Bounded Model Checking

Michel Rueher

Bounded Model Checking framework

- **Models** → finite automates, labelled transition systems
- Properties:
 - Safety → something bad should not happen
 - Liveness → something good should happen
- **Bound** $k \rightarrow$ look only for counter examples made of k states

Bounded Model Checking framework (cont.)

```
% set of states: S, initial states: I, transition relation: T
% bad states B reachable from I via T?
bounded model_checker<sub>forward</sub>(I,T,B,k)
    SC = \emptyset; SN = I; n=1
    while S_c \neq S_N and n < k do
        If B \cap S<sub>N</sub> \neq \emptyset then return "found error trace to bad states";
    else S_C = S_N; S_N = S_C \cup T(SC); n = n + 1;
    done
return "no bad state reachable";
```

Bounded Model Checking: slicing (example)

```
void foo(int a, int b)
int c, d, e, f;
if (a >= 0) {
   if (a<10) {f =b-1;} else {f =b-a;}</pre>
   c = a;
   if (b>=0) {d =a;e=b;} else{d =a;e=-b;} }
else \{c = b; d = 1; e = -a;
   if(a>b) {f =b+e+a;} else{f =e*a-b;} }
c = c + d + e;
assert(c \ge d + e); // property p1
assert(\mathbf{f} \ge -\mathbf{b} * e); // property p2
```

BMC: slicing (cont.)


```
void foo(int a, int b)
int c, d, e, f;
if(a >= 0) {
      if(a < 10) {f = b - 1;}
     else \{f = b - a; \}
      c = a:
      if(b >= 0) {d = a; e = b;}
      else \{d = a; e = -b;\}
 else {
      c = b; d = 1; e = -a;
      if(a > b) {f = b + e + a;}
      else \{f = e * a - b;\}
 c = c + d + e;
  assert(c >= d + e); // property p_1
 assert(f >= -b * e); // property p_2
```

BMC: slicing /example (cont.)


```
void foo(int a, int b)
int c, d, e, f;
if(a >= 0) {
     if(a < 10) \{ f = b - 1 \}
     else {f = b − a; }
     c = a;
     if(b >= 0) {d = a; e = b;}
     else \{d = a; e = -b;\}
 else {
      c = b; d = 1; e = -a;
     if(a > b) \{ f = b + e + a \}
     else \{f = e * a - b\}
 c = c + d + e;
 assert(c >= d + e); // property p_1
 assert(f >= -b * e); // property p_2
```

SAT/SMT- based BMC: Bounded Model Checking

- 1. The **program is unwound** *k* times
- 2. The unwound (and simplified) program and the property are translated into

A big propositional formula φ

[arithmetic formula → bit vector encoding]

% φ is satisfiable iff there exists a counterexample of depth less than k

3. A SAT or SMTsolver is used for checking the satisfiability of φ

CP-based Bounded Program Verification

- 1. The **program is unwound** *k* times,
- 2. An annotated and simplified CFG is built
- 3. Program is translated in constraints on the fly
 - → A **list of solvers** tried in sequence (LP, MILP, Boolean, CP)

Constraint Generation

```
Input: i<sub>0</sub>
    j_0 = 2
    if( i_0 \le 16 )
          j_1 = j_0 * i_0
     j_2 = j_1
    else
      j_2 = j_0
    if( j_2 > 8)
      j_3 = 0
   else
      j_3 = j_2
   r = j_3
Output: r
```

```
Variable: in
j_0 = 2
i_0 \le 16 \Rightarrow (j_1 = j_0 * i_0 \land j_2 = j_1)
i_0 > 16 \Rightarrow j_2 = j_0
\neg (j_1 = j_0 * i_0 \land j_2 = j_1) => (i_0 > 16 \land j_2 = j_0)
\neg (j_2 = j_0) = (i_0 \le 16 \land j_1 = j_0 * i_0 \land j_2 = j_1)
j_2 > 8 \Rightarrow j_3 = 0
j_2 \le 8 => j_3 = j_2
\neg (j_3 = 0) = (j_2 \le 8 \land j_3 = j_2)
\neg (j_3 = j_2) => (j_2 > 8 \land j_3 = 0)
r = i_3
Variable: r
```

Constraint Generation (cont.)

Program:

```
x=x+1; y=x*y; x=x+y;
```

Constraints

```
\{x1 = x0 + 1, y1 = x1 * y0, x2 = x1 * y1\}
```

Constraint Generation (cont.)

