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Functional digraphs

Each vertex has exactly one out-neighbor
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• Periodic part = disjoint union of cycles = permutation

• Transient part
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Semiring on functional digraphs [Dennunzio, Dorigatti, Formenti, Manzoni, Porreca 2018]

Given two functional digraphs A,B:

• the addition A+B is the disjoint union of A and B,

• the product A×B (AB) is the direct product of A and B.
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Complexity issues regarding the product [Antonio E. Porreca]

1) Almost all functional digraphs X are irreducible, even for permutations

X = AB ⇒ A = C1 or B = C1

1) ↪→ Complexity of testing irreducibility?

2) Not unique factorisation into irreducibles, even for permutations.

2) ↪→ Complexity of finding one factorization?

Proposition (unpublished) For infinitely many permutations X, the
number of factorizations of X is at least

e|X|o(1) .

2) ↪→ Is this lower bound tight?
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Complexity issues regarding the product [Antonio E. Porreca]

3) Division is not unique: Given A,B we can have many X satisfying
3) AX = B, even when A,B are permutations.

C2︸︷︷︸
A

× C2︸︷︷︸
X

= 2C2︸︷︷︸
B

C2︸︷︷︸
A

× 2C1︸︷︷︸
X

= 2C2︸︷︷︸
B

3) ↪→ Complexity of deciding if A | B, or enumerating solutions X?

Polynomial algorithm to decide if A | B when

• B is a dendron. [Naquin, Gadouleau 24]

• A,B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

Proposition (unpublished) For infinitely many permutations A,B, the
number of solutions X to AX = B is at least

e|A+B|o(1) .

3) ↪→ Is this lower bound tight?

4) Are there prime X? → Is primality decidable?

X|AB ⇒ X|A or X | B
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Division problem for permutations

instance = couple (A,B) of permutations; its size is |A+B|
solution = permutation X such that AX = B

Sol(A,B) = set of solutions

sol(A,B) = number of solutions

• decision: complexity of deciding if a solution exists (A | B)?

• counting: complexity of computing the nb of solutions?

• enumeration: complexity of enumerating the solutions?

6/19



Brut force enumeration

Proposition
The solutions X to AX = B can be enumerated in e

O
(√

|B|/|A|
)

.

A solution X is a permutation of size n = |B|/|A|.
A permutation X of size n can be regarded as a partition of n:

2C2 + C3 + 3C5 ≡ 2, 2, 3, 5, 5, 5 (partition of 22)

It is well known that:

• the number of partitions of n is eO(
√
n) (Hardy-Ramanujan)

• partitions can be enumerated with polynomial delay.

For each partition of n:

• we take the corresponding permutation X,

• we check if AX = B in O(|A||B|).

Annoying situation: no better algo, even to decide if A | B!!!
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Product in more details

Cp × Cq =

(
pq

p ∨ q

)
Cp∨q

• • × • • = • • • •

C2 × C2 = 2C2

• • × •

•

•

= •

• •

•

••

C2 × C3 = C6

The support LX of a permutation X is the cycle lengths in X:

X = 5C2 + 7C3 + 3C5 LX = {2, 3, 5}

Important property: If AX = B then

p ∈ LA and q ∈ LX ⇒ p ∨ q ∈ LB .

The cross-lcm between LA and LX is in LB :

LA ∨ LX ⊆ LB .
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Support of an instance

The support of an instance (A,B) is the largest set LA,B satisfying

LA ∨ LA,B ⊆ LB

Example:
{2}︸︷︷︸
LA

∨{1, 2, 5, 10}︸ ︷︷ ︸
LA,B

= {2, 10}︸ ︷︷ ︸
LB

.

Important property: If AX = B then we saw that

LA ∨ LX ⊆ LB

and thus
LX ⊆ LA,B .

Lemma A solution X is a partition of n = |B|/|A| with parts in LA,B .
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Brut force approach on the support

Lemma The solutions X to AX = B can be enumerated in

O

(
|A||B|

(
|B|
|A|

)|LA,B |
)

A solution X is a partition of n = |B|/|A| with parts in LA,B .

These partitions can be enumerated in O(n|LA,B |).

For each partition:

• we take the corresponding permutation X,

• we check if AX = B in O(|A||B|).
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Main result

Theorem We can compute the number of solutions X to AX = B in

O

(
|A||B|2

(
|B|
|A|

)div(lcmLA)
)
.

↪→ Polynomial when A fixed.

