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General introduction

* Recent advances in Deep RL have
demonstrated (super) human-level
performance in complex, high-
dimensional spaces:

* DQN for Atari 2600 (2015), AlphaGo
(2016), AlphaGo Zero (2017)

* AlphaStar (2019), Hide and Seek
(2019)
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Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
* Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL
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Definition of Reinforcement Learning (RL)

* RL is a branch of machine learning aimed at teaching an agent (or
several) to react to a dynamic environment to maximize some return.
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RL formal description: main elements

Which state the env will evolve to
is random and partly depends on
the action of the agent: modeled
by transition probabilities
between states (P)

Once an action is taken,

The agent can choose to n the environment delivers
take one of many areward (r € R) as The env can be in one of
actions (a € A) when feedback

many states (s € S).
the envinisstates € S. Y ( )

300 0 =02
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RL formal description: the policy function mt(.)

* The agent's behavior is described by policy function nt(s), indicating
which action to take in state s:
e Deterministic: ri(s)=a
* Stochastic: (a|s)=P, [A=a]|S=s]

Take actiona € A

policy:
n(s) =a
Environment

states € §

t Produce reward r '

UNIVERS TE :'.'.:".". Change to new state s’ € S
COTED'AZUR %<2 with probability p € P
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The objective of RL

* The formal objective of RL is finding mt(.) such that:

() = arg max oy i

policy:

n(s) = a

Agent Environi i I I
Produce reward r @
Value fuLtion V.(s") ,

Change to new state s’ € S

gON'Il'\E/%RASZIl-lJ—E V\dﬂf.probablllty p€EP

The discounting factor y € [0,1]
penalizes the rewards in the future.

Cumulative discounted reward from
time t is defined as:

(00]
_ k
Gy = z V Tt+k+1
k=0



Transitions and reward

* 1i(.) does not only impact the rewards, but also the succession of
states.

* An episode describes the evolution of the variables of interest:
(SO) Ao; RO)I"' (St) At; Rt)r Y (ST; AT; RT)

UNIVERSITE :#3%-
COTED’AZUR %<2~



Model of transitions

* The model is a descriptor of the environment. If the environment has
the Markov property:

P[S;.11S1,-sS = P[S,.1|S,]

* then the environment can be entirely described by the transition
probability:

P(s’,r|s,a) = P[S,,;=5",R,.1=r|S;=s,A,=a]
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Do you know the model of the environment?

* YES, we know the model:
value/policy

* planning with perfect information - find the optimal
solution with Dynamic Programming. acting
planning dllgﬁ_cl
4 )

° NO; we dO nOt: model experlence
e Learn to act with incomplete information
- model-free RL: do not explicitly learn the environment model, |erg?r?ﬁg
\_ focus on reward F,
—> model-based RL: learn the model explicitly as part of the
algorithm
UNIVERSITE :-
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Quality function Q. (s,a) and Value tfunction V_(s)

* To choose the action, the action value function (also known as “Q-value” or "Q-
function”, Q standing for “Quality”) can be considered:

Qr(s,a) = E,;|G¢|S: = s, At = a

* Q,(s,a) can be handily expressed from V_(s’), which corresponds to Bellman
equations: | o
Qr(s,a) = R(s,a) +7v) ycs PLVi(8)

Vi(s') = Ex [Gt+1|5t+1 — 3’]

* V_(s’) is the state value function: it predlcts the cumulated discounted sum of
future reward starting from state s’ and given we follow policy mt(.).
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Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
* Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL
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Multi-armed bandits

* Expected reward for action q:
qx {'-'1:] = E[Rf | At :t’l]

* The Exploitation vs. Exploration dilemma
» e-greedy policy

¢ Other WayS A simple bandit algorithm
Initialize, for a =1 to k:
Q(a) « 0
N(a) « 0

Loop forever:
A o | argmax, Q(a) with probability 1 —¢  (breaking ties randomly)
a random action with probability
R + bandit(A)
N(A) « N(A4)+1
Q(A) « Q(A) + v [R - Q(A)]