Program:

```
a[i] = x;
```

Constraints

```
{a1[i0] = x0,

i0 \neq 0 \rightarrow a1[0] = a0[0],

i0 \neq 1 \rightarrow a1[1] = a0[1],...,

i0 \neq 7 \rightarrow a1[7] = a0[7]}
```

guard → body is a guarded constraint

a[i] = x is the **element constraint:** i and x are constrained variables whose values may be unknown

Constraint Generation (cont.)

Program:

Constraints

$$C \wedge (a<10) \rightarrow \{f0 = b0-1\}$$

$$C \wedge \neg (a<10) \rightarrow \{f0 = b0-a0\}$$

Error Localization problem: informal presentation

• Model checking, testing

Generation of counterexamples

- Input data & wrong output (testing)
- Input data & violated post condition / property
 - → Execution trace

• Problems:

- Execution trace: often lengthy and difficult to understand
- Location of the portions of code that contain errors
 - → Very expensive

Constraint-Based Error Localization: Formalization

- **P**: program
- **Post_P**: post condition of P
- **Pre_P**: precondition of P
- **CST_P**: constraints of faulty path of P (Input data provided by Model checker)
 - \rightarrow **Pred_P** \land **CST_P** $\land \neg$ **Post_P** holds
 - \rightarrow **Pred_P** \land **CST_P** \land **Post_P** fails

Problem: to finding "smallest" subsets of **Pred_P** \land **CST_P** \land **Post_P** that are inconsistent

Example

Program:

```
% Input : int input1, int input2
int x = 1, y = 1, z = 1;
if (input1 > 0) \{x += 5; y += 6; z += 1; \}
if (input2 > 0) \{x += 6; y += 5; z += 4; \}
% Post-condition: x < 10 \land y < 10
Counterexample: input1=1, input2=1
CSP P:
input1=1, input2=1, x_{10} = 1, y_{10} = 1,
z_{10} = 1, x_{11} = 6, y_{11} = 7, z_{11} = 2, x_{12} = x_{11}, y_{12} = y_{11}, z_{12} = z_{11},
x_{13} = x_{12} + 6, y_{13} = y_{12} + 5, z_{13} = z_{12} + 4, x_{14} = x_{13}, y_{14} = y_{13}, z_{14} = z_{13},
x_{14} < 10, y_{14} < 10
```

Example (cont.)

 CS_P can be divided into 3 sub-CSPs (computations for x, y, and z are independent)

sub CSP_x is:
$$x_{10} = 1$$
, $x_{11} = 6$, $x_{12} = x_{11}$, $x_{13} = x_{12} + 6$, $x_{14} = x_{13}$, $x_{14} < 10$

sub CSP_y is:
$$y_{10} = 1$$
, $y_{11} = 7$, $y_{12} = y_{11}$, $y_{13} = y_{12} + 5$, $y_{14} = y_{13}$, $y_{14} < 10$

Smallest inconsistent CSP for x: $x_{10} = 1$, $x_{11} = 6$, $x_{12} = x_{11}$, $x_{13} = x_{12} + 6$, $x_{14} = x_{13}$, $x_{14} < 10$

Smallest inconsistent CSP, for y: $y_{10} = 1$, $y_{11} = 7$, $y_{12} = y_{11}$, $y_{13} = y_{12} + 5$, $y_{14} = y_{13}$, $y_{14} < 10$

A first solution: MAX-SAT

MAX-SAT based appoach

(implemented in Bug-Assist with CBMC)

- 1.Encoding a trace of a program as a Boolean formula F that is satisfiable iff the trace is satisfiable
- 2. Building a failing formula F' by asserting that the post condition must hold
- 3. Computing with MAX-SAT the maximum number of clauses that can be satisfied in F'
 - → complement as a potential cause of the errors

Generalisation of MAX-SAT

- **Capabilities** of CP, LP, MIP: No Boolean abstraction (or bit vector encoding) required to capture the semantics of the constraints
 - → Generalisation of MAX-SAT approach
 - IIS
 - Minimum Conflict Sets in CSP

Definitions

MUS Minimal Unsatisfiable Subset
 aka Irreducible Inconsistent Subsystem (IIS)
 M ⊆ C is a MUS ⇔ M is UNSAT and ∀c ∈ M: M \ {c} is SAT

