Bounded Model Checking

Michel Rueher

Bounded Model Checking framework

* Models — finite automates, labelled transition systems
* Properties:
o Safety — something bad should not happen

o Liveness — something good should happen

* Bound k — look only for counter examples made of k states

Bounded Model Checking framework (cont.)

% set of states: S, initial states: I, transition relation: T
% bad states B reachable from | via T?
bounded_model checkerimwarg(l,T,B,K)
SC =2;SN =[; n=1
while S¢ # Sy and n<k do
If B N Sy #YJ then return “found error trace to bad states”;
else Sc=SN; SyN=Sc U T(SC),n=n+1;
done

return “no bad state reachable”;

Bounded Model Checking: slicing (example)

void foo(int a, int b)
int ¢, d, e, f;
if (a >= 0) {
if (a<10) {f =b-1;} else {f =b-a;}
c = a;
if (b>=0) {d =a;e=b;} else{d =a;e=-b;} }
else {¢c = b; d=1; e = —a;
if(a>b) {f =b+eta;} else{f =exa-b;} }
c =c+ d+ e;

assert(c >=d + ¢), // property pl
assert(f >= —b * ¢); // property p2

BMC: slicing (cont.)

void foo(int a, int b)

intc d, e f:

if(a >=0) {
ifla<10){f=b—-1}}

else {f=b- a;}

C=a;
if(b >=0) {d = a; e = b}
else{d =a,e=-b} }
else {
c=b:d=1e=-a;
ifla>b){f=b+ e+ aj}

else{f=exa-b;} }
c=c+d+e;

assert(c >= d + e); // property p;

(12)

C-crdre assert(f >= —bxe);// property po

BMC: slicing /example (cont.)

void foo(int a, int b)
intc d e f;
if(a >=0){
I f=b—T;

c = a;
if(b >=0) {d = a; e = b}
else{d =a;e=—-b} }
else {

c=b;d=1,e=—-a;

c=c+d+e
assert(c >= d + e); // property p;
assert(f >= —b « e); // property po

SAT/SMT- based BMC: Bounded Model Checking

1. The program is unwound k times

2. The unwound (and simplified) program and the property are
translated into

A big propositional formula ¢
[arithmetic formula — bit vector encoding]

% @ is satisfiable iff there exists a counterexample of depth less
than k

3. A SAT or SMTsolver is used for checking the satisfiability of ¢

CP-based Bounded Program Verification

. The program is unwound k times,

. An annotated and simplified CFG is built

. Program is translated in constraints on the fly

— A list of solvers tried in sequence (LP, MILP, Boolean, CP)

Input: io
jo=2
if(io=<16)

j1 =jo *io

j2=]1
else
j2=Jo

if(j2 > 8)
j3=0
else
j3 =12
r=j3
Output:r

Constraint Generation

Variable : io

Jo=2

io=16=>(j1=jo™io A j2=7j1)
i0>16=>j2=jo

=(j1=jo%io A j2=j1) => (lo>16 A j2=jo)
=(z=jo) =>(io=16A ji=jo*io A j2=]1)

j2>8=>j3=0
j2=8=>j3=j2
= (j3=0) => (j2=8 A j3=]z2)
= (Jz3=j2) => (j2>8 A j3=0)

r=j3
Variable: r

Constraint Generation (cont.)

Program:

X=X+1; Y:x*y; X=X+Y;

Constraints
{x1 = x0 +1,y1l =x1 *xy0,x2 =x1 =*yl}

Constraint Generation (cont.)

Program:

a[i] = x;
Constraints
{al[i10] = xO0,
i0 # 0 —» al[0] = a0[0],

i0 # 1 — al[l] = a0[1],...,

a0[7]}

10 #2 7 — al[7]

guard — body is a guarded constraint

afi] = x is the element constraint: i and x are constrained variables whose
values may be unknown

Constraint Generation (cont.)

