Dividing permutations in the semiring of functional digraphs

Florian Bridoux, Adrien Richard, Christophe Crespelle I3S, CNRS, Université Côte d'Azur

Thi Ha Duong Phan

Institute of Mathematics, Vietnam Academy of Science and Technology

AUTOMATA'24 Durham, UK, July 22

Functional digraphs

Each vertex has exactly one out-neighbor

Functional digraphs

Each vertex has exactly one out-neighbor

- Periodic part $=$ disjoint union of cycles $=$ permutation
- Transient part

- the addition $A + B$ is the disjoint union of A and B,
- the product $A \times B$ (AB) is the direct product of A and B.

- the addition $A + B$ is the disjoint union of A and B,
- the product $A \times B$ (AB) is the direct product of A and B.

- the addition $A + B$ is the disjoint union of A and B,
- the product $A \times B$ (AB) is the direct product of A and B.

- the addition $A + B$ is the disjoint union of A and B,
- the product $A \times B$ (AB) is the direct product of A and B.

- the addition $A + B$ is the disjoint union of A and B,
- the product $A \times B$ (AB) is the direct product of A and B.

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X = AB \Rightarrow A = C_1 \text{ or } B = C_1
$$

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X=AB \quad \Rightarrow \quad A=C_1 \text{ or } B=C_1
$$

 \rightarrow Complexity of testing irreducibility?

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X = AB \Rightarrow A = C_1 \text{ or } B = C_1
$$

 \hookrightarrow Complexity of testing irreducibility?

2) Not unique factorisation into irreducibles, even for permutations.

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X = AB \Rightarrow A = C_1 \text{ or } B = C_1
$$

 \hookrightarrow Complexity of testing irreducibility?

2) Not unique factorisation into irreducibles, even for permutations.

$$
C_2 \times C_2 = 2C_2
$$

\n
$$
C_2 \times 2C_1 = C_2 \times (C_1 + C_1) = C_2 + C_2 = 2C_2.
$$

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X = AB \Rightarrow A = C_1 \text{ or } B = C_1
$$

 \rightarrow Complexity of testing irreducibility?

2) Not unique factorisation into irreducibles, even for permutations.

 \rightarrow Complexity of finding one factorization?

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X = AB \quad \Rightarrow \quad A = C_1 \text{ or } B = C_1
$$

 \hookrightarrow Complexity of testing irreducibility?

2) Not unique factorisation into irreducibles, even for permutations.

 \hookrightarrow Complexity of finding one factorization?

Proposition (unpublished) For infinitely many permutations X , the number of factorizations of X is at least

> $e^{|X|^{o(1)}}$.

1) Almost all functional digraphs X are irreducible, even for permutations

$$
X = AB \quad \Rightarrow \quad A = C_1 \text{ or } B = C_1
$$

 \hookrightarrow Complexity of testing irreducibility?

2) Not unique factorisation into irreducibles, even for permutations. \hookrightarrow Complexity of finding one factorization?

Proposition (unpublished) For infinitely many permutations X , the number of factorizations of X is at least

> $e^{|X|^{o(1)}}$.

 \hookrightarrow Is this lower bound tight?

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

 \hookrightarrow Complexity of deciding if $A \mid B$, or enumerating solutions X?

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

 \hookrightarrow Complexity of deciding if $A \mid B$, or enumerating solutions X?

Polynomial algorithm to decide if $A \mid B$ when

- \bullet B is a dendron. [Naquin, Gadouleau 24]
- A, B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

 \hookrightarrow Complexity of deciding if $A \mid B$, or enumerating solutions X?

Polynomial algorithm to decide if $A \mid B$ when

- \bullet B is a dendron. [Naquin, Gadouleau 24]
- A, B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

Proposition (unpublished) For infinitely many permutations A, B , the number of solutions X to $AX = B$ is at least

> $e^{|A+B|^{o(1)}}$.

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

 \hookrightarrow Complexity of deciding if $A \mid B$, or enumerating solutions X?

Polynomial algorithm to decide if $A \mid B$ when

- \bullet B is a dendron. [Naquin, Gadouleau 24]
- A, B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

Proposition (unpublished) For infinitely many permutations A, B , the number of solutions X to $AX = B$ is at least

> $e^{|A+B|^{o(1)}}$.

 \hookrightarrow Is this lower bound tight?

