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1. Introduction. Many applications in engineering sciences require finding all isolated solu-
tions to systems of constraints over real numbers. These systems may be non-polynomial and are
difficult to solve: the inherent computational complexity is NP-hard and numerical issues are crit-
ical in practice (e.g., it is far from being obvious to guarantee correctness and completeness as well
as to ensure termination). These systems, called numeric CSP!, have been approached in the past
by different interesting methods: interval methods [23, 15, 25, 11, 26], continuation methods [35]
and constraint satisfaction methods [19, 20, 4, 8, 34, 3]. Of particular interest is the mathematical
and programming simplicity of the latter approach: the general framework is a branch and prune
algorithm that only requires specifying the constraints and the initial range of the variables.

2. Notations and basic definitions. This paper focuses on CSPs where the domains are
intervals and the constraints are continuous. A n-ary continuous constraint C;(z1,...,x,) is a
relation over the reals. C stands for the set of constraints.

X or D, denotes the domain of variable z, that’s to say, the set of allowed values for x. D stands
for the set of domains of all the variables of the considered constraint system. IR denotes the set
of real numbers whereas [F'stands for the set of floating point numbers used in the implementation
of non linear constraint solvers; if a is a constant in I, a™ (resp. a~) corresponds to the smallest
(resp. largest) number of F'strictly greater (resp. lower) than a.

X = [z, 7] is defined as the set of real numbers z verifying z < x < Z. x,y denote real variables
or vectors whereas X,Y denote interval variables or vectors. The width w(X) of an interval X is
the quantity T — z while the mid-point M (X) of the interval is (T + x)/2. A point interval X is
obtained if z = T. A boz is a set of intervals and its width is defined as the largest width of its
interval members, while its centre is defined as the point whose coordinates is the mid-point of the
ranges. I (IR)™ denotes the set of intervals and is ordered by set inclusion.

We also use the “reformulation-linearization technique” notations introduced in [32, 1] with
slight modifications.

3. Interval Programming.

3.1. Interval Arithmetics. Interval arithmetic has been proposed by [23]. It is based on
the representation of variables as intervals.

Let f be a real-valued function of n unknowns X = {z1,...,z,}. An interval evaluation F of
f for given ranges {X1,..., X, } for the unknowns is an interval ¥ such that
VX ={21,...,2,} €X ={X1,....X,,} Y<fX)<Y (3.1)

In other words Y, Y are lower and upper bounds for the values of f when the values of the unknowns
are restricted to the box X.

There are numerous ways to calculate an interval evaluation of a function [11, 24]. However,
in general, it is not possible to compute the exact enclosure of the range for an arbitrary function
over the real numbers [16]. Moore has introduced the concept of interval extension: the interval
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extension of a function is an interval function that computes outer approximations on the range of
the function over a domain [11, 24].

The natural interval extension of a real function f is defined by replacing all the mathematical
operators in f by their interval equivalents to obtain F. Interval equivalenst exists for all classical
mathematical operators and hence interval arithmetics allows to calculate an interval evaluation
for allf non-linear expressions, whether algebraic or not. For example if f(z) = z + sin(z), then
the interval evaluation of f for « € [1.1,2] can be calculated as follows:

F([1.1,2]) = [1.1,2] + sin([1.1,2]) = [1.1,2] + [0.8912, 1] = [1.9912, 3]

Thus, if 0 ¢ F(X), then no value exists in the box X such that f(X) = 0. In other words the
equation f(X) has no root in the box X'. In general, the bounds of the interval evaluation F' over-
estimate the minimum and maximum of function F' over the box X'. Interval arithmetics can be
implemented taking into account round-off errors. There are numerous interval arithmetics pack-
ages implementing this property: one of the most famous library is BIAS/Profil? but a promising
new package is MPFI [31], based on the multi-precision software MPFR3.

