UNIVERSITE =g
COTE D'’AZUR "-%°-

An introduction to Reinforcement Learning
and Deep RL

Lucile Sassatelli (UCA, CNRS, 13S and IUF)

LJAD-I3S seminar, October 215t 2020

O

General introduction

* Recent advances in Deep RL have
demonstrated (super) human-level
performance in complex, high-
dimensional spaces:

* DQN for Atari 2600 (2015), AlphaGo
(2016), AlphaGo Zero (2017)

* AlphaStar (2019), Hide and Seek
(2019)

UNIVERSITE :#3%-
COTED’AZUR "%s:-

nnected
==
@B
==
=B
=D
[5cs]

Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
* Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL

UNIVERSITE :#3%-
COTED’AZUR %<2~

References

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An introduction. MIT
Press, 2018.

* Freely available at: http://www.incompleteideas.net/book/the-book-2nd.html

M. Romero, F. Precioso, L. Sassatelli. Lab session on Deep Reinforcement Learning. UCA
Deep Learning School 2019.
* Freely available at: https://colab.research.google.com/drive/13Q3nTOJY9vYbhg1COaXXIVM-
|QaVVSaU#scrollTo=EhiX9eQ7DvCe

ﬁlei(]I |rl;par|1. Deep RL does not work yet. Blog: https://www.alexirpan.com/2018/02/14/rl-
ard.htm

Henderson et al.. Deep Reinforcement Learning that Matters. AAAI 2018.

Hafner et al.. Learning Latent Dynamics for Planning from Pixels. ICML 2019

Ha and Schmidhuber. World Models. Arxiv 2018.

Yan et al.. Learning in situ: a randomized experiment in video streaming. NSDI 2020.

UNIVERSITE :#3%-
COTED’AZUR "%s:-

http://www.incompleteideas.net/book/the-book-2nd.html
https://colab.research.google.com/drive/13Q3nTOJY9vYbhg1C0aXXIVM-IQaVVSaU#scrollTo=EhiX9eQ7DvCe
https://www.alexirpan.com/2018/02/14/rl-hard.html

Definition of Reinforcement Learning (RL)

* RL is a branch of machine learning aimed at teaching an agent (or
several) to react to a dynamic environment to maximize some return.

UNIVERSITE :#3%-
COTEDAZUR %2

RL formal description: main elements

Which state the env will evolve to
is random and partly depends on
the action of the agent: modeled
by transition probabilities
between states (P)

Once an action is taken,

The agent can choose to n the environment delivers
take one of many areward (r € R) as The env can be in one of
actions (a € A) when feedback

many states (s € S).
the envinisstates € S. Y ()

300 0 =02

UNIVERSITE ...
COTE D'AZUR -

Lucile Sassatelli (UCA, IUF) — An intro to RL and DRL, Oct. 21st, 2020

RL formal description: the policy function mt(.)

* The agent's behavior is described by policy function nt(s), indicating
which action to take in state s:
e Deterministic: ri(s)=a
* Stochastic: (a|s)=P, [A=a]|S=s]

Take actiona € A

policy:
n(s) =a
Environment

states € §

t Produce reward r '

UNIVERS TE :'.'.:".". Change to new state s’ € S
COTED'AZUR %<2 with probability p € P

Agent

The objective of RL

* The formal objective of RL is finding mt(.) such that:

() = arg max oy i

policy:

n(s) = a

Agent Environi i I I
Produce reward r @
Value fuLtion V.(s") ,

Change to new state s’ € S

gON'Il'\E/%RASZIl-lJ—E V\dﬂf.probablllty p€EP

The discounting factor y € [0,1]
penalizes the rewards in the future.

Cumulative discounted reward from
time t is defined as:

(00]
_ k
Gy = z V Tt+k+1
k=0

Transitions and reward

* 1i(.) does not only impact the rewards, but also the succession of
states.