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

 \hookrightarrow Complexity of deciding if $A \mid B$, or enumerating solutions X?

Polynomial algorithm to decide if $A \mid B$ when

- \bullet B is a dendron. [Naquin, Gadouleau 24]
- A, B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

Proposition (unpublished) For infinitely many permutations A, B , the number of solutions X to $AX = B$ is at least

$$
e^{|A+B|^{o(1)}}.
$$

 \hookrightarrow Is this lower bound tight?

4) Are there prime X?

 $X|AB \Rightarrow X|A$ or $X | B$

3) Division is not unique: Given A, B we can have many X satisfying $AX = B$, even when A, B are permutations.

 \hookrightarrow Complexity of deciding if $A \mid B$, or enumerating solutions X?

Polynomial algorithm to decide if $A \mid B$ when

- \bullet B is a dendron. [Naquin, Gadouleau 24]
- A, B are permutations, and A or B homogeneous. [Dennunzio et al 2024]

Proposition (unpublished) For infinitely many permutations A, B , the number of solutions X to $AX = B$ is at least

$$
e^{|A+B|^{o(1)}}.
$$

 \hookrightarrow Is this lower bound tight?

4) Are there prime X ? \rightarrow Is primality decidable?

 $X|AB \Rightarrow X|A$ or $X | B$

Division problem for permutations

instance = couple (A, B) of permutations; its size is $|A + B|$ solution = permutation X such that $AX = B$ $Sol(A, B) = set of solutions$ $sol(A, B)$ = number of solutions

- decision: complexity of deciding if a solution exists $(A | B)$?
- counting: complexity of computing the nb of solutions?
- enumeration: complexity of enumerating the solutions?

Proposition

Proposition
The solutions X to $AX = B$ can be enumerated in $e^{O(\sqrt{|B|/|A|}})$.

Proposition

Proposition
The solutions X to $AX = B$ can be enumerated in $e^{O(\sqrt{|B|/|A|}})$.

A solution X is a permutation of size $n = |B|/|A|$. A permutation X of size n can be regarded as a partition of n .

 $2C_2 + C_3 + 3C_5 \equiv 2, 2, 3, 5, 5, 5$ (partition of 22)

Proposition

Proposition
The solutions X to $AX = B$ can be enumerated in $e^{O(\sqrt{|B|/|A|}})$

A solution X is a permutation of size $n = |B|/|A|$. A permutation X of size n can be regarded as a partition of n :

 $2C_2 + C_3 + 3C_5 \equiv 2, 2, 3, 5, 5, 5$ (partition of 22)

It is well known that:

- $\bullet\,$ the number of partitions of n is $e^{O(\sqrt{n})}$ (Hardy-Ramanujan)
- partitions can be enumerated with polynomial delay.

Proposition

Proposition
The solutions X to $AX = B$ can be enumerated in $e^{O(\sqrt{|B|/|A|}})$

A solution X is a permutation of size $n = |B|/|A|$. A permutation X of size n can be regarded as a partition of n :

 $2C_2 + C_3 + 3C_5 \equiv 2, 2, 3, 5, 5, 5$ (partition of 22)

It is well known that:

- $\bullet\,$ the number of partitions of n is $e^{O(\sqrt{n})}$ (Hardy-Ramanujan)
- partitions can be enumerated with polynomial delay.

For each partition of n :

- we take the corresponding permutation X ,
- we check if $AX = B$ in $O(|A||B|)$.

Proposition

Proposition
The solutions X to $AX = B$ can be enumerated in $e^{O(\sqrt{|B|/|A|}})$

A solution X is a permutation of size $n = |B|/|A|$. A permutation X of size n can be regarded as a partition of n :

 $2C_2 + C_3 + 3C_5 \equiv 2, 2, 3, 5, 5, 5$ (partition of 22)

It is well known that:

- $\bullet\,$ the number of partitions of n is $e^{O(\sqrt{n})}$ (Hardy-Ramanujan)
- partitions can be enumerated with polynomial delay.

For each partition of n :

- we take the corresponding permutation X ,
- we check if $AX = B$ in $O(|A||B|)$.