UNIVERSITE :g<: L J
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Monte Carlo methods

» Generate entire trajectory then update Q. (s, a)
* Prediction:

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: So, Ao, R1,S1, A1, Ra, ..., S7—1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T1T—1,17-2,...,0:
G+ G+ Ri+1
Unless S; appears in Sg, S1,...,S5:-1:

Append G to Returns(S;)
V(S:) « average(Returns(S;))

UNIVERSITE :#g%: © Sutton and Barto
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Monte Carlo methods

2 possible ways for control:

* On-policies: evaluate and improve the policy that is used to generate
the data

e simpler
» Off-policies: evaluate and improve a policy (target) different from that
used to generate the data (behavior)

* Greater variance and slower convergence
* More powerful and general
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Monte Carlo methods =

t*

* On-policy control:
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On-policy first-visit MC control (for s-soft policies), estimates 7© =~ 7,

Algorithm parameter: small £ > ()

Initialize:
m < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, Ry,...,57_1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =T—-1,T7-2,...,0:
G < yG+ R
Unless the pair S}, A; appears in Sy, Ay, 51, A1 ..., 51, 4;_1:
Append G to Returns(S;, A;)
Q(St, A;) «+ average(Returns(Si, At))

For all a € A(S;):
, l—e+¢e/|A(S:)] ifa= A"
@l ¢ if a # A"

A* «+ argmax, Q(S;, a) (with ties broken arbitrarily)

© Sutton and Barto
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MC methods

* Off-policy

» Relative probability of the trajectory under the target and behavior policies
(the importance-sampling ratio) is

UNIVERSITE :3
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Off-policy MC control, for estimating = ==

Initialize, for all s € 8§, a € A(s):
J(s.a) € R (arbitrarily)
Cs,a) + 0
m(s) + argmax_ (J(s,a) (with ties broken consistently)

Loop forever (for each episode):
b« any soft policy
Generate an episode using b: Sy, Ao, B1..... 571, Ar_1. Bt
G0
W1
Loop for each step of episode, t =T-1,T-2,...,(
G +— vG + Ry
C(S:, A) + C(5:, Ae) + W
Q(S:, Ae) + Q(S:, Ae) + F['? v J (G — Q(S:, As)]
w(S;) « argmax, Q(S;, a) [ﬁlfh ties broken consistently)
If A; # w(S¢) then exit inner Loop (proceed to next episode)

i g7 1
W W sy

© Sutton and Barto
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MC methods

* Generalized Policy Iteration (GPI): interacting process of policy
evaluation and policy improvement

* MC methods may be less harmed by violations of the Markov
property

* Issue of maintaining sufficient exploration
* Off-policy methods subject of many researches
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Temporal-Difference learning

 TD methods update estimates based in part on other learned estimates, without
waiting for a final outcome (they bootstrap).

* At time t+1 they immediately update with observed R,,, and the estimate V(S,+1):

» | e @
A

(St) — V(Sﬁ) -+ &[Rt+1 + HI:V(St—I—l) . V(St)] » + | EB

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V(s), for all s € 8%, arbitrarily except that V(terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S)« V(S)+ a[R +~V(8") — V(S)}
S+« S5

U NlVE RS ITE until S is terminal
COTED’AZUR - .

© Sutton and Barto 20



Time-Difference learning

* Guessing from a guess: is it sound?
— Yes, convergence proof for the estimation (not on policy optimality)

* Convergence proofs apply to the tabular case: much harder with
function approximation
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Sarsa: On-policy TD Control

* On-policy: continually estimate Q,, and change 1t greedily wrt Q_

Sarsa (on-policy TD control) for estimating () = q,

Algorithm parameters: step size a € (0,1], small £ > 0
Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from § using policy derived from @ (e.g., s-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A" from S’ using policy derived from @ (e.g., =-greedy)
Q(S. A) « Q(S,A) + a[R+ vQ(5', A") — Q(S, A)]
5+ 57 A+« A"
until S is terminal

