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OVERVIEW

� Interval Programming

– Interval arithmetic
– Interval Analysis methods

� Constraint Programming

– Overall scheme
– Local consistencies
– Quantified constraints
– Global Constraints
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1. INTERVAL PROGRAMMING

−→ Basics on interval arithmetics

−→ Interval Newton-like methods for solving a multi-
variate system of non-linear equations
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1.1 INTERVAL ARITHMETICS : NOTATIONS

� cj(x1, . . . ,xn) : a relation over the reals; C : the set of constraints

� X or Dx : the domain of variable x; D: the set of domains of all
the variables

� IR : the set of real numbers; IF : the set of floating point
numbers
a+ (resp. a−) : the smallest (resp. largest) number of IF strictly
greater (resp. lower) than a

� X = [X,X] is the set of real numbers x verifying X ≤ x ≤ X

� x,y : real variables or vectors; X,Y interval variables or vectors
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1.1 INTERVAL ARITHMETICS : BASIC DEFINITIONS (1)

Interval arithmetic (Moore-1966) is based on the representation
of variables as intervals

Let f be a real-valued function of n unknowns X =
{x1, . . . , xn}, an interval evaluation F of f for given ranges
{X1, . . . , Xn} for the unknowns is an interval Y such that

∀X = {x1, . . . ,xn} ∈ X = {X1, . . . ,Xn} Y ≤ f(X) ≤ Y

Y,Y are lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X
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1.1 INTERVAL ARITHMETICS : BASIC DEFINITIONS (2)

A relation over the intervals C : In → Bool is an interval
extension of the relation c : Rn → Bool iff:
∀I1, . . . , In ∈ I : r1 ∈ I1, . . . , rn ∈ In & c(r1, . . . , rn) ⇒ C(I1, . . . , In)

For instance, I1
.= I2 ⇔ (I1 ∩ I2) 6= ∅ is an interval extension of

the relation = over the real numbers
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INTERVAL ARITHMETICS : NATURAL INTERVAL

EXTENSION (1)

→ In general, it is not possible to compute the exact enclosure of
the range for an arbitrary function over the real number

→ The interval extension of a function is an interval function that
computes an outer approximation of the range of the function
over a domain
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INTERVAL ARITHMETICS : NATURAL INTERVAL

EXTENSION (2)

The natural interval extension of a real function f is defined
by replacing all the mathematical operators in f by their interval
equivalents to obtain F
• [a,b]	 [c,d] = [a− d,b− c]

• [a,b]⊕ [c,d] = [a + c,b + d]

• [a,b]⊗ [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]

• [a,b]� [c,d] = [min(a
c,

a
d, b

c ,
b
d), max(a

c,
a
d, b

c ,
b
d)] if 0 6∈ [c,d]
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INTERVAL EXTENSION : PROPERTIES

→ If 0 6∈ F (X ), then no value exists in the box X such that f(X) =
0
⇔ the equation f(X) has no root in the box X

→ Interval arithmetics can be implemented taking into account
round-off errors

→ Interval arithmetic preserves inclusion monotonicity:
Y ⊆ X ⇒ F(Y) ⊆ F(X) but interval arithmetics is sub-

distributive:
X(Y + X) ⊆ XY + XZ
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INTERVAL EXTENSION : LIMITATIONS

→ The wrapping effect, which overstimates by a unique vector
the image of an interval vector (which is in general not a vector)

→ The dependency problem, which is due to the independence
the different occurences of some variable during the interval
evaluation of an expressionExample :
Consider X = [0, 5]
X−X = [0− 5,5− 0] = [−5,5] instead of [0, 0] !X2 −X = [0,25]− [0,5] = [−5,25]X(X− 1) = [0,5]([0,5]− [1,1]) = [0,5][−1,4] = [−5,20]
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INTERVAL EXTENSION : USING DIFFERENT LITERAL

FORMS (1)

→ Factorized form (Horner for polynomial system) or distributed
form

→ First-order Taylor development of f

Ftay(X) = f(x) + J(X).(X− x)

with ∀x ∈ X, J() being the Jacobian of f
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INTERVAL EXTENSION : USING DIFFERENT LITERAL

FORMS (2)

→ In general, first order Taylor extensions yield a better enclosure
than the natural extension on small intervals

→ Taylor extensions have a quadratic convergence whereas the
natural extension has a linear convergence

→ In general, neither Fnat nor Ftay won’t allow to compute the exact
range of a function f
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INTERVAL EXTENSION : USING DIFFERENT LITERAL

FORMS (3)

Consider f(x) = 1− x + x2, and X = [0, 2]

ftay([0,2])= f(x) + (2X− 1)(X− x)
= f(1) + (2[0,2]− 1)([0,2]− 1) = [−2,4]

f([0,2])= 1−X + X2 = 1− [0,2] + [0,2]2 = [−1,5]

ffactor([0,2])= 1 + X(X− 1) = 1 + [0,2]([0,2]− 1) = [−1,3]

whereas the range of f over X = [0,2] is [3/4,3]
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1.2 INTERVAL ANALYSIS METHODS

Goal : to determine the zeros of a system of n equations
fi(x1, . . . , xn) in n unknowns xi inside the interval vector

X = {X1, . . . , Xn} with xi ∈ Xi for i = 1, . . . , n

−→ Gauss-Seidel iterative method

−→ Interval Newton algorithm
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GAUSS-SEIDEL ITERATIVE METHOD

Consider the case of interval linear equations :

A.x = b

with A an interval matrix and b an interval vector

For each unknowns Xi, the Gauss-Seidel algorithm is defined
by the following iterative process:

Xk+1
i = (bi −

i−1∑
j=1

Ai,jXk+1
j −

n∑
j=i+1

Ai,jXk
j )/Ai,i ∩Xk

i

Pre-conditioning → to shrink the width of the intervals
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INTERVAL NEWTON ALGORITHM (1)

Principle of the Newton operator :

Consider f : R→ R, the mean value theorem says :

∃a ∈ [v,u] : f(u)− f(v) = (u− v)f ′(a) and thus,
f : v = u− f(u)

f ′(a) if v is a zero of f

If a ∈ I then f(a) ∈ F(I), and v ∈ ũ− F(ũ)
F′(I) = N(F,F′, ũ, I)

If v is a zero of f then v ∈ In (n ≥ 1) where
I0 = I
Ii+1 = N(F,F′, center(Ii), I) ∩ Ii

In = In+1
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INTERVAL NEWTON ALGORITHM (2)

The Interval Newton algorithm is used to solve non-linear
systems with

Xk+1 = N(x̃k,Xk) ∩Xk with N(x̃k,Xk) = x̃k −A.f(x̃k)
where A = [F

′
(Xk)]−1 and x̃k ∈ Xk (e.g., the mid-point of Xk)

Properties :
� If N(x̃k,Xk) ∩Xk = ∅, then the system F has no solution in Xk

� if N(x̃k,Xk)k ⊂ Xk, there is one or more solution in Xk+1

Matrix A = [F
′
(Xk)]−1 may be costly to compute

... to determine N(x̃k, Xk) → solve the linear system:

F
′
(Xk)(N(x̃k,Xk)− x̃k) = −f(x̃k)
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2. CONSTRAINT PROGRAMMING

Numeric CSP (X ,D, C) :

� X = {x1, . . . , xn} is a set of variables

� D = {Dx1, . . . , Dxn} is a set of domains
(Dxi

contains all acceptable values for variable xi)

� C = {c1, . . . , cm} is a set of constraints
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2.1 OVERALL SCHEME

The constraint programming framework is based on a branch
& prune schema which is best viewed as an iteration of two steps:

1. Pruning the search space

2. Making a choice to generate two (or more) sub-problems

� The pruning step → reduces an interval when it can prove
that the upper bound or the lower bound does not satisfy some
constraint

� The branching step → splits the interval associated to some
variable in two intervals (often with the same width)
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2.2 LOCAL CONSISTENCIES (1)

→ Informally speaking, a constraint system C satisfies a partial
consistency property if a relaxation of C is consistent

Consider X = [x,x] and C(x,x1, . . . ,xn) ∈ C : if C(x,x1, . . . ,xn)
does not hold for any values a ∈ [x,x′], then X may be shrinked
to X = [x′,x]

→ A constraint Cj is AC-like-consistent if for any variable xi in
Xj, the bounds Di and Di have a support in the domains of
all other variables of Xj

Local consistencies used in BNR-prolog, Interlog,
CLP(BNR), PrologIV, UniCalc, Ilog Solver, Numerica,
Icos, RealPaver are AC-like-consistencies
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2.2 LOCAL CONSISTENCIES (2)

Local consistencies are conditions that filtering algorithms
must satisfy

→ fixed point algorithm defined by the sequence {Dk} of
domains generated by the iterative application of an operator

Op : II(IR)n −→ II(IR)n

Dk =
{
D if k = 0
Op(Dk−1) if k > 0
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2.2 LOCAL CONSISTENCIES (3)

Properties of the operator Op :

� Op(D) ⊆ D (contractance)

� Op is conservative; that is, it cannot remove any solution

� D′ ⊆ D ⇒ Op(D′) ⊆ Op(D) (monotonicity)

The limit of the sequence {Dk}, which corresponds to the
greatest fixed point of the operator Op
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2.2 LOCAL CONSISTENCIES (4)

→ 2B–consistency (also known as hull consistency) only
requires to check the Arc–Consistency property for each
bound of the intervals

→ Box–consistency is a coarser relaxation of Arc–Consistency
than 2B–consistency ... but Box–consistency algorithms
actually achieve a stronger filtering than 2B–consistency

→ Strong consistencies : no bound of the domains can be
removed with a local consistency filtering algorithm
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2B–CONSISTENCY (1)

Variable x is 2B–consistency for constraint f(x,x1, . . . ,xn) = 0 if
the lower (resp. upper) bound of the domain X is the smallest

(resp. largest) solution of f(x,x1, . . . ,xn)

Definition : 2B–consistency
Let (X ,D, C) be a CSP and C ∈ C a k-ary constraint over
(X1, . . . ,Xk)
C is 2B–consistency iff :
∀i,Xi = �{x̃i | ∃x̃1 ∈ X1, . . . ,∃x̃i−1 ∈ Xi−1, ∃x̃i+1 ∈ Xi+1, . . . ,∃x̃k ∈ Xk

such that
c(x̃1, . . . , x̃i−1, x̃i, x̃i+1 . . . , x̃k) holds}

A CSP is 2B–consistency iff all its constraints are 2B–
consistency
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BOX–CONSISTENCY (1)

Variable x is Box–Consistent for constraint f(x,x1, . . . ,xn) = 0
if the bounds of the domain of x correspond to the leftmost and the
rightmost zero of the optimal interval extension of f(x,x1, . . . ,xn)

Definition : Box–consistency
Let (X ,D, C)be a CSP and C ∈ C a k-ary constraint over
(X1, . . . ,Xk)
C is Box–Consistent if, for all Xi the following relations hold :
1. C(X1, . . . ,Xi−1, [Xi,Xi

+),Xi+1, . . . ,Xk)
2. C(X1, . . . ,Xi−1, (Xi

−
,Xi],Xi+1, . . . ,Xk)
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LOCAL CONSISTENCY FILTERING (1)

Algorithms that achieve a local consistency filtering are
based upon projection functions

� Solution functions expresse the variable xi in terms of the
other variables of the constraint. The solution functions of
x + y = z are: fx = z− y, fy = z− x, fz = x + y

� An approximation of the projection of the constraint over Xi

given a domain D can be computed with any interval extension
of this solution function → we have a way to compute πj,i(D)

� For complex constraints, no analytic solution function may exist
Consider x + log(x) = 0
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LOCAL CONSISTENCY FILTERING (2)

1. Analytic functions always exist when the variable to express
in terms of the others appears only once in the constraint →
considers that each occurrence is a different new variable

For x + log(x) = 0 we obtain x1 + log(x2) = 0
Thus fx1 = − log(x2) , fx2 = exp−x1

and πx+log(x)=0,x(X) = − log(X) ∩ exp−X

� This approach is used for computing 2B–consistency filtering
(the initial constraints are decomposed into primitive
constraints)

� Decomposition does not change the semantics of the
initial constraints system but it amplifies the dependency
problem
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LOCAL CONSISTENCY FILTERING (3)

2. Transformation of the constraint Cj(xj1, ...xjk) into k mono-
variable constraints Cj,l, l = 1 . . .k by substituting their intervals
for the other variables

→ The two extremal zeros of Cj,l can be found by a dichotomy
algorithm combined with a mono-variable version of the
interval Newton method

→ This approach is well adapted for Box–consistency filtering
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LOCAL CONSISTENCY FILTERING (4)

3. Use the Taylor extension to transform the constraint into an
interval linear constraint. f(X) = 0 becomes

f(c) +
n∑

i=1

nat(
∂f
∂xi

)(X) ∗ (Xi − ci) = 0

where c = m(X). The derivatives are evaluated over a box
D that contains X, D is considered as constant, and with
c = m(D)

→ The equation becomes an interval linear equation in X, which
does not contain multiple occurrences

→ Solving the squared interval linear system allows much
more precise approximations of projections to be computed
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STRONGER CONSISTENCIES, 3B–CONSISTENCY (1)

3B–Consistency, a relaxation of path consistency, checks
whether 2B–Consistency can be enforced when the domain
of a variable is reduced to the value of one of its bounds in

the whole system
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STRONGER CONSISTENCIES, 3B–CONSISTENCY (2)

Definition : 3B–Consistency
Let (X ,D, C) be a CSP and x a variable of X with Dx = [a,b]. Let
also:

� Let PD1
x←[a,a+) be the CSP derived from P by substituting Dx in

D with D1
x = [a,a+)

� Let PD2
x←(b−,b] lbe the CSP derived from P by substituting Dx

in D with D2
x = (b−,b]

X is 3B–Consistent iff Φ2B(Px←[x,x+)) 6= P∅ and
Φ2B(Px←(x−,x]) 6= P∅
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STRONGER CONSISTENCIES, 3B–CONSISTENCY (3)

Let (X ,D, C) be a CSP and Dx = [a,b], if Φ2B(PDx←[a,a+b
2 ]

) = ∅

� then the part [a, a+b
2 ) de Dx will be removed and the filtering

process continues on the interval [a+b
2 ,b]

� otherwise, the filtering process continues on the interval
[a, 3a+b

4 ].
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QUANTIFIED CONSTRAINTS (1)
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QUANTIFIED CONSTRAINTS (2)
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QUANTIFIED CONSTRAINTS (3)

� ∀x ∈ Dx : x + x1 < 5 with Dx = [−2,2],Dx1 = [1,5]

¬(∀x ∈ Dx : x + x1 < 5)− > x + [1,5] ≥ 5 ⇒ x ≥ 0

Dx ∈ [−2,0) ⇒ ∀x ∈ Dx : x + x1 < 5 holds

� ∀(x ∈ X) ∀(y ∈ Y) ∃(z ∈ Z) : (z = x + y)

� Modal intervals
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GLOBAL CONSTRAINTS (1)

� “Syntactical” approach

To handle an approximation of the whole constraint system with
the simplex algorithm

→ replace each non linear term by a new variable

→ introduce redundant linear constraints to get a tight
approximation of the non-linear terms

→ solving a linear relaxation with the simplex algorithm
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GLOBAL CONSTRAINTS (2)

� “Semantic” approach

→ Distance constraint
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