B;),
e compute the nb of solutions s; of (4;, B;) as in the fist case,

e output the product of the s;.
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Instance split

A split of (4, B) is (4, By), (A, By) with

B=B;+ By, (By,By#0).
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Instance split
A split of (A, B) is (4, By), (A, By) with
B=DBi+By (Bi1,Bs#0).
If AX; = B; and AX5 = By, then
A(X) + X3) = AX, + AX; = By + B, = B

The sum of “local” solutions is a “global” solution:

Sol(A, By) + Sol(A, By) C Sol(A, B).

If La,g, N La p, =0 then we have a perfect split:

Sol(A, B1) + Sol(A, By) = Sol(A, B)
sol(4, By) - sol(A, Bs) = sol(4, B)
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Instance split

A=C, B =20+2C1y Lagp {1,2,5,10}
B, = 20, Lap, = {1,2}
By = 2Cy0 Lap, = {5,10}

13/19



Instance split

A=C, B =205+420 Lap = {1,2,510}
B, = 20, Lap, = {1,2}
By = 2Cy0 Lap, = {5,10}

SOI(JA7 Bl)
(:7;3 X ( 23(::71 ) = 2 (ijg
(::22 X ( (:72 ) =2 (:72
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Instance split

A = Cqy B
B,
By

SOI(JA7 Bl)

Sol(A, Bo)

= 202 -+ 2010 LA,B

202 LA,B1
2C10 La B,

CQX(ZC]) = 20
CQX(CQ) = 20,

Cg X (205) = 2010
Cy x (Clﬂ) = 2010

= {1,2,5,10}

= {17 2}
= {5,10}
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Instance split

A=Cy, B =20,+42C1y Lap = {1,2,5,10}
Bl = 202 LA,B1 = {172}
B2 = 2010 LA,32 = {5710}
SOI(A,Bl)
(:22 X (il(ﬁ?l ) = iZ(:72
CQ X ( C2 ) = 202
SOI(A, Bg)
Cs X (205) = 2Cho
CQ X (ClO) = 2010
Sol(A, B) = Sol(A, By) 4+ Sol(A, Bs)

Cy-( 5) 2C5 + 2C1
02'( ) = 205 + 2C
Cy-( C242C5) = 203 +2C
Cy-( ) = 2C5 4 2Cqg
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Instance split

Lemma If (A4, B) is non-basic and gcd L4 g = 1, then (A4, B) has a
perfect split, which can be computed in O(|A||B|).
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Lemma If (A4, B) is non-basic and gcd L4 g = 1, then (A4, B) has a
perfect split, which can be computed in O(|A||B|).

o If Ly p Z Div(lem L4) then there is a prime power p® in the
factorization of lem L such that p® flem Ly.
e Let B = B + By where
e Bj contains the the cycles of B of length kp®,
— By # ) since p™ appears in the factorization of lem L.
e 3, contains the other cycles of B.

— By # () since otherwise p® | gcd L4 p.

e p” divides each member of L4 5, and no member of Ly 5,.
— (A, B1), (A, Bs) is a perfect split.
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Summary

e (A, B) basic — brut force approach on the support
e (A, B) non-basic and gcd L4 5 = | — perfect split
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Instance reduction

Lemma Let (A, B) and £ =ged L4 p. Let (A, B’) with
e A’ obtained from A by replacing each Cy, by £CY%
e B’ obtained from B by replacing each Cy, by Cj.
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Instance reduction

Lemma Let (A, B) and £ =ged L4 p. Let (A, B’) with
e A’ obtained from A by replacing each Cy, by £CY%
e B’ obtained from B by replacing each Cy, by Cj.
Then
e sol(A, B) =sol(A’, B')
e lem Ly |lem La
o gcd Ly g = 1.
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Summary

e (A, B) basic — brut force approach on the support
e (A, B) non-basic — reduction — perfect split
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Main result

Theorem We can compute the number of solutions X to AX = B in

B| div(lemL 4)
oll4 B2<|) .
(| 188 (1
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Main result

Theorem We can compute the number of solutions X to AX = B in

B| div(lemL 4)
oll4 B2(|) .
<| 188 (1

Repeating reduction/split, we obtain in O(|A||B|?) a list of
instances (41, B1),..., (Ag, By) such that

- Al = 4]

lem Ly, |lem Ly

B4+ Byl < 1B

sol(4, B) = [1X_, sol(4;, By).

—

I
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Main result

Theorem We can compute the number of solutions X to AX = B in

B| div(lemL 4)
O | |A||BJ? (l) .
<||||A|

Repeating reduction/split, we obtain in O(|A||B|?) a list of
instances (41, B1),..., (Ag, By) such that

L |Ai| = 4]

2. lem Ly, |lem L

3. |Bi| + -+ |By| < |B]

4. sol(A, B) = [1F_, sol(A;, By).

The brut force approach on the support computes sol(4;, B;) in

B; div(lemL 4, ) B div(lemL 4)
O(&HMCAD —o 141zl (1)
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Conclusion and Perspectives

Given two functional digraphs A, B, complexity of deciding if A | B?

Polynomial when:

e B is a dendron. [Naquin, Gadouleau 2024]

e A B are permutations, and A or B homogeneous [Dennunzio et al 2024+]
e A, B are permutations, A fixed. [this talk]

e Ais a fixed permutation (by combining items 1 and 3). [unpublished]
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Conclusion and Perspectives

Given two functional digraphs A, B, complexity of deciding if A | B?

Polynomial when:

e B is a dendron. [Naquin, Gadouleau 2024]

e A B are permutations, and A or B homogeneous [Dennunzio et al 2024+]
e A, B are permutations, A fixed. [this talk]

e Ais a fixed permutation (by combining items 1 and 3). [unpublished]

Perspectives:

e Reduce the general case to permutations. [Marius Rolland]
e Polynomial algorithm for any fixed A.

e Beat the brut force algorithm for permutations A, B, running in

cOG/IBITTAT)
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