* An episode describes the evolution of the variables of interest:
(SO) Ao; RO)I"' (St) At; Rt)r Y (ST; AT; RT)

UNIVERSITE :#3%-
COTED’AZUR %<2~

Model of transitions

* The model is a descriptor of the environment. If the environment has
the Markov property:

P[S;.11S1,-sS = P[S,.1|S,]

* then the environment can be entirely described by the transition
probability:

P(s’,r|s,a) = P[S,,;=5",R,.1=r|S;=s,A,=a]

UNIVERSITE :#3%-
COTED’AZUR %<2~

Do you know the model of the environment?

* YES, we know the model:
value/policy

* planning with perfect information - find the optimal
solution with Dynamic Programming. acting
planning dllgﬁ_cl
4)

° NO; we dO nOt: model experlence
e Learn to act with incomplete information
- model-free RL: do not explicitly learn the environment model, |erg?r?ﬁg
_ focus on reward F,
—> model-based RL: learn the model explicitly as part of the
algorithm
UNIVERSITE :-

COTED’AZUR

11

Quality function Q. (s,a) and Value tfunction V_(s)

* To choose the action, the action value function (also known as “Q-value” or "Q-
function”, Q standing for “Quality”) can be considered:

Qr(s,a) = E,;|G¢|S: = s, At = a

* Q,(s,a) can be handily expressed from V_(s’), which corresponds to Bellman
equations: | o
Qr(s,a) = R(s,a) +7v) ycs PLVi(8)

Vi(s') = Ex [Gt+1|5t+1 — 3’]

* V_(s’) is the state value function: it predlcts the cumulated discounted sum of
future reward starting from state s’ and given we follow policy mt(.).

UNIVERSITE -
COTE D'AZUR ;

where

Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
* Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL

UNIVERSITE :#3%-
COTED’AZUR "%s:-

13

% SLOT MACHINE)

Am— .

Multi-armed bandits

* Expected reward for action q:
qx {'-'1:] = E[Rf | At :t’l]

* The Exploitation vs. Exploration dilemma
» e-greedy policy

¢ Other WayS A simple bandit algorithm
Initialize, for a =1 to k:
Q(a) « 0
N(a) « 0

Loop forever:
A o | argmax, Q(a) with probability 1 —¢ (breaking ties randomly)
a random action with probability
R + bandit(A)
N(A) « N(A4)+1
Q(A) « Q(A) + v [R - Q(A)]

UNIVERSITE :g<: L J
COTE D’AZUR e = e © Sutton and Barto

14

Monte Carlo methods

» Generate entire trajectory then update Q. (s, a)
* Prediction:

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € 8

Loop forever (for each episode):
Generate an episode following m: So, Ao, R1,S1, A1, Ra, ..., S7—1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T1T—1,17-2,...,0:
G+ G+ Ri+1
Unless S; appears in Sg, S1,...,S5:-1:

Append G to Returns(S;)
V(S:) « average(Returns(S;))

UNIVERSITE :#g%: © Sutton and Barto
COTED'AZUR %<2~

15

Monte Carlo methods

2 possible ways for control:

* On-policies: evaluate and improve the policy that is used to generate
the data

e simpler
» Off-policies: evaluate and improve a policy (target) different from that
used to generate the data (behavior)

* Greater variance and slower convergence
* More powerful and general

UNIVERSITE :#3%-
COTED’AZUR %<2~

Monte Carlo methods =

t*

* On-policy control:

UNIVERSITE :#3%-
COTEDAZUR %2

On-policy first-visit MC control (for s-soft policies), estimates 7© =~ 7,

Algorithm parameter: small £ > ()

Initialize:
m < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, Ry,...,57_1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =T—-1,T7-2,...,0:
G < yG+ R
Unless the pair S}, A; appears in Sy, Ay, 51, A1 ..., 51, 4;_1:
Append G to Returns(S;, A;)
Q(St, A;) «+ average(Returns(Si, At))

For all a € A(S;):
, l—e+¢e/|A(S:)] ifa= A"
@l ¢ if a # A"

A* «+ argmax, Q(S;, a) (with ties broken arbitrarily)