Program:

if (a<10) {f =b-1;} else {f =b-a;}

Constraints
C A (a<l0) — {f0 = b0-1}

C A -(a<l0) — {f0 = b0-a0}

Error Localization problem: informal presentation

* Model checking, testing
Generation of counterexamples
o Input data & wrong output (testing)

o Input data & violated post condition / property
— EXxecution trace

* Problems:
o Execution trace: often lengthy and difficult to understand

o Location of the portions of code that contain errors
— Very expensive

Constraint-Based Error Localization: Formalization

P: program

Post_p: post condition of P

Pre_p: precondition of P

CST_p: constraints of faulty path of P (Input data provided by Model checker)
— Pred_p A CST_p A-Post_p holds

— Pred_p A CST_p A Post_p fails

Problem: to finding "smallest” subsets of Pred_p A CST_p A Post_p
that are inconsistent

Example

Program:

& Input : int inputl, int input?2

int x=1, y =1, z = 1;

if (inputl > 0) {x += 5; y += 6; z += 1; }

if (input2 > 0) {x += 6; y += 5; z += 4; }

% Post-condition: x < 10 A y < 10
Counterexample: input1=1, input2=1

CSP P:

inout1=1, input2=1, x40 =1,y10=1,

Z1o=1,%X11=6,yn=7,Z11 =2, X12= X191, Y12 = Y11, Z12 = Z11,
X13 = X12+6 , Y13 =Y12+0, Z13 =Z12+4 | X14 = X43, Y14 = Y13, Z14 = Z43,

Xq4 < 10, y14< 10

Example (cont.)
CS _p can be divided into 3 sub-CSPs (computations for x, y, and z are independent)
sub CSP_ sis: X190 =1, X414 =6, X12= X141, X43 = X126, X154 = X13, X14 < 10

sub CSP_yis: yio=1,y11 =7, Y12 = Y11, Y13 =Y12+5, Y14 = Y13, Y14< 10

Smallest inconsistent CSP for x: %10=3%, X141 = 6, X412 = X11, X13 = X12+6, X144 = Xq3, X14 < 10

Smallest inconsistent CSP, for y: y40=2%, Y11 =7, Y12 = Y11, Y13 =Y12+5, Y14 = Y13, Y14 < 10

A first solution: MAX-SAT

MAX-SAT based appoach
(implemented in Bug-Assist with CBMC)

1.Encoding a trace of a program as a Boolean formula F that is satisfiable iff
the trace is satisfiable

2.Building a failing formula F' by asserting that the post condition must hold
3.Computing with MAX-SAT the maximum number of clauses that can be

satisfied in F'
— complement as a potential cause of the errors

Generalisation of MAX-SAT

* Capabilities of CP, LP, MIP: No Boolean abstraction (or bit vector encoding)
required to capture the semantics of the constraints

— Generalisation of MAX-SAT approach
° IS

e Minimum Conflict Sets in CSP

Definitions

* MUS Minimal Unsatisfiable Subset
aka Irreducible Inconsistent Subsystem (11S)

M E Cisa MUS < Mis UNSAT and Yc € M : M\ {c} is SAT

* MSS Maximal Satisfiable Subset
a generalization of MaxSAT / MaxFS considering maximality instead of maximum
cardinality

ME CisaMSS < MisSATandYc € C\ M: MU {c}is UNSAT

* MCS Minimal Correction Set
the complement of some MSS: removal yields a satisfiable MSS (it “corrects” the
infeasibility)

ME CisaMCS < C\MisSATand Vc € M: (C\M)u{c}is UNSAT

MUS (Minimal Unsatisfiable Subset) - MCS(Minimal Correction
Set) duality

His a hitting set of Qif HCDandVSe€ Q HNS %@

H is a minimal hitting sets if no element can be removed without losing the the
property of being a hitting set

Given an unsatisfiable constraint system C:
1.A subset M of C is an MCS of C iff M is an irreducible hitting set of MUSes(C)
2.A subset U of C is an MUS of C iff U is an irreducible hitting set of MCSes(C)
Intuition: A MCS must at least remove one constraint from each MUS
A MUS can be made satisfiable by removing any one constraint from it

— every MCS contains at least one constraint from each MUS.

