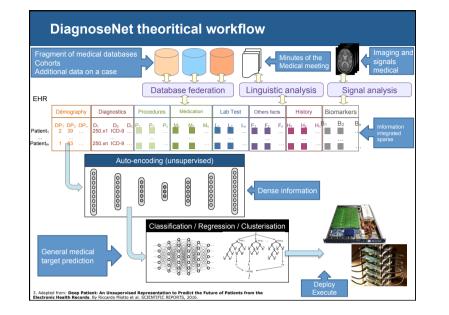
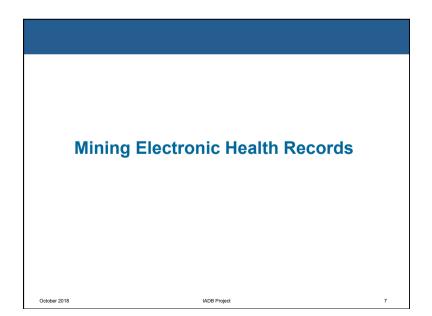
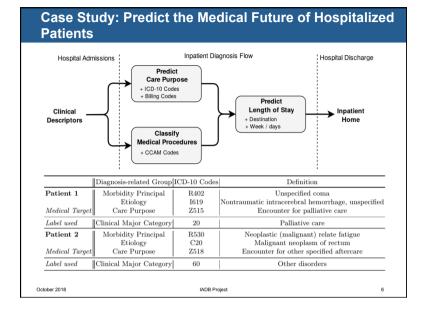
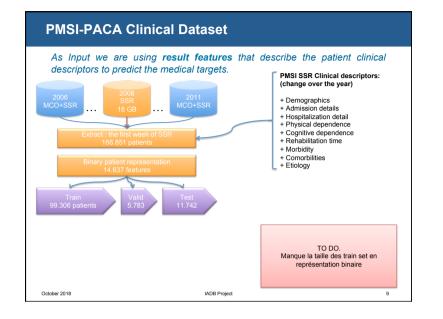

1

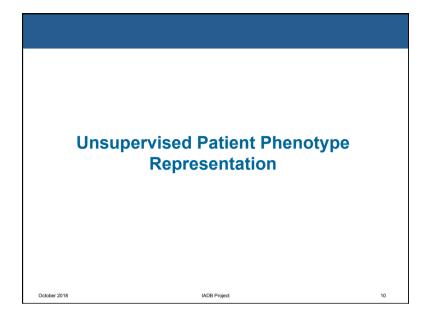



- A common challenge in healthcare today is that physicians have access to massive amounts of data on patients, but have short time to analyze all of them.
- One limitation is that hospitals without robust computational systems for processing, storing and drawing conclusions requires to outsource the clinical tasks and that is a risk for privacy clinical data.


Developing a Green Intelligence Medical System to derivate a patient representation for predict general medical targets and improving the computational resources usage.

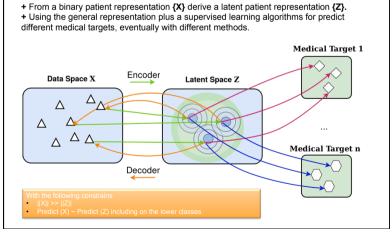
3

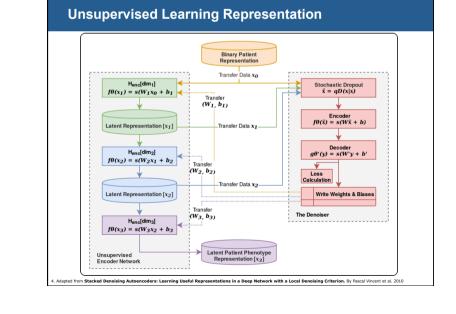

Data-mining: Feature Extraction From Electronic Health Records

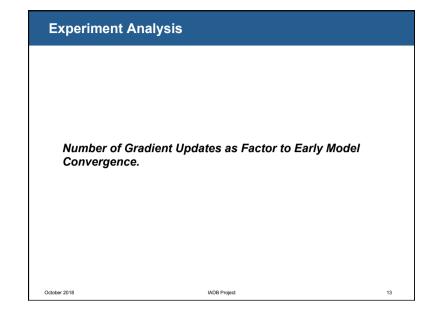

Serialized each patient record in a clinical document architecture schema

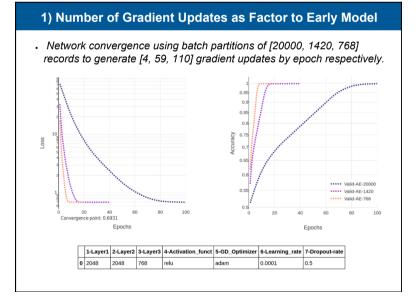
Patients	x1_dem	ogra	phics	x4_phy	sical	_dependance	x7_rela	ated_	diagnoses
Fatients	gender		age	feeding		displacement	Das1		Das 3
Patient 1	2		61	4		2	Z431		Z501
Patient 2	2		65	4		2	J459		F322
Patient m	1		95	1		2	C259		F322