© Sutton and Barto

Lucile Sassatelli (UCA, IUF) — An intro to RL and DRL, Oct. 21st, 2020

17

MC methods

* Off-policy

» Relative probability of the trajectory under the target and behavior policies
(the importance-sampling ratio) is

UNIVERSITE :3
COTE D’AZUR -

T (ArlSk)

L8y

Off-policy MC control, for estimating = ==

Initialize, for all s € 8§, a € A(s):
J(s.a) € R (arbitrarily)
Cs,a) + 0
m(s) + argmax_ (J(s,a) (with ties broken consistently)

Loop forever (for each episode):
b« any soft policy
Generate an episode using b: Sy, Ao, B1..... 571, Ar_1. Bt
G0
W1
Loop for each step of episode, t =T-1,T-2,...,(
G +— vG + Ry
C(S:, A) + C(5:, Ae) + W
Q(S:, Ae) + Q(S:, Ae) + F['? v J (G — Q(S:, As)]
w(S;) « argmax, Q(S;, a) [ﬁlfh ties broken consistently)
If A; # w(S¢) then exit inner Loop (proceed to next episode)

i g7 1
W W sy

© Sutton and Barto

18

MC methods

* Generalized Policy Iteration (GPI): interacting process of policy
evaluation and policy improvement

* MC methods may be less harmed by violations of the Markov
property

* Issue of maintaining sufficient exploration
* Off-policy methods subject of many researches

UNIVERSITE :#3%-
COTED’AZUR %<2~

Temporal-Difference learning

 TD methods update estimates based in part on other learned estimates, without
waiting for a final outcome (they bootstrap).

* At time t+1 they immediately update with observed R,,, and the estimate V(S,+1):

» | e @
A

(St) — V(Sﬁ) -+ &[Rt+1 + HI:V(St—I—l) . V(St)] » + | EB

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V(s), for all s € 8%, arbitrarily except that V(terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S)« V(S)+ a[R +~V(8") — V(S)}
S+« S5

U NlVE RS ITE until S is terminal
COTED’AZUR - .

© Sutton and Barto 20

Time-Difference learning

* Guessing from a guess: is it sound?
— Yes, convergence proof for the estimation (not on policy optimality)

* Convergence proofs apply to the tabular case: much harder with
function approximation

UNIVERSITE :#3%-
COTED’AZUR %<2~

Sarsa: On-policy TD Control

* On-policy: continually estimate Q,, and change 1t greedily wrt Q_

Sarsa (on-policy TD control) for estimating () = q,

Algorithm parameters: step size a € (0,1], small £ > 0
Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from § using policy derived from @ (e.g., s-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A" from S’ using policy derived from @ (e.g., =-greedy)
Q(S. A) « Q(S,A) + a[R+ vQ(5', A") — Q(S, A)]
5+ 57 A+« A"
until S is terminal

© Sutton and Barto

* Convergence of Sarsa:
* Depends on the policy’s dependence on Q
e Converges with proba 1 to optimal policy if all S-A pairs visited an infinite number of
times, and the policy converges to the greedy policy

UNIVERSITE :#3%-
COTEDAZUR “:::- .

Q-learning: Off-policy TD Control

e Early breakthrough in RL (1989)

Q-learning (off-policy TD control) for estimating = m,

Algorithm parameters: step size o € (0, 1], small £ > 0
Initialize (}(s,a), for all s € 8T, a € A(s), arbitrarily except that Q{terminal,) =10

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from 5 using policy derived from () (e.g., =-greedy)
Take action A, observe R, 8§’
Q(S, A) « Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]
S 5

until 5 is terminal

© Sutton and Barto
* Q has been shown to converge with probability 1 to Q*:

* All (S,A) pairs must continue to be visited and updated
* Usual conditions on step-size

UNIVERSITE :#3%-
COTED’AZUR "%s:-

23

Tabular Q-learning: implementation

e Q-learning: all (S,A) pairs can be simply tracked

in a dictionary (tabular approach)
* the state and action spaces need to be discretized
— The dimension is always a limiting factor