Annoying situation: no better algo, even to decide if $A \mid B!!!$

$$
C_p \times C_q = \left(\frac{pq}{p \vee q}\right) C_{p \vee q}
$$

$$
C_p \times C_q = \left(\frac{pq}{p \vee q}\right) C_{p \vee q}
$$

The support L_X of a permutation X is the cycle lengths in X:

$$
X = 5C_2 + 7C_3 + 3C_5 \qquad L_X = \{2, 3, 5\}
$$

$$
C_p \times C_q = \left(\frac{pq}{p \vee q}\right) C_{p \vee q}
$$

The support L_X of a permutation X is the cycle lengths in X:

$$
X = 5C_2 + 7C_3 + 3C_5 \qquad L_X = \{2, 3, 5\}
$$

Important property: If $AX = B$ then

$$
p\in L_A \text{ and } q\in L_X \quad \Rightarrow \quad p\vee q\in L_B.
$$

$$
C_p \times C_q = \left(\frac{pq}{p \vee q}\right) C_{p \vee q}
$$

The support L_X of a permutation X is the cycle lengths in X:

$$
X = 5C_2 + 7C_3 + 3C_5 \qquad L_X = \{2, 3, 5\}
$$

Important property: If $AX = B$ then

$$
p\in L_A \text{ and } q\in L_X \quad \Rightarrow \quad p\vee q\in L_B.
$$

The cross-lcm between L_A and L_X is in L_B :

$$
L_A \vee L_X \subseteq L_B.
$$

The support of an instance (A, B) is the largest set $L_{A,B}$ satisfying

 $L_A \vee L_{A,B} \subseteq L_B$

The support of an instance (A, B) is the largest set $L_{A,B}$ satisfying

 $L_A \vee L_{A,B} \subseteq L_B$

Example:

$$
\underbrace{\{2\}}_{L_A} \vee \underbrace{\{1, 2, 5, 10\}}_{L_{A,B}} = \underbrace{\{2, 10\}}_{L_B}.
$$

The support of an instance (A, B) is the largest set $L_{A,B}$ satisfying

$$
L_A \vee L_{A,B} \subseteq L_B
$$

Example:

$$
\underbrace{\{2\}}_{L_A} \vee \underbrace{\{1, 2, 5, 10\}}_{L_{A,B}} = \underbrace{\{2, 10\}}_{L_B}.
$$

Important property: If $AX = B$ then we saw that

$$
L_A \vee L_X \subseteq L_B
$$

and thus

 $L_X \subseteq L_{A,B}.$

The support of an instance (A, B) is the largest set $L_{A,B}$ satisfying

$$
L_A \vee L_{A,B} \subseteq L_B
$$

Example:

$$
\underbrace{\{2\}}_{L_A} \vee \underbrace{\{1, 2, 5, 10\}}_{L_{A,B}} = \underbrace{\{2, 10\}}_{L_B}.
$$

Important property: If $AX = B$ then we saw that

 $L_A \vee L_Y \subseteq L_B$

and thus

$$
L_X \subseteq L_{A,B}.
$$

Lemma A solution X is a partition of $n = |B|/|A|$ with parts in $L_{A,B}$.

Brut force approach on the support

Lemma The solutions X to $AX = B$ can be enumerated in

$$
O\left(|A||B|\left(\frac{|B|}{|A|}\right)^{|L_{A,B}|}\right)
$$

A solution X is a partition of $n = |B|/|A|$ with parts in $L_{A,B}$. These partitions can be enumerated in $O(n^{|L_{A,B}|}).$

Brut force approach on the support

Lemma The solutions X to $AX = B$ can be enumerated in

$$
O\left(|A||B|\left(\frac{|B|}{|A|}\right)^{|L_{A,B}|}\right)
$$

A solution X is a partition of $n = |B|/|A|$ with parts in $L_{A,B}$. These partitions can be enumerated in $O(n^{|L_{A,B}|}).$

For each partition:

- we take the corresponding permutation X ,
- we check if $AX = B$ in $O(|A||B|)$.

Theorem We can compute the number of solutions X to $AX = B$ in

$$
O\left(|A||B|^2\left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm}L_A)}\right).
$$

 \hookrightarrow Polynomial when A fixed.

Theorem We can compute the number of solutions X to $AX = B$ in

$$
O\left(|A||B|^2\left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm}L_A)}\right).
$$

 \hookrightarrow Polynomial when A fixed.

