Simple dynamics on graphs

Maximilien Gadouleau

Durham University, UK
Adrien Richard
CNRS \& Université de Nice-Sophia Antipolis

Paris, Novembre 23, 2015

Let $A=\{0,1, \ldots, q\}$ be a finite alphabet.

A finite dynamical system with n components is a function

$$
\begin{aligned}
f: A^{n} & \rightarrow A^{n} \\
x=\left(x_{1}, \ldots, x_{n}\right) & \mapsto f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
\end{aligned}
$$

The dynamics is described by the successive iterations of f

$$
x \rightarrow f(x) \rightarrow f^{2}(x) \rightarrow f^{3}(x) \rightarrow \cdots
$$

The interaction graph of f, denoted $\operatorname{IG}(\boldsymbol{f})$, is the signed directed graph with vertices $\{1, \ldots, n\}$ such that:

- there is a positive arc $j \rightarrow i$ if there exists $x \in A^{n}$ such that

$$
f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)<f_{i}\left(x_{1}, \ldots, x_{j}+1, \ldots, x_{n}\right)
$$

- there is a negative arc $j \rightarrow i$ if there exists $x \in A^{n}$ such that

$$
f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)>f_{i}\left(x_{1}, \ldots, x_{j}+1, \ldots, x_{n}\right)
$$

The interaction graph of f, denoted $\operatorname{IG}(\boldsymbol{f})$, is the signed directed graph with vertices $\{1, \ldots, n\}$ such that:

- there is a positive arc $j \rightarrow i$ if there exists $x \in A^{n}$ such that

$$
f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)<f_{i}\left(x_{1}, \ldots, x_{j}+1, \ldots, x_{n}\right)
$$

- there is a negative arc $j \rightarrow i$ if there exists $x \in A^{n}$ such that

$$
f_{i}\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)>f_{i}\left(x_{1}, \ldots, x_{j}+1, \ldots, x_{n}\right)
$$

We can have both $j \rightarrow i$ and $j \rightarrow i$. The interaction from j to i is then non-monotone. We indicate this with the colored arc

$$
j \rightarrow i
$$

Example: with $f:\{0,1\}^{3} \rightarrow\{0,1\}^{3}$ defined by

$$
\begin{aligned}
& f_{1}(x)=x_{2} \text { OR } x_{3} \\
& f_{2}(x)=\operatorname{NOT}\left(x_{1}\right) \text { AND } x_{3} \\
& f_{3}(x)=\operatorname{NOT}\left(x_{3}\right) \text { AND }\left(x_{1} \text { XOR } x_{2}\right)
\end{aligned}
$$

Interaction graph

What can be said on f according to its interaction graph ?

What can be said on f according to its interaction graph ?

Theorem [Robert 80]
If the interaction graph of f is acyclic, then f^{n} is constant.

$$
\begin{aligned}
& f^{k}=\mathrm{cst} \Longleftrightarrow f \text { has a unique fixed point and, starting from } \\
& \text { any initial configuration, the system reaches } \\
& \text { this fixed point in at most } k \text { iterations. }
\end{aligned}
$$

$\Longleftrightarrow \quad f$ converges in k steps.

Robert's result shows that:
"simple" interaction graph (i.e. acyclic)
\Downarrow
"simple" dynamics (i.e convergence)

Does the converse holds ?
"complex" interaction graph

$\Downarrow ?$
"complex" dynamics

Notation: Given a signed digraph G with n vertices and $q \geq 2$

$$
F(G, q):=\left\{f: A^{n} \rightarrow A^{n} \text { such that }|A|=q \text { and } \operatorname{IG}(f)=G\right\} .
$$

Theorem [Gadouleau R 05]
Let G be any signed digraph with n vertices.

- If $q \geq 4$ there exists $f \in F(G, q)$ such that $f^{2}=\mathrm{cst}$.
- If $q=3$ there exists $f \in F(G, q)$ such that $f^{\left\lfloor\log _{2} n\right\rfloor+2}=\mathrm{cst}$.

In the case $q=3$ the convergence time $\left\lfloor\log _{2} n\right\rfloor+2$ is optimal.
Example: If G is as follows

- there exists $f \in F(G, 3)$ such that $f^{\left\lfloor\log _{2} n\right\rfloor+2}=$ cst.
- there is no $f \in F(G, 3)$ such that $f^{\left\lfloor\log _{2} n\right\rfloor+1}=\mathrm{cst}$.

The boolean case $q=2$ is much more difficult.
There is not necessarily a boolean convergent system $f \in F(G, 2)$.
Ex: G is strongly connected and all its cycles have the same sign.
It is very hard to understand which are the signed digraphs G such that $F(G, 2)$ contains a convergent system.

This lead us to consider the unsigned case.

Example: Let G be the digraph obtained from a cycle of length ℓ and a cycle of length $r \geq \ell$ by identifying one vertex.

- $F(G, 2)$ has a convergent system if and only if ℓ divides r.
- If $f \in F(G, 2)$ converges then $f^{2 r-1}=\mathrm{cst}$ and $f^{2 r-2} \neq$ cst.

Theorem [Gadouleau R 05]

1) If G has a strongly connected spanning subgraph $H \neq G$ such that the gcd of the lengths of the cycles of H is one, then there exists $f \in F(G, 2)$ such that

$$
f^{n^{2}-2 n+2}=\mathrm{cst}
$$

2) If G is strongly connected and has a loop (an arc $i \rightarrow i$) then there exists $f \in F(G, 2)$ such that

$$
f^{2 n-1}=\mathrm{cst}
$$

3) If G is symmetric ($i \rightarrow j$ iff $j \rightarrow i$), has no loop and $n \geq 3$, then there exists $f \in F(G, 2)$ such that

$$
f^{3}=\mathrm{cst} .
$$

Conclusion

In the non-boolean case, every signed digraph admits a very simple dynamics: a system that converges toward a unique fixed point in logarithmic time.

In the boolean case, we have only provide some sufficient conditions for the existence of a convergent system.

Conclusion

In the non-boolean case, every signed digraph admits a very simple dynamics: a system that converges toward a unique fixed point in logarithmic time.

In the boolean case, we have only provide some sufficient conditions for the existence of a convergent system.

Question 1: Given a digraph G, what is the complexity of deciding if G admits a boolean system that converges ?

Question 2: Is there exists a constant c such that, for every digraph G with n vertices, if G admits a boolean system that converges, then G admits a boolean system that converges in at most cn steps ?