UNIVERSITE -
COTED’AZUR "

(51 a1)
Q(sz,a4)
Q(s3,a4)
Q(s4, a4)
Q(ss5,a4)

Q(s¢, aq)

Q(s1,az)
Q(sz, az)
Q(s3, az)
Q(s4, az)
Q(ss, az)

Q(se, ay)

Q(s1,a3)
Q(sz, az)
Q(s3, a3)
Q(s4, a3)
Q(ss, a3)

Q(se, asz)

(51 a,)
Q(sz,a4)
Q(s3,a4)
Q(s4,a4)
Q(ss5, ay)

Q(se, ay)

Q(s1,as)
Q(sz, as)
Q(s3,as)
Q(s4, as)
Q(ss, as)

Q(S6r aS)

24

Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
e Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL

UNIVERSITE :#3%-
COTED’AZUR %<2~

25

Function approximation

* The approximate value function is represented not as a table but as a
functional parameterized with weight vector w:

v(s,W) = v($)
 Also suited to partially observable problems

» Key-challenge: feature representation of space
* With linear models: Fourier, RBF, etc.

* With non-linear models: ANN learn feature representation appropriate to a
certain problem R

C1: feature maps S4:f. maps 16@5x5
INPUT 6@28x28

Gaussian

U N | V E RS I T E Convolutions Subsampiing Convolutions Subsam;l:l ngF = wnm:::%géﬂ; connections
COTED’AZUR -

© Sutton and Barto

26

Function approximation

* Semi-gradient method: bootstrapping with only part of the gradient
* do not converge as robustly as gradient methods

Semi-gradient TD(0) for estimating © =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function © : 8% x R? — R such that #(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A ~ 7(-]S)
Take action A, observe R, S’
W W+ a|R+ (S ,w) — 9(S,w)| Vi(S,w)
S« 5

until S is terminal

-

UNIVERSITE :#3%-
COTE D’AZUR ..,. ‘ .,.. © Sutton and Barto

On-policy Control with Approximation

Episodic Semi-gradient Sarsa for Estimating g = q.

Input: a differentiable action-value function parameterization §: 8 x A x R? — R
Algorithm parameters: step size a > 0, small £ > 0
Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S is terminal:
w— w+alR—§(S A w)|Vi(S, A w)
Go to next episode
Choose A’ as a function of ¢(S’, -, w) (e.g., e-greedy)
w— w+a|R+74(S, A, w) — 4(S, A, w)| V(S A, w)
S« 5
A+ A

. e © Sutton and Barto
UNIVERSITE :ro%:
COTED'AZUR %<2~

28

Off-policies Control with Approximation

* Deadly triad: training could be unstable if the updates are not done
according to the on-policy
* Off-policy training
* Bootstrapping
* Function approximation

Wil = Wi + apid VO (S, wy)

0t = Rip1 + y0(St41,We) — 0(S¢,We)

UNIVERSITE :#3%-
COTED’AZUR %<2~

29

Offt-policy Control with Approximation

* Alternatives to semi-gradient methods are costly

* If any two elements of the deadly triad are present, but not all three,
then instability can be avoided

—> Which one to give up?

UNIVERSITE :#3%-
COTED’AZUR %<2~

Deep Q-Network (DQN, 2015)

* DQN aims at greatly improving and stabilizing the training with:

* Experience replay: All the episode steps (S,, A, R,, S,,;) are stored in one
replay memory: samples drawn at random and used multiple times.