 MSS Maximal Satisfiable Subset a generalization of MaxSAT / MaxFS considering maximality instead of maximum cardinality

 $M \subseteq C$ is a MSS $\Leftrightarrow M$ is SAT and $\forall c \in C \setminus M : M \cup \{c\}$ is UNSAT

 MCS Minimal Correction Set the complement of some MSS: removal yields a satisfiable MSS (it "corrects" the infeasibility)

 $M \subseteq C$ is a MCS $\Leftrightarrow C \setminus M$ is SAT and $\forall c \in M : (C \setminus M) \cup \{c\}$ is UNSAT

MUS (Minimal Unsatisfiable Subset) - **MCS**(Minimal Correction Set) **duality**

The set of MCSes ⇔ all the irreducible hitting sets of the MUSes
The set of MUSes ⇔ The set of all irreducible hitting sets of the MCSes

H is a hitting set of Ω if $H \subseteq D$ and $\forall S \in \Omega, H \cap S \neq \emptyset$

H is a minimal hitting sets if no element can be removed without losing the the property of being a hitting set

Given an unsatisfiable constraint system C:

- 1.A subset M of C is an MCS of C iff M is an irreducible hitting set of MUSes(C)
- 2.A subset U of C is an MUS of C iff U is an irreducible hitting set of MCSes(C)

Intuition: A MCS must at least remove one constraint from each MUS

A MUS can be made satisfiable by removing any one constraint from it

→ every MCS contains at least one constraint from each MUS.

IIS/MUS – Problems and challenges

Problems:

- The number of IISs in an infeasible LP can be *exponential* in the worst case
- ➤ Quickest algorithms for finding IISs often return IISs having many rows

IIS – Algorithms

The Deletion Filter:

INPUT: an infeasible set of constraints

FOR each constraint in the set:

- 1. Temporarily drop the constraint from the set
- 2. Test the feasibility of the reduced set:

IF feasible THEN return dropped constraint to the set

ELSE (infeasible) drop the constraint permanently

OUTPUT: constraints constituting a single IIS

Remarks

- The only constraints retained in the set are those whose removal renders the set feasible
- Efficiency improvement: dynamic reordering

The Elastic Filter – Linear constraints (1)

LP solvers

- Adding nonnegative artificial variables (s_i) to all inequality constraints
- LP Phase 1 minimizes $W = \sum s_i$, via standard LP: If $W^* \neq 0$, no solution exists

Elastic Filter: *nonnegative artificial variables* (s_i) are added to all equality and ≥ constraints

 \rightarrow so a solution always exits in the space of the original plus artificial variables, but not in the space of just the original variables If W* \neq 0 then at least one of s_i cannot be forced to zero: the corresponding constraint remains violated in the original variable space

Rules for adding elastic variables are as follows:

non-elastic constraint	elastic version
$\Sigma_j a_{ij} x_j \ge b_i$	$\sum_{j} a_{ij} x_{j} + s_{i} \ge b_{i}$
$\sum_{j} a_{ij} x_{j} \leq b_{i}$	$\sum_{j} a_{ij} x_{j} - s_{j} \leq b_{i}$
$\Sigma_j a_{ij} x_j = b_i$	$\Sigma_j a_{ij} x_j + s_i - s_i = b_i$

IIS – Algorithms (cont.)

Use the concept of "elastic programming": **non-negative "elastic variables"** are added to the constraints to provide elasticity

Non-elastic constraint

$$\Sigma_i a_{ij} x_i \ge b_t$$

$$\Sigma_i a_{ij} x_i \leq b_t$$

$$\Sigma_i a_{ij} x_i = b_t$$

Elastic constraint

$$\Sigma_{j} a_{ij} x_{i} + e_{t} \ge b_{t}$$

$$\Sigma_{j} a_{ij} x_{i} - \mathbf{e_{t}} \leq b_{t}$$

$$\Sigma_j a_{ij} x_i + e'_t - e''_t = b_t$$

IIS – Algorithms (cont.)