© Sutton and Barto

* Convergence of Sarsa:
* Depends on the policy’s dependence on Q
e Converges with proba 1 to optimal policy if all S-A pairs visited an infinite number of
times, and the policy converges to the greedy policy
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Q-learning: Off-policy TD Control

e Early breakthrough in RL (1989)

Q-learning (off-policy TD control) for estimating = m,

Algorithm parameters: step size o € (0, 1], small £ > 0
Initialize (}(s,a), for all s € 8T, a € A(s), arbitrarily except that Q{terminal, ) =10

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from 5 using policy derived from () (e.g., =-greedy)
Take action A, observe R, 8§’
Q(S, A) « Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]
S 5

until 5 is terminal

© Sutton and Barto
* Q has been shown to converge with probability 1 to Q*:

* All (S,A) pairs must continue to be visited and updated
* Usual conditions on step-size

UNIVERSITE :#3%-
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Tabular Q-learning: implementation

e Q-learning: all (S,A) pairs can be simply tracked

in a dictionary (tabular approach)
* the state and action spaces need to be discretized
— The dimension is always a limiting factor

UNIVERSITE -
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(51 a1)
Q(sz,a4)
Q(s3,a4)
Q(s4, a4)
Q(ss5,a4)

Q(s¢, aq)

Q(s1,az)
Q(sz, az)
Q(s3, az)
Q(s4, az)
Q(ss, az)

Q(se, ay)

Q(s1,a3)
Q(sz, az)
Q(s3, a3)
Q(s4, a3)
Q(ss, a3)

Q(se, asz)

(51 a,)
Q(sz,a4)
Q(s3,a4)
Q(s4,a4)
Q(ss5, ay)

Q(se, ay)

Q(s1,as)
Q(sz, as)
Q(s3,as)
Q(s4, as)
Q(ss, as)

Q(S6r aS)
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Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
e Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL

UNIVERSITE :#3%-
COTED’AZUR %<2~

25



Function approximation

* The approximate value function is represented not as a table but as a
functional parameterized with weight vector w:

v(s,W) = v($)
 Also suited to partially observable problems

» Key-challenge: feature representation of space
* With linear models: Fourier, RBF, etc.

* With non-linear models: ANN learn feature representation appropriate to a
certain problem R

C1: feature maps S4:f. maps 16@5x5
INPUT 6@28x28

Gaussian

U N | V E RS I T E Convolutions Subsampiing Convolutions Subsam;l:l ngF = wnm:::%géﬂ; connections
COTED’AZUR -

© Sutton and Barto

26



Function approximation

* Semi-gradient method: bootstrapping with only part of the gradient
* do not converge as robustly as gradient methods

Semi-gradient TD(0) for estimating © =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function © : 8% x R? — R such that #(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A ~ 7(-]S)
Take action A, observe R, S’
W W+ a|R+ (S ,w) — 9(S,w)| Vi(S,w)
S« 5

until S is terminal

-

UNIVERSITE :#3%-
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On-policy Control with Approximation

Episodic Semi-gradient Sarsa for Estimating g = q.

Input: a differentiable action-value function parameterization §: 8 x A x R? — R
Algorithm parameters: step size a > 0, small £ > 0
Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S is terminal:
w— w+alR—§(S A w)|Vi(S, A w)
Go to next episode
Choose A’ as a function of ¢(S’, -, w) (e.g., e-greedy)
w— w+a|R+74(S, A, w) — 4(S, A, w)| V(S A, w)
S« 5
A+ A

. e © Sutton and Barto
UNIVERSITE :ro%:
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Off-policies Control with Approximation

* Deadly triad: training could be unstable if the updates are not done
according to the on-policy
* Off-policy training
* Bootstrapping
* Function approximation

Wil = Wi + apid VO (S, wy)

0t = Rip1 + y0(St41,We) — 0(S¢,We)

UNIVERSITE :#3%-
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Offt-policy Control with Approximation

* Alternatives to semi-gradient methods are costly

* If any two elements of the deadly triad are present, but not all three,
then instability can be avoided

—> Which one to give up?