Two cases:

• (A,B) basic: LA,B ⊆ Div(lcmLA) → brut force approach

• (A,B) non-basic → divide-and-conquer technique

• split the instance (A,B) into few basic instances (Ai, Bi),

• compute the nb of solutions si of (Ai, Bi) as in the fist case,

• output the product of the si.
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Instance split

A split of (A,B) is (A,B1), (A,B2) with

B = B1 +B2 (B1, B2 6= ∅).

If AX1 = B1 and AX2 = B2, then

A(X1 +X2) = AX1 +AX2 = B1 +B2 = B

The sum of “local” solutions is a “global” solution:

Sol(A,B1) + Sol(A,B2) ⊆ Sol(A,B).

Important property: If LA,B1 ∩ LA,B2 = ∅ then we have a perfect split:

Sol(A,B1) + Sol(A,B2) = Sol(A,B)

sol(A,B1) · sol(A,B2) = sol(A,B)
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Instance split

A = C2 B = 2C2 + 2C10 LA,B = {1, 2, 5, 10}
B1 = 2C2 LA,B1

= {1, 2}
B2 = 2C10 LA,B2 = {5, 10}

Sol(A,B1)
C2× (2C1) = 2C2

C2× ( C2 ) = 2C2

Sol(A,B2)
C2× (2C5) = 2C10

C2× (C10) = 2C10

Sol(A,B) = Sol(A,B1) + Sol(A,B2)

C2 · (2C1 +2C5) = 2C2 + 2C10

C2 · (2C1 +C10 ) = 2C2 + 2C10

C2 · ( C2 +2C5) = 2C2 + 2C10

C2 · ( C2 +C10 ) = 2C2 + 2C10
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Instance split

Lemma If (A,B) is non-basic and gcdLA,B = 1, then (A,B) has a
perfect split, which can be computed in O(|A||B|).

• If LA,B 6⊆ Div(lcmLA) then there is a prime power pα in the
factorization of lcmLB such that pα - lcmLA.

• Let B = B1 +B2 where

• B1 contains the the cycles of B of length kpα,

↪→ B1 6= ∅ since pα appears in the factorization of lcmLB .

• B2 contains the other cycles of B.

↪→ B2 6= ∅ since otherwise pα | gcdLA,B .

• pα divides each member of LA,B1
and no member of LA,B2

.

↪→ (A,B1), (A,B2) is a perfect split.
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Summary

• (A,B) basic → brut force approach on the support

• (A,B) non-basic and gcdLA,B = 1 → perfect split
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Instance reduction

Lemma Let (A,B) and ` = gcdLA,B . Let (A′, B′) with

• A′ obtained from A by replacing each Ck` by `Ck

• B′ obtained from B by replacing each Ck` by Ck.

Then

• sol(A,B) = sol(A′, B′)

• lcmLA′ | lcmLA

• gcdLA′,B′ = 1.
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Summary

• (A,B) basic → brut force approach on the support

• (A,B) non-basic → reduction → perfect split
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Main result

Theorem We can compute the number of solutions X to AX = B in

O

(
|A||B|2

(
|B|
|A|

)div(lcmLA)
)
.

Repeating reduction/split, we obtain in O(|A||B|2) a list of basic
instances (A1, B1), . . . , (Ak, Bk) such that

1. |Ai| = |A|
2. lcmLAi

| lcmLA

3. |B1|+ · · ·+ |Bk| ≤ |B|
4. sol(A,B) =

∏k
i=1 sol(Ai, Bi).

The brut force approach on the support computes sol(Ai, Bi) in

O

(
|Ai||Bi|

(
|Bi|
|Ai|

)div(lcmLAi
)
)

= O

(
|A||B|

(
|B|
|A|

)div(lcmLA)
)
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Conclusion and Perspectives

Given two functional digraphs A,B, complexity of deciding if A | B?

Polynomial when:

• B is a dendron. [Naquin, Gadouleau 2024]

• A,B are permutations, and A or B homogeneous [Dennunzio et al 2024+]

• A,B are permutations, A fixed. [this talk]

• A is a fixed permutation (by combining items 1 and 3). [unpublished]
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• A,B are permutations, A fixed. [this talk]

• A is a fixed permutation (by combining items 1 and 3). [unpublished]

Perspectives:

• Reduce the general case to permutations. [Marius Rolland]

• Polynomial algorithm for any fixed A.

• Beat the brut force algorithm for permutations A,B, running in

eO(
√

|B|/|A|).
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