Let f be a real-valued function of n unknowns x = {z1,...,z,}. An interval evaluation F of f
for given ranges X = {X;,..., X,,} for the unknowns is an interval Y such that Vx € X, f(z) €
Y = [y,7y]. Interval arithmetic preserves inclusion monotonicity: f Y C X = F(Y) C F(X)
but many algebraic proprieties of scalar arithmetic are no longer valid for interval arithmetics.
For example, interval arithmetics is sub-distributive: X(Y 4+ X) C XY + X Z (see [23] for a more
detailled description.).

The main limitation of interval arithmetics is the over-estimation of interval functions. This
is due to two well known problems :

e the so-called wrapping effect [14], which overstimates by a unique vector the image of an
interval vector (which is in general not a vector).

e the so-called dependency problem|11], which is due the independence the different oc-
curences of some variable during the interval evaluation of an expression. In other words,
during the interval evaluation process there is no correlation between the different occur-
rences of a same variable in an equation: these different occurrences are just considered as
identical intervals. For instance, consider X = [0,10]. X — X = [z — %, T — z] = [-10, 10]
instead of [0,0] as one could expect.

Due to the proprieties of interval arithmetics, the evaluation of a function may yield different
results according to the literal form of the equations. Thus, many literal forms may be used as,
for example, factorized form (Horner for polynomial system) or distributed form [33].

The Taylor interval extension, noted Fiay, of a real function f, over the interval vector X, is
defined by the natural extension of a first-order Taylor development of f [29]:

Fray-1(X) = f(2) + J(X).(X — ) (3.2)

with Vo € X, J() being the Jacobian of f. Hansen [11] has proposed a tricky evaluation the
equation 3.2.

Second order Taylor development may also be used but their computation is much more ex-
pensive.

In general, first order Taylor extension yield a better enclosure than the natural extension on
small intervals; moreover they have a quadratic convergence whereas the natural extension has a
linear convergence [29].

?http://www.ti3.tu-harburg.de/Software/ PROFILEnglissch.html
3http://www.mpfr.org



Nevertheless, in general, neither Fj,¢ nor Fiayq won’t allow to compute the exact range of a
function f.
For instance, consider f(x) =1 —z + 22, and x = [0, 2], we have:

feay ([0, 2]) = ( ) (2X— Dx—=z)=f01 +( [0,2] = 1)([0,2] = 1) = [-2,4],
f([o, 2]) =1-x+x>=1-[0,2]+0,2*> = [-1,5], (3.3)
Jractor ([0, 2]) = +X(X —1)=1+0,2]([0,2] — ) [—1,3]

whereas the range of f over X = [0, 2] is [3/4, 3]. In this case, this result could directly be obtained
by a second form of factorisation: fractor,([0,2]) = (x—1/2)2+3/4 = ([0,2] —1/2)%>+3/4 = [3/4, 3].

3.2. Interval Analysis methods. This section provides a short introduction of interval
analysis methods. We limit this overview to interval Newton-like methods for solving a multi-
variate system of non-linear equations. Their use is complementary to methods provided by the
Constraint Programming community.

The aim is to determine the zeros of a system of n equations f;(x1,...,z,) in n unknowns z;
inside the interval vector X = {X;,...,X,,} with 2; € X; fori=1,...,n

First, consider the case of interval linear equations defined by the following system:

Az=b (3.4)

with A an interval matrix and b an interval vector. Solving this linear interval system requires to
determine an interval vector X containing all solutions of all scalar linear systems noted A.x = B
such that A € A and b € b. Finding X is a difficult problem but two basic interval methods may
provided an over estimated interval vector X; including Xj.

Note that Gaussian elimination works also for interval linear systems. Indeed, it is possible
to get X7 if the Gauss pivots do not contain any zero in the triangularisation process. However,
in general the computed interval are too wide and a preconditionning is required. That’s to say
a multiplication of both side of equation 3.4 by the inverse of a mid-point of A. The matrix
m(A)71A is then "closer" to the identity matrix and the width of X is smaller [28].

Another well know method for solving interval system, is the Gauss-Seidel iterative method.
For each unknowns X, the algorithm [11] is defined by the following iterative process:

1—1 n
X = (b = > A X5 — Y A X)) /AN X (3.5)
j=1 j=i+1

Again, a pre-conditioning step may allow to shrink the width of the computed intervals. Details
on the implementation of this algorithm can be found in [11].
Note that this method is very close to 2B—consistency filtering techniques (see section 4).