UNIVERSITE :#3%-
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Deep Q-Network (DQN, 2015)

* DQN aims at greatly improving and stabilizing the training with:

* Experience replay: All the episode steps (S,, A, R,, S,,;) are stored in one
replay memory: samples drawn at random and used multiple times.

* Partly frozen target network: estimate of Q(s’,a’) obtained from Q(s’,a’;w),
where wis the weights parameters updated less frequently that w

7

§>E = Q(S’,a’)
B -
UI\”VERSH_E :;-. «—— Do whatever you want here

COTE D'’AZUR - . © L. Weng
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Policy gradient methods

e Estimate w(a|s, @)

e Can be simpler for discrete and continuous action spaces

e Can approach deterministic and stochastic policies
* Embed exploration

* |Inject prior knowledge on it

* Action probabilities can change smoothly compared with e-greedy (->
stronger convergence guarantee)

 REINFORCE update (based on the policy gradient theorem):

VW(At|St, Qt)

95_+_1 = Qt + C}fGt W(At|8t39t)

UNIVERSITE :#3%-
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Policy gradient methods

* Reduce variance by adding a baseline: ¢(S;,w)

— actor-critic methods

UNIVERSITE :#3%-
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REINFORCE with Baseline (episodic), for estimating 7g ~ 7.,

Input: a differentiable policy parameterization 7(a|s, @)

Input: a differentiable state-value function parameterization (s, w)

Algorithm parameters: step sizes o > 0, ™ > 0

Initialize policy parameter 0 € R% and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sg, Ag, Ry, ..., S7_1, Ar_1, Ry, following 7(-|-, 0)

Loop for each step of the episode t =0.1,...,T — 1:
G« Zg:t+1 VIR,
0+ G — “IA)(St,W)
W < W+ aVoVo(S,,w)
0« 6+ OZB")/t(SVIH’JT(At‘Stj 9)

© Sutton and Barto
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Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
* Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL
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Recent progresses in Deep RL

uuuuuuuuuuuuuuuuu

e Atari (Mnih et al., 2015):  mp QA
* DQN on 49 Atari 2600 video games E-oeci:-o o £

o]  @j\= )

* Alpha Go (Silver et al., 2016): 8 Bl D

e RL for policy and value function to drive MCTS in self-play
* Human supervision for initializing weights before RL (3 weeks)

* Alpha Go Zero (Silver et al., 2017):

* No human data
* Action policy-driven MCTS for self-play RL

 StarCraftll (Vinyals et al. 2019):

* Change view, discover new strategies with new assets

* Human data supervision, manipulation of reward, selected multi-agent RL,
attention

* Hide-and-Seek (Baker, 2019)

* Self-play, PPO, freeze adversaries, attention

UNIVERSITE :#3%-
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Limits and challenges

HalfCheetah-vl (TRPO, Different Random Seeds)

5000

* Deep RLis not plug and play [1]:
* DRL can be much sample inefficient

* Fair competitors can be hard to find
* RL requires a reward function to design .al— e
Local optima can be hard to escape .

2000 e

Average Return

1000

Random Average (5 runs)

£000- HalfCheetah-vl (DDPG, Reward Scale, Layer Norm)

* May easily overfit e T
* Results unstable and hard to reproduce fe l “Jl J
2 1000 / nAL T s

* Random seeds, re-scaling the reward [2] | /e

o - rs=10
. e S e T T S et S S S

000 025 050 0Fs 10 125 150 17 200
Timesteps <

© Henderson et al.
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Beyond RL

* Imitation learning
* Inverse Reinforcement Learning
* Planning from learned deep models of the environment [1,2,3]

i [1] Hafner et al.. Learning Latent Dynamics for Planning from Pixels. ICML 2019
UN|VER5|TE Je . - [2] Ha and Schmidhuber. World Models. Arxiv 2018.
COTEDAZUR ":- [3] Yan et al.. Learning in situ: a randomized experiment in video streaming. NSDI 2020.



Thank you!