* Partly frozen target network: estimate of Q(s’,a’) obtained from Q(s’,a’;w),
where wis the weights parameters updated less frequently that w

7

§>E = Q(S’,a’)
B -
UI\”VERSH_E :;-. «—— Do whatever you want here

COTE D'’AZUR - . © L. Weng

31

Policy gradient methods

e Estimate w(a|s, @)

e Can be simpler for discrete and continuous action spaces

e Can approach deterministic and stochastic policies
* Embed exploration

* |Inject prior knowledge on it

* Action probabilities can change smoothly compared with e-greedy (->
stronger convergence guarantee)

 REINFORCE update (based on the policy gradient theorem):

VW(At|St, Qt)

95_+_1 = Qt + C}fGt W(At|8t39t)

UNIVERSITE :#3%-
COTED’AZUR %<2~

Policy gradient methods

* Reduce variance by adding a baseline: ¢(S;,w)

— actor-critic methods

UNIVERSITE :#3%-
COTED’AZUR "%s:-

REINFORCE with Baseline (episodic), for estimating 7g ~ 7.,

Input: a differentiable policy parameterization 7(a|s, @)

Input: a differentiable state-value function parameterization (s, w)

Algorithm parameters: step sizes o > 0, ™ > 0

Initialize policy parameter 0 € R% and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sg, Ag, Ry, ..., S7_1, Ar_1, Ry, following 7(-|-, 0)

Loop for each step of the episode t =0.1,...,T — 1:
G« Zg:t+1 VIR,
0+ G — “IA)(St,W)
W < W+ aVoVo(S,,w)
0« 6+ OZB")/t(SVIH’JT(At‘Stj 9)

© Sutton and Barto

33

Outline

1. Main concepts and notations
* Reward, objective, value function, etc.

2. Tabular methods
e K-armed bandits, Monte Carlo, Time-Difference learning, On- and Off-policy

3. Function approximation
* Deadly triad, policy-gradient methods

4. Perspectives on DRL
Recent advances, limits, beyond RL

UNIVERSITE :#3%-
COTED’AZUR %<2~

34

Recent progresses in Deep RL

uuuuuuuuuuuuuuuuu

e Atari (Mnih et al., 2015): mp QA
* DQN on 49 Atari 2600 video games E-oeci:-o o £

o] @j\=)

* Alpha Go (Silver et al., 2016): 8 Bl D

e RL for policy and value function to drive MCTS in self-play
* Human supervision for initializing weights before RL (3 weeks)

* Alpha Go Zero (Silver et al., 2017):

* No human data
* Action policy-driven MCTS for self-play RL

 StarCraftll (Vinyals et al. 2019):

* Change view, discover new strategies with new assets

* Human data supervision, manipulation of reward, selected multi-agent RL,
attention

* Hide-and-Seek (Baker, 2019)

* Self-play, PPO, freeze adversaries, attention

UNIVERSITE :#3%-
COTED’AZUR "%s:-

35

Limits and challenges

HalfCheetah-vl (TRPO, Different Random Seeds)

5000

* Deep RLis not plug and play [1]:
* DRL can be much sample inefficient

* Fair competitors can be hard to find
* RL requires a reward function to design .al— e
Local optima can be hard to escape .

2000 e

Average Return

1000

Random Average (5 runs)

£000- HalfCheetah-vl (DDPG, Reward Scale, Layer Norm)

* May easily overfit e T
* Results unstable and hard to reproduce fe l “Jl J
2 1000 / nAL T s

* Random seeds, re-scaling the reward [2] | /e

o - rs=10
. e S e T T S et S S S

000 025 050 0Fs 10 125 150 17 200
Timesteps <

© Henderson et al.

UNIVERSITE :;-. [1] Alex Irpan. Deep RL does not work yet. Blog: https://www.alexirpan.com/2018/02/14/rl-hard.html|

COTE D’AZUR "-*+*." [2] Henderson et al.. Deep Reinforcement Learning that Matters. AAAI 2018. Ny

https://www.alexirpan.com/2018/02/14/rl-hard.html

Beyond RL

* Imitation learning
* Inverse Reinforcement Learning
* Planning from learned deep models of the environment [1,2,3]

i [1] Hafner et al.. Learning Latent Dynamics for Planning from Pixels. ICML 2019
UN|VER5|TE Je . - [2] Ha and Schmidhuber. World Models. Arxiv 2018.
COTEDAZUR ":- [3] Yan et al.. Learning in situ: a randomized experiment in video streaming. NSDI 2020.

Thank you!