The Elastic Filter:

- % Input : an infeasible set of linear constraints
 - 1. Make all constraints elastic by adding non-negative elastic variables
 - 2. Solve LP using elastic objective function

```
IF feasible THEN enforce the constraints with any \mathbf{e_t} > \mathbf{0} by permanently removing their elastic variable(s) GO TO step 2
```

ELSE (% infeasible) EXIt

END FOR

OUTPUT: the set of enforced constraints contains at least one IIS

Computing all MCS : CAMUS

All_MCSes(φ)

```
1. \phi' \leftarrow AddYVars(\phi)
                                                                      % Adds y_i selector variables
2. MCSes \leftarrow \emptyset
3. k \leftarrow 1
    while (SAT(\phi'))
     \varphi'_k \leftarrow \varphi' \circ AtMost(\{\neg y_1, \neg y_2, \dots, \neg y_n\}, k)
     while (newMCS \leftarrow IncrementalSAT(\phi'_k))
                                                                      %All MCS of size K
7.
               MCSes ← MCSes U {newMCS}
               \phi'_k \leftarrow \phi'_k \circ BlockingClause(newMCS)
8.
                                                                     % Excludes super sets for
                                                                      % for size k
                \varphi' \leftarrow \varphi' \circ BlockingClause(newMCS)
9.
                                                                      % Excludes super set
                                                                      % for size > k
```

- 10. end while
- 11. k←k+1
- 12. end while
- 13. return MCSes

Computing all MCS – Example

```
    φ= C<sub>1</sub> Λ C<sub>2</sub> Λ C<sub>3</sub> Λ C<sub>4</sub> Λ C<sub>5</sub> Λ C<sub>6</sub>

• \Phi = (x_1) \wedge (\neg x_1) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2)
• \Phi' = (\neg y_1 \lor x_1) \land (\neg y_2 \lor \neg x_1) \land (\neg y_3 \lor \neg x_1 \lor x_2) \land (\neg y_4 \lor \neg x_2) \land (\neg y_5 \lor \neg x_1 \lor x_3) \land (\neg y_6 \lor \neg x_1 \lor x_2) \land (\neg y_6 \lor \neg x_2) \land (\neg y_6 \lor \neg x_1 \lor x_2) \land (\neg y_6 \lor \neg x_2) \land (\neg y_

    K = 1

                                           \neg y_1 \land \neg x_1 \land (\neg x_1 \lor x_2) \lor \neg x_2 \lor (\neg x_1 \lor x_3) \land \neg x_3 : \mathsf{SAT} (\neg x_1 \land \neg x_2 \land x_3) \rightarrow \mathsf{MCS} : (C_1)
                                           Adding: \neg\neg y_1, so (\neg y_1 \lor x_1) reduces to x_1
                                           x_1 \wedge \neg y_2 \wedge (\neg x_1 \vee x_2) \vee \neg x_2 \vee (\neg x_1 \vee x_3) \wedge \neg x_3 : UNSAT
                                           x_1 \wedge \neg x_1 \wedge \neg v_2 \wedge \neg x_3 \dots: UNSAT
                                   K = 2
                                                                                              = (\neg y_1 \bigvee_{i=1}^{N} x_1) \wedge (\neg y_2 \bigvee_{i=1}^{N} x_1) \wedge (\neg y_3 \bigvee_{i=1}^{N} x_1 \bigvee_{i=1}^{N} x_2) \wedge (\neg y_4 \bigvee_{i=1}^{N} x_2) \wedge (\neg y_5 \bigvee_{i=1}^{N} x_1 \bigvee_{i=1}^{N} x_3) \wedge (\neg y_6 \bigvee_{i=1}^{N} x_1 \bigvee
                                           ф′
                                                                                                        = x_1 \wedge (\neg y_2 \vee \neg x_1) \wedge (\neg y_3 \vee \neg x_1 \vee x_2) \wedge (\neg y_4 \vee \neg x_2) \wedge (\neg y_5 \vee \neg x_1 \vee x_3) \wedge (\neg y_6 \vee \neg x_3)
                                                                                                    = x_1 \wedge \neg y_2 \wedge \neg y_3 \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2):UNSAT
                                           x_1 \wedge \neg x_1 \wedge \dots : UNSAT
                                  K = 3
                                           x_1 \wedge \neg y_2 \wedge \neg y_3 \wedge \neg y_4 \wedge (\neg x_1 \vee x_2) \wedge (\neg x_3):UNSAT
                                           x_1 \land \neg y_2 \land (\neg x_1 \lor x_2) \land \neg y_4 \land \neg y_5 \land \neg x_3: SAT (x_1, \neg y_2, x_2, \neg y_4, \neg y_5, \neg x_3): \rightarrow MCS : (C_2, C_4, C_5)
```