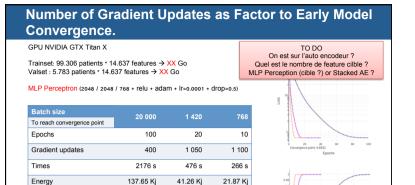
Build a binary patient phenotype representation from their features selected


Patients		demographic:		x4 :phy	sical	_dependance	x7 :rel	ated_	diagnoses
Fatients	[1 :male]	[2 :female]	60-74	[4 :Assistance]		[2 :normal_transfer]	Z431		F322
Patient 1	0	1	1	1		1	1		0
Patient 2	0	1	1	1		1	0		1
Patient m	1	0	0	0		1	0		1
atient m	1	0	0	0		1	0		1

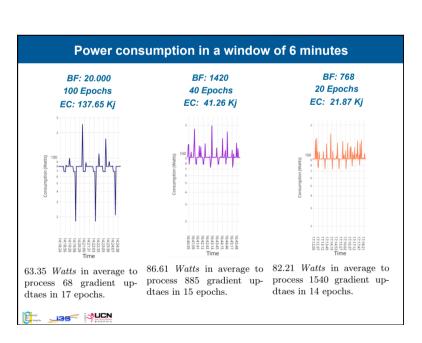


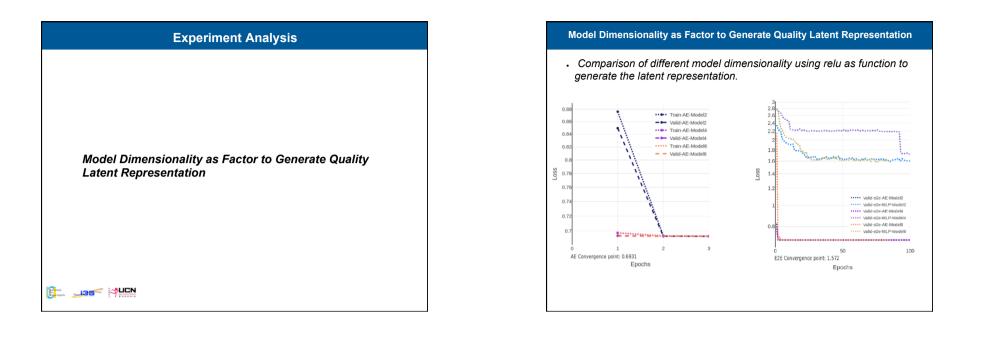


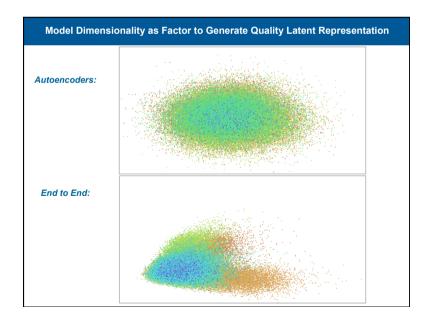

Methodology: Unsupervised Patient Phenotype Representation


The task:

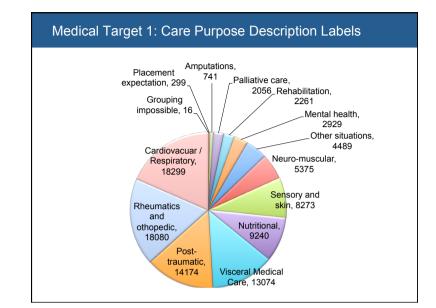
86.61

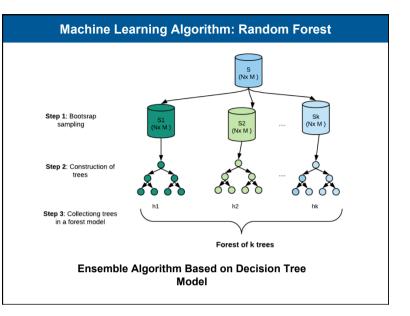

82.21

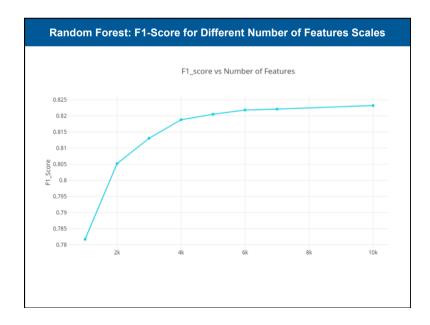

հմիկի

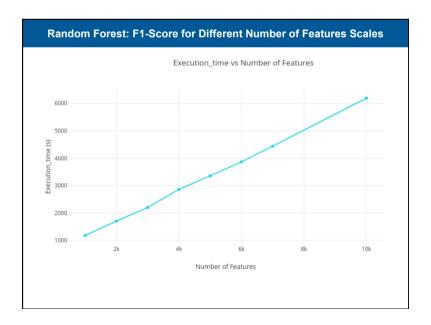

63.25 W

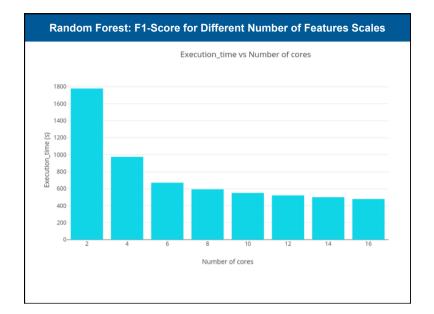
։իկալելական

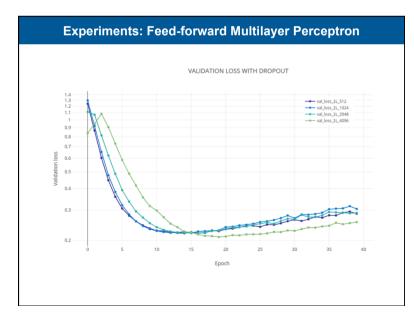

Power

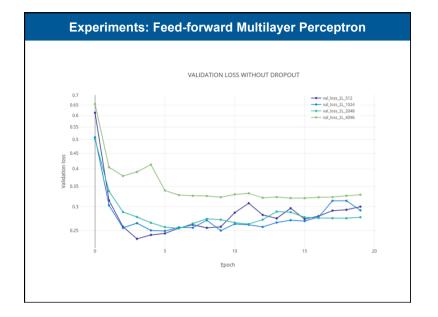








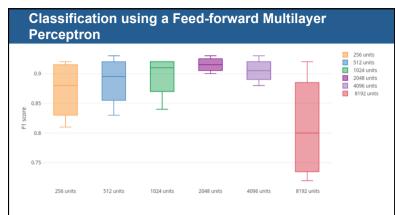




Classification using a Feed-forward Multilayer Perceptron

For similar F1 score, generally

- The energy consumption is increasing
- when the number of units increase


Architecture	F1 Score	Exec. time sec	Energy Kj
256 units on 2 layers	0.92	686	59.97
2048 units on 8 layers	0.91	654	66.49
8192 units on 2 layers	0.92	1,108	238.06

For the same number of neurones in the hidden layers (here 9,192 neurones)

• When the number of layer is increasing

- The F1 score decrease
- And the energy consumtion decrease also

Nb units: 9,192	F1 Score	Exec. time	Energy	
Distributed on	FISCOre	sec	Kj	
2 layers	0.92	1,108	238.06	
4 layers	0.85	934	161.74	
8 layers	0.72	793	124.04	
16 layers	0.75	693	90.74	

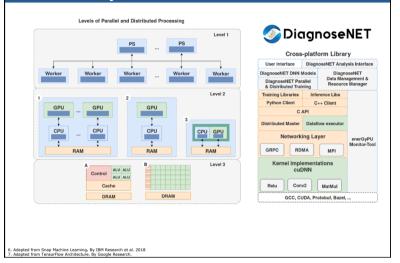
The lower value of F1, is generally for bigger number of layer.

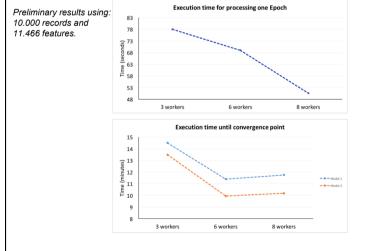
The strategy for saving energy

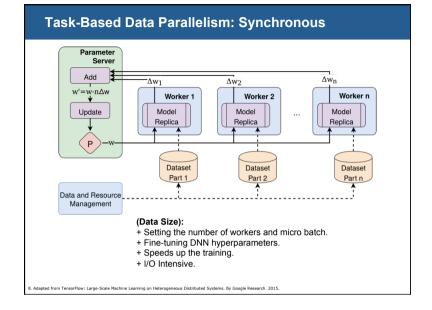
- Choose the good number of neurones in hidden layer by using many layer (8 or 16)
- When the number of neurones are fixed choose the number of layer to have a good compromise between F1 score and energy consumed