1IS/MUS - Problems and challenges

Problems:
» The number of IISs in an infeasible LP can be exponential in the worst case

» Quickest algorithms for finding IISs often return IISs having many rows

1IS — Algorithms

The Deletion Filter:

INPUT: an infeasible set of constraints
FOR each constraint in the set:
1. Temporarily drop the constraint from the set
2. Test the feasibility of the reduced set:
IF feasible THEN return dropped constraint to the set
ELSE (infeasible) drop the constraint permanently
OUTPUT: constraints constituting a single IIS
Remarks

* The only constraints retained in the set are those whose removal
renders the set feasible

* Efficiency improvement: dynamic reordering

The Elastic Filter — Linear constraints (1)

LP solvers
* Adding nonnegative artificial variables (s;) to all inequality
constraints
* LP Phase 1 minimizes W = }s;, via standard LP: If W* # 0, no
solution exists
Elastic Filter: nonnegative artificial variables (s;) are added to all equality
and = constraints
— S0 a solution always exits in the space of the original plus artificial
variables, but not in the space of just the original variables
If W* # 0 then at least one of s;cannot be forced to zero: the corresponding
constraint remains violated in the original variable space

Rules for adding elastic variables are as follows:

non-elastic constraint elastic version
Zj ajj X; 2 b; Zj ajj X; t S 2 b
Zj aij Xj < bi Zj aij Xj - Sj < bi

Zjainj = b, Zjainj+Si—Si= b;

IIS — Algorithms (cont.)

Use the concept of "elastic programming": non-negative "elastic variables"” are added to the
constraints to provide elasticity

Non-elastic constraint Elastic constraint
Zj ajiX| 2 bt Zj ajjX| + e 2 bt
Zj ajiX| < bt Zj a;iX; = €4 < bt

Zj ajiX; = bt Zj ajjX| + e't — e"t = bt

IIS — Algorithms (cont.)

The Elastic Filter:

o

$ Input : an infeasible set of linear constraints

1. Make all constraints elastic by adding non-negative elastic

variables
2. Solve LP using elastic objective function

IF feasible THEN enforce the constraints with any €; > 0 by

permanently removing their elastic variable(s)
GO TO step 2
ELSE (% infeasible) EXTt
END FOR

OUTPUT the set of enforced constraints contains at least one IIS

Computing all MCS : CAMUS

1. ¢ < AddYVars(¢) % Adds yi selector variables

2. MCSes <@

3. ke1

4. while (SAT(¢")

5. @'k« @' ° AtMost({~y1, 7y2, ..., °Yu}, K)

6. while (newMCS « IncrementalSAT(¢'x)) %AIl MCS of size K

7. MCSes < MCSes U {newMCS}

8. @'k <« @'k ° BlockingClause(newMCS) % Excludes super sets for
% for size k

9. @' < @' > BlockingClause(newMCS) % Excludes super set

% for size > k
10. end while
11. kek+1
12. end while
13. return MCSes

Computing all MCS — Example

=C, AN G, A G AC A G AC

b= (x,) A (=%x;) A (=%, V%) A (=%;) A (=%, Vx3) A (-x3)

¢’ =(-y, VX)AY, Vx)A(=y; V-x; VXA (Y, V%) A(-ys V-x; VX)) A=y V
K=1

Y1 A=X, A%, VX)) V=%,V (=%, Vx3) A=x, : SAT (-x; A-x,Ax,) = MCS:(C))
Adding : --y, , so (-y, Vx,) reduces to x,

X, A=y, A(=%; V) V=%,V (-x; Vx3) A=x; : UNSAT

X, A=x; A-y; A=x, UNSAT

K=2
& =(-y, Vxl)/\ y2 V=x)) Al=ys V=%, Vo)A (-y, V%) A(=ys V=%, VX)) A=y,

qxa
=x1/\(-y2 "x1)/\(“V3 =X VXZ)/‘\ ("yq “xz)/\("yS V-'X1 vxs)/\("ys V~x3)
=X, A=y, A=y; A (=%, Vx3) A(-x;) :UNSAT

X, A=X, A.... .UNSAT

K=3
X; A=y, A-ys A =y Al=x; Vx3) A(-x;) :UNSAT
x1 A-‘YZA(-'XI VXZ)A "y4 A“Ys A“X3: SAT (xl,"YZ, x2, -'YG ,“ys ,"xs): — MCS: (CZ,CQ, CS)

qu