Two cases:

• (A, B) basic: $L_{A,B} \subseteq Div(\text{lem } L_A) \rightarrow \text{brut force approach}$

Theorem We can compute the number of solutions X to $AX = B$ in

$$
O\left(|A||B|^2\left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm}L_A)}\right).
$$

 \hookrightarrow Polynomial when A fixed.

Two cases:

- (A, B) basic: $L_{A, B} \subseteq Div(\mathrm{lcm}\, L_A) \rightarrow \mathrm{brut}$ force approach
- (A, B) non-basic \rightarrow divide-and-conquer technique
	- $\bullet\,$ split the instance (A,B) into few basic instances $(A_i,B_i),$
	- compute the nb of solutions s_i of (A_i, B_i) as in the fist case,
	- output the product of the s_i .

A split of (A, B) is $(A, B_1), (A, B_2)$ with

 $B = B_1 + B_2$ $(B_1, B_2 \neq \emptyset).$

A split of (A, B) is $(A, B_1), (A, B_2)$ with $B = B_1 + B_2$ $(B_1, B_2 \neq \emptyset).$

If $AX_1 = B_1$ and $AX_2 = B_2$, then

 $A(X_1+X_2)=AX_1+AX_2=B_1+B_2=B$

A split of
$$
(A, B)
$$
 is (A, B_1) , (A, B_2) with
\n
$$
B = B_1 + B_2 \qquad (B_1, B_2 \neq \emptyset).
$$
\nIf $AX_1 = B_1$ and $AX_2 = B_2$, then
\n
$$
A(X_1 + X_2) = AX_1 + AX_2 = B_1 + B_2 = B
$$

The sum of "local" solutions is a "global" solution:

 $Sol(A, B_1) + Sol(A, B_2) \subseteq Sol(A, B).$

A split of
$$
(A, B)
$$
 is (A, B_1) , (A, B_2) with
\n
$$
B = B_1 + B_2 \qquad (B_1, B_2 \neq \emptyset).
$$
\nIf $AX_1 = B_1$ and $AX_2 = B_2$, then
\n
$$
A(X_1 + X_2) = AX_1 + AX_2 = B_1 + B_2 = B_2
$$

The sum of "local" solutions is a "global" solution:

 $Sol(A, B₁) + Sol(A, B₂) \subseteq Sol(A, B).$

Important property: If $L_{A,B_1} \cap L_{A,B_2} = \emptyset$ then we have a perfect split:

$$
Sol(A, B1) + Sol(A, B2) = Sol(A, B)
$$

$$
sol(A, B1) \cdot sol(A, B2) = sol(A, B)
$$

$$
A = C_2 \qquad B = 2C_2 + 2C_{10} \qquad L_{A,B} = \{1, 2, 5, 10\}
$$

\n
$$
B_1 = 2C_2 \qquad L_{A,B_1} = \{1, 2\}
$$

\n
$$
B_2 = 2C_{10} \qquad L_{A,B_2} = \{5, 10\}
$$

$$
A = C_2 \t B = 2C_2 + 2C_{10} \t L_{A,B} = \{1, 2, 5, 10\}
$$

\n
$$
B_1 = 2C_2 \t L_{A,B_1} = \{1, 2\}
$$

\n
$$
B_2 = 2C_{10} \t L_{A,B_2} = \{5, 10\}
$$

 $Sol(A, B₁)$

$$
C_2 \times (2C_1) = 2C_2
$$

$$
C_2 \times (C_2) = 2C_2
$$

$$
A = C_2 \qquad B = 2C_2 + 2C_{10} \qquad L_{A,B} = \{1, 2, 5, 10\}
$$

\n
$$
B_1 = 2C_2 \qquad L_{A,B_1} = \{1, 2\}
$$

\n
$$
B_2 = 2C_{10} \qquad L_{A,B_2} = \{5, 10\}
$$

 $Sol(A, B₁)$

$$
C_2 \times (2C_1) = 2C_2
$$

$$
C_2 \times (C_2) = 2C_2
$$

 $Sol(A, B₂)$

$$
C_2 \times (2C_5) = 2C_{10}
$$

$$
C_2 \times (C_{10}) = 2C_{10}
$$

$$
A = C_2 \qquad B = 2C_2 + 2C_{10} \qquad L_{A,B} = \{1, 2, 5, 10\}
$$

\n
$$
B_1 = 2C_2 \qquad L_{A,B_1} = \{1, 2\}
$$

\n
$$
B_2 = 2C_{10} \qquad L_{A,B_2} = \{5, 10\}
$$

 $Sol(A, B₁)$

$$
C_2 \times (2C_1) = 2C_2
$$

$$
C_2 \times (C_2) = 2C_2
$$

 $Sol(A, B₂)$

$$
C_2 \times (2C_5) = 2C_{10}
$$

$$
C_2 \times (C_{10}) = 2C_{10}
$$

 $Sol(A, B) = Sol(A, B_1) + Sol(A, B_2)$

$$
C_2 \cdot (2C_1 + 2C_5) = 2C_2 + 2C_{10}
$$

\n
$$
C_2 \cdot (2C_1 + C_{10}) = 2C_2 + 2C_{10}
$$

\n
$$
C_2 \cdot (C_2 + 2C_5) = 2C_2 + 2C_{10}
$$

\n
$$
C_2 \cdot (C_2 + C_{10}) = 2C_2 + 2C_{10}
$$

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

• If $L_{A,B}\not\subseteq\mathrm{Div}(\mathrm{lcm}\, L_A)$ then there is a prime power p^α in the factorization of $\mathrm{lcm}\, L_B$ such that $p^{\alpha}\nmid \mathrm{lcm}\, L_A.$

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

- If $L_{A,B}\not\subseteq\mathrm{Div}(\mathrm{lcm}\, L_A)$ then there is a prime power p^α in the factorization of $\mathrm{lcm}\, L_B$ such that $p^{\alpha}\nmid \mathrm{lcm}\, L_A.$
- Let $B = B_1 + B_2$ where
	- B_1 contains the the cycles of B of length kp^{α} ,
	- B_2 contains the other cycles of B.

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

- If $L_{A,B}\not\subseteq\mathrm{Div}(\mathrm{lcm}\, L_A)$ then there is a prime power p^α in the factorization of $\mathrm{lcm}\, L_B$ such that $p^{\alpha}\nmid \mathrm{lcm}\, L_A.$
- Let $B = B_1 + B_2$ where
	- B_1 contains the the cycles of B of length kp^{α} , $\hookrightarrow B_1\neq\emptyset$ since p^α appears in the factorization of $\mathrm{lcm}\, L_B.$
	- B_2 contains the other cycles of B.

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

- If $L_{A,B}\not\subseteq\mathrm{Div}(\mathrm{lcm}\, L_A)$ then there is a prime power p^α in the factorization of $\mathrm{lcm}\, L_B$ such that $p^{\alpha}\nmid \mathrm{lcm}\, L_A.$
- Let $B = B_1 + B_2$ where
	- B_1 contains the the cycles of B of length kp^{α} , $\hookrightarrow B_1\neq\emptyset$ since p^α appears in the factorization of $\mathrm{lcm}\, L_B.$
	- B_2 contains the other cycles of B.

 $\hookrightarrow B_2 \neq \emptyset$ since otherwise $p^{\alpha} \mid \gcd L_{A,B}$.

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

- If $L_{A,B}\not\subseteq\mathrm{Div}(\mathrm{lcm}\, L_A)$ then there is a prime power p^α in the factorization of $\mathrm{lcm}\, L_B$ such that $p^{\alpha}\nmid \mathrm{lcm}\, L_A.$
- Let $B = B_1 + B_2$ where
	- B_1 contains the the cycles of B of length kp^{α} , $\hookrightarrow B_1\neq\emptyset$ since p^α appears in the factorization of $\mathrm{lcm}\, L_B.$
	- B_2 contains the other cycles of B.

 $\hookrightarrow B_2 \neq \emptyset$ since otherwise $p^{\alpha} \mid \gcd L_{A,B}$.

• p^{α} divides each member of L_{A,B_1} and no member of L_{A,B_2} .

Lemma If (A, B) is non-basic and $\gcd L_{A,B} = 1$, then (A, B) has a perfect split, which can be computed in $O(|A||B|)$.

- If $L_{A,B}\not\subseteq\mathrm{Div}(\mathrm{lcm}\, L_A)$ then there is a prime power p^α in the factorization of $\mathrm{lcm}\, L_B$ such that $p^{\alpha}\nmid \mathrm{lcm}\, L_A.$
- Let $B = B_1 + B_2$ where
	- B_1 contains the the cycles of B of length kp^{α} ,

 $\hookrightarrow B_1\neq\emptyset$ since p^α appears in the factorization of $\mathrm{lcm}\, L_B.$

• B_2 contains the other cycles of B.