To solve non-linear systems, the Interval Newton algorithm is often used. Here is its general
schema:

Xpy1 = N(i‘k, Xk) N X, with N(i‘k,Xk) =T — Af(.i‘k)) (36)

A is an interval matrix that contains all the inverse of the Jacobian matrix of the system F'. The
scalar 7, must be chosen inside X, (for example the mid-point of X;). Thus, following properties*
hold:

o If N(Zy, Xx) N Xg = 0, then the system F has no solution in X},

4For other proprieties and implementation see [11]



o if N(Zk, Xi)r N Xy C Xk, there is one or more solution in Xy 1.

The determination of the matrix A is a critical issue of these type of algorithm. Matrix A is
the inverse of the Jacobian matrix A = [F' (X},)]~! evaluated over the interval vector X. However,
inverting an interval matrix may be very expensive in time and space. The alternative consists to
solve the linear system F' (X3,)(N (i, Xi) — @) = —f (&) to determine N (Zx, X)) . This job can
be done by one the algorithms presented previously (see [28, 30]).

The Krawczyk scheme is an interesting adaptation of the scalar secant method. It is defined
through the iterative scheme:

X1 = K (ix, X5) N Xp with K (i, X3) = 3 — [f(@)] 7 (@) + (= [f(@)] 7 F (X)) (Xk — i)

(3.7
The properties of this scheme are used by Moore [23] to check the existence and the unicity of a
zero and the convergence of the scheme. Note that this scheme uses only the inverse of a scalar
matrix compared to the interval matrix inversion of the Newton scheme. This method is fast but
efficient only for small width interval variables.

4. Constraint programming . This section recalls the basics of constraint programming
techniques which are required to understand the rest of this paper. Detailed discussion of these
concepts and techniques can be found in [4, 17].

4.1. The general framework. The constraint programming framework is based on a branch
& prune schema which was inspired by the traditional branch and bound approach used in opti-
misation problems. That’s to say, it is best viewed as an iteration of two steps[33]:

1. Pruning the search space;
2. Making a choice to generate two (or more) sub-problems.

The pruning step ensures that some local consistency holds. In other words, the pruning step
reduces an interval when it can prove that the upper bound or the lower bound does not satisfy
some constraint. Informally speaking, a constraint system C' satisfies a partial consistency property
if a relaxation of C is consistent. For instance consider X = [z,%]| and C(x,z1,...,z,) € C.
Whenever C(z,z1,...,2,) does not hold for any values a € X = [z, 2'], then X may be shrinked
to X = [2/,Z]. Local consistencies are detailed in the next subsection. Roughly speaking, they are
relaxations of arc-consistency, a notion well known in artificial intelligence [21, 22].

The branching step usually splits the interval associated to some variable in two intervals with
the same width. However, the splitting process may generate more than two sub-problems and one
does not need to split an interval in its middle. The choice of the variable to split is a critical issue
in difficult problems. Sophisticated splitting strategies have been developed for finite domains but
few results are available for continuous domains.

4.2. Local consistencies[8, 17]. Local consistencies are conditions that filtering algorithms
must satisfy. A filtering algorithm can be seen as a fixed point algorithm defined by the sequence
{Dy} of domains generated by the iterative application of an operator Op : I(IR)" — I(IR)™ (see
Figure 4.1).

Op(Di_1) if k>0

Dk:{D ifk=0

Fi1c. 4.1. Filtering algorithms as fized point algorithms

The operator Op of a filtering algorithm generally satisfies the following three properties:
e Op(D) C D (contractance)
e Op is conservative; that is, it cannot remove any solution.
e D' C D= Op(D') C Op(D) (monotonicity)
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Under those conditions, the limit of the sequence {Dy}, which corresponds to the greatest fixed
point of the operator Op, exists and is called a closure. A fixed point for Op may be characterised
by a property lc-consistency, called a local consistency. The algorithm achieving filtering by lc-
consistency is denoted lc-filtering. A CSP is said to be lc-satisfiable if lc-filtering of this CSP does
not produce an empty domain.