Distributed Processing for Training DNN on Jetson TX2 Mini-Clusters

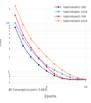
Classes	True positives	False positives	False negatives	precision	recall	f1 score	occurence de la classe
0	424	54	122	0.89	0.78	0.83	546
1	2089	136	59	0.94	0.97	0.96	2148
2	1382	98	79	0.93	0.95	0.94	1461
3	598	72	34	0.89	0.95	0.92	632
4	211	73	153	0.74	0.58	0.65	364
5	861	136	141	0.86	0.86	0.86	1002
6	2086	96	105	0.96	0.95	0.95	2191
7	1574	115	74	0.93	0.96	0.94	1648
8	76	9	10	0.89	0.88	0.89	86
9	101	74	122	0.58	0.45	0.51	223
10	36	1	3	0.97	0.92	0.95	39
11	275	31	20	0.90	0.93	0.92	295
12	1088	44	16	0.96	0.99	0.97	1104
13	0	2	3	0.0	0.0	0.0	3

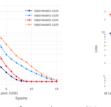

Computational Resources




Mini-Cluster with 14 Jetson TX2 (Distributed Memory) Array Node with 24 Jetson TX2 (Hybrid Memory)

Develop DiagnoseNET for Training Large-Scale DNN on Distributed Systems





3) Number of Workers and Task Granularity as Factor to Early Model Convergence

• Early convergence comparison between different groups of workers and task granularity for distributed training with 10.000 records and 11.466 features.

Valid-Model2-106



 1.30 mins in avergange for processing one epoch on 1 PS 3 workers.
 1 min in avergange for proepoch on 1 PS 6 workers.

 1 min in avergange for processing one
 50.6 secs in avergange for properties on properties on the second s

Preliminary Results to Scale the Feed-forward Multilayer Perceptron

- Jetson: 8 Gb of disk, direct transert from disk to GPU memory
- > Network architecture: 8-Layers Model with 256 neurons per layer
- ➤ Task: classification from binary representation → 6 Go (116,851 patients / 14,637 features)

DiagnoseNET: Green Intelligence System

Process

- 1. Select optimal computational resources and make good mapping of task granularity for training one model in less time and less power consumption give a mini-batch size factor.
- 2. Minimize the number of different trained models to converge the optimal generalization-accuracy model.
- 3. Management the queue of models to training and determine optimal combination of computational resources to use in each model training.

Conclusion

Latent representation:

- Reduces the number of sparse features without loos of precision
- in future classification
- Reduces training time (41 %)

Use the unsupervised embedding stage to create a new lower dimensional patient representation, reduces the number of sparse features to classify at stage 3. In which, the execution time for training is minimized by 41% with regard to BPPR and the precision to classify the first medical target is almost equal.

Data partitioned on different Jetsons + small batch =

- → frequent gradient number update
- \rightarrow early model convergence
- →minimizes energy consumption

Next work:

- Distibute others kind of DL architecture (CNN or recurrent neurones) or random forest architecture
- · Compare several architecture :
 - multi-GPU (share memory)
 - vs Cluster (distributed memory)
 - vs Array (hybrid memory)
- · For several task
 - MT-1: Predict the 'Major Clinical Category of patients' (coarse grain CMC / fin grain GHJ) from inpatients features recorded at the admission time
 - MT-2: Predict the 'Clinical Procedures' from inpatients features recorded at the admission time and the Primary Morbidity
 - MT-3: Predict the 'Inpatient Destination' (home, transfer, death) and length of hospitalization stay from inpatients features recorded at the admission time and Primary Morbidity and Clinical Procedures

```
October 2018
```

IADB Project

40

Scalability Analysis of Mini-Cluster Jetson TX2 for Training DNN Applied to Healthcare

> Michel RIVEILL John A. GARCÍA. H., Frédéric PRECIOSO, Pascal STACCINI

Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis - I3S Département d'Informations Médicales DIM – CHU Nice

Future Work

Evaluate the DNN approaches using the different platform such as, cluster Jetson TX2, a multiGPU Node with 8 GPUs and the array Node with 24 Jetson TX2.

1. Port the framework DiagnoseNET to array Node.

2. Integrate the communication measures with the energy monitor on distributed and Hybrid platform.

3. Perform the different experiments to evaluate the case studies on the different platform