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Abstract—Presence of in-network opportunistic cache is
known to cause undesirable effects on Quality of Experience
when using HTTP Adaptive Streaming (HAS). While these
effects on rate-based and buffer-based HAS algorithms have
been studied, the recent near-optimal Model Predictive Control
(MPC) has not yet been considered. We evaluate the impact
of cache presence on MPC and show that caches may cause
instabilities in common set-ups. To tackle this issue, we consider
an idealized cache-aware extension to MPC and discuss its
implementation. Our simulations show that overall cache-
unaware MPC benefits from in-network caching with only
video quality instability being increased, while cache-awareness
brings noticeable improvement in this regard.

Keywords-HTTP adaptive streaming, video caching, QoE,
Model Predictive Control.