 $\hookrightarrow B_2 \neq \emptyset$ since otherwise $p^{\alpha} \mid \gcd L_{A,B}$.

• p^{α} divides each member of L_{A,B_1} and no member of L_{A,B_2} . $\hookrightarrow (A, B_1), (A, B_2)$ is a perfect split.

Summary

- (A, B) basic \rightarrow brut force approach on the support
- (A, B) non-basic and $\gcd L_{A,B} = 1 \rightarrow$ perfect split

Instance reduction

Lemma Let (A, B) and $\ell = \gcd L_{A, B}$. Let (A', B') with

- A' obtained from A by replacing each $C_{k\ell}$ by ℓC_k
- B' obtained from B by replacing each $C_{k\ell}$ by C_k .

Instance reduction

Lemma Let (A, B) and $\ell = \gcd L_{A, B}$. Let (A', B') with

- A' obtained from A by replacing each $C_{k\ell}$ by ℓC_k
- B' obtained from B by replacing each $C_{k\ell}$ by C_k .

Then

- $\text{sol}(A, B) = \text{sol}(A', B')$
- lcm $L_{A'}$ | lcm L_A
- $\gcd L_{A',B'} = 1.$

Summary

- (A, B) basic \rightarrow brut force approach on the support
- (A, B) non-basic \rightarrow reduction \rightarrow perfect split

Theorem We can compute the number of solutions X to $AX = B$ in

$$
O\left(|A||B|^2\left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm}L_A)}\right)
$$

Theorem We can compute the number of solutions X to $AX = B$ in

$$
O\left(|A||B|^2 \left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm} L_A)}\right)
$$

.

Repeating reduction/split, we obtain in $O(|A||B|^2)$ a list of basic instances $(A_1, B_1), \ldots, (A_k, B_k)$ such that

1. $|A_i| = |A|$ 2. $\operatorname{lcm} L_{A_i} | \operatorname{lcm} L_A$ 3. $|B_1| + \cdots + |B_k| < |B|$ 4. sol $(A, B) = \prod_{i=1}^{k} sol(A_i, B_i)$.

Theorem We can compute the number of solutions X to $AX = B$ in

$$
O\left(|A||B|^2 \left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm} L_A)}\right)
$$

.

Repeating reduction/split, we obtain in $O(|A||B|^2)$ a list of basic instances $(A_1, B_1), \ldots, (A_k, B_k)$ such that

1. $|A_i| = |A|$ 2. $\operatorname{lcm} L_{A_i} | \operatorname{lcm} L_A$ 3. $|B_1| + \cdots + |B_k| < |B|$ 4. sol $(A, B) = \prod_{i=1}^{k} sol(A_i, B_i)$.

The brut force approach on the support computes $\operatorname{sol}(A_i,B_i)$ in

$$
O\left(|A_i||B_i|\left(\frac{|B_i|}{|A_i|}\right)^{\text{div}(\text{lcm}L_{A_i})}\right) = O\left(|A||B|\left(\frac{|B|}{|A|}\right)^{\text{div}(\text{lcm}L_A)}\right)
$$

Conclusion and Perspectives

Given two functional digraphs A, B , complexity of deciding if $A \mid B$?

Polynomial when:

- \bullet B is a dendron. [Naquin, Gadouleau 2024]
- A, B are permutations, and A or B homogeneous [Dennunzio et al 2024+]
- \bullet A, B are permutations, A fixed. [this talk]
- \bullet A is a fixed permutation (by combining items 1 and 3). [unpublished]

Conclusion and Perspectives

Given two functional digraphs A, B , complexity of deciding if $A \mid B$?

Polynomial when:

- \bullet B is a dendron. [Naquin, Gadouleau 2024]
- A, B are permutations, and A or B homogeneous [Dennunzio et al 2024+]
- A, B are permutations, A fixed. [this talk]
- \bullet A is a fixed permutation (by combining items 1 and 3). [unpublished]

Perspectives:

- Reduce the general case to permutations. [Marius Rolland]
- Polynomial algorithm for any fixed A .
- Beat the brut force algorithm for permutations A, B , running in

 $e^{O(\sqrt{|B|/|A|})}$.