Consistencies used in numeric CSPs solvers can be categorised in two main classes : arc-
consistency-like consistencies and strong consistencies. Strong consistencies will not be discussed
in this paper (see [19, 17] for a detailed description).

Most of the numeric CSPs systems (e.g., BNR-prolog [27], Interlog [10, 6], CLP(BNR) [5], Pro-
logIV [9], UniCalc [2], Ilog Solver [13], Numerica [34] and RealPaver [3]® compute an approximation
of arc-consistency [21] which will be named AC-like-consistency in this paper. AC-like-consistency
states a local property on a constraint and on the bounds of the domains of its variables. Roughly
speaking, a constraint C; is AC-like-consistent if for any variable z; in var(C}), the bounds D;
and D; have a support in the domains of all other variables of Cj.

The most famous AC-like consistencies are 2B—consistency and Box—consistency .

2B—consistency (also known as hull consistency) [7, 5, 18, 19] only requires to check the Arc—
Consistency property for each bound of the intervals. The key point is that this relaxation is more
easily verifiable than Arc—Consistency itself. Informally speaking, variable z is 2B—consistency for
constraint " f(x,z1,...,2,) = 0" if the lower (resp. upper) bound of the domain of z is the
smallest (resp. largest) solution of f(x,x1,...,2,). Box—consistency [4, 12] is a coarser relax-
ation (i.e., it allows more stringent pruning) of Arc—Consistency than 2B—consistency . Variable
x is Box—Consistent for constraint ” f(x, x1,...,2,) = 0" if the bounds of the domain of x corre-
spond to the leftmost and the rightmost zero of the optimal interval extension of f(z,x1,...,z,).
2B—consistency algorithms actually achieve a weaker filtering (i.e., a filtering that yields bigger
intervals) than Box—consistency , especially when a variable occurs more than once in some con-
straint (see proposition 6 in [8]). This is due to the fact that 2B—consistency algorithms require a
decomposition of the constraints with multiple occurrences of the same variable.

2B—consistency [19] states a local property on the bounds of the domains of a variable at a
single constraint level. A constraint ¢ is 2B—Consistent if, for any variable x, there exist values in
the domains of all other variables which satisfy ¢ when x is fixed to z and Z. More formally, we
have :

DEFINITION 4.1 (2B—consistency ).

Let (X,C) be a CSP and c € C a k-ary constraint over (x1,...,x). ¢ is 2B—consistency iff :
VZ',Xi = D{.i‘1 | dz, € X1y, dz,_1 € Xi—1, 3531'4_1 € Xijt1,---5 Az € X such
that C(fl, ey jiflafiafzdrl e ,"fk) hOldS}
A CSP is 2B—consistency iff all its constraints are 2B—consistency .
DEFINITION 4.2 (Closure by 2B—consistency ). [19]

The filtering by 2B—consistency of P = (X,C) is the CSP P’ = (X', C) such that :

e P and P’ have the same solutions;

e P’ is 2B—Consistent;

e X' C X and the domains in X' are the largest ones for which P’ is 2B—Consistent.

We note ®o5(P) the filtering by 2B—consistency of P. In the following we will use the term
closure by 2B—consistency to emphasise the fact that this filtering always exists and is unique [19].

Box—consistency [4, 12] is a coarser relaxation of Arc—Consistency than 2B—consistency . It
mainly consists of replacing every existentially quantified variable but one with its interval in

5See also http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil /realpaver/main.html
5



the definition of 2B—consistency . Thus,Box—consistency generates a system of univariate interval
functions which can be tackled by numerical methods such as Newton. Contrary to 2B—consistency ,
Box—consistency does not require any constraint decomposition and thus does not amplify the
locality problem. Moreover, Box—consistency can tackle some dependency problems when each
constraint of a CSP contains only one variable which has multiple occurrences. More formally :

DEFINITION 4.3 (Box—consistency ).
Let (X,C) be a CSP and ¢ € C a k-ary constraint over the variables (v1,...,zx). c is Boz—
Consistent if, for all x; the following relations hold :
1 c(X1,. -, Xi—1, [Xi, Xi ), Xig1, - - Xk),
2. c(x1,. ., Xim1, (KX, Xig1y - - -5 Xk)-

Closure by Box—consistency of P is defined similarly to closure by 2B—consistency of P, and
is denoted by P, (P).

Benhamou et all have introduced HC4 [33] an AC-like-consistency that merges 2B—consistency andj]
Box—consistency and which optimises the computation process.

4.3. Local consistency filtering[17]. The algorithms that achieve a local consistency fil-
tering are based upon projection functions.

To compute the projection 7; ;(D) of the constraint C; on the variable z;, we need to introduce
the concept of solution function that expresses the variable z; in terms of the other variables of the
constraint. For example, for the constraint « + y = 2, the solution functions are: f, =z -y, f, =
z—x, f.=z+y.

Assume a solution function is known that expresses the variable x; in terms of the other
variables of the constraint. Thus an approximation of the projection of the constraint over x;
given a domain D can be computed thanks to any interval extension of this solution function.
Thus we have a way to compute ; ;(D).

Nevertheless, for complex constraints, there may not exist such an analytic solution function;
for example, consider = + log(x) = 0. The interest of numeric methods as presented in this paper
is precisely for those constraints that cannot be solved algebraically. Three main approaches have
been proposed:

e The first one exploits the fact that analytic functions always exist when the variable to
express in terms of the others appears only one time in the constraint. This approach
simply considers that each occurrence of a variable is a different new variable. In the
previous example this would give: x(1) + log(z(2)) = 0. That way, it is trivial to compute
a solution function: it suffices to know the inverse of basic operators. In our example, we
obtain f;, = —log(z(z)) and f;, =exp “®.

An approximation of the projection of the constraint over z; can be computed by inter-
secting the natural interval extensions of the solution functions for all occurrences of z; in
C;. For the last example, we could take 7T, jog(z)—0,o(X) = —log(X) N exp—X.

This approach is used to achieve 2B-consistency filtering. In general, the initial constraints
are decomposed into primitive constraints —for which the approximation of the projections
functions are easy to compute— by introducing new variables. Decomposition does not
change the semantics of the initial constraints system : the initial system and the decom-
posed one do have the same solutions. However, a local consistency like 2B—consistency is
not preserved by such a rewriting. Indeed, the decomposition amplifies the dependency
problem, and thus, the yields a weaker filtering (see [8] for a detailed discussion of this
point).

e The second idea uses the Taylor extension to transform the constraint into an interval
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linear constraint. The non-linear equation f(X) = 0 becomes
£0) + 3 mat( 95 () (X, — ) =0
i=1 Oz

where ¢ = m(X). Now consider that the derivatives are evaluated over a box D that
contains X. D is considered as constant, and let ¢ = m(D). The equation becomes:

fle)+ Znat(g—i)(D) *(X;—¢)=0

This is an interval linear equation in X, which does not contain multiple occurrences.
The solution functions could be extracted easily. But, instead of computing the solution
functions of the constraint without taking into account the other constraints, we may prefer
to group together several linear equations in a squared system. Solving the squared interval
linear system allows much more precise approximations of projections to be computed. (See
the following Section.)

e A third approach [4] does not use any analytical solution function. Instead, it transforms
the constraint C;(x;,,...z;, ) into k mono-variable constraints C;;,l = 1...k. The mono-
variable constraint Cj; on variable x;, is obtained by substituting their intervals for the
other variables. The projection 7; ;, is computed thanks to C;;. The smallest zero of C};
in the interval under consideration is a lower bound for the projection of C; over z;. And
the greatest zero of C;; is an upper bound for that projection. Hence, an interval with
those two zeros as bounds gives an approximation of the projection. Projection functions
computed in that way are called 7%°%.

This approach is well adapted for Box—consistency filtering : in [4], the two extremal zeros
of C;,; are found by a dichotomy algorithm combined with a mono-variable version of the
interval Newton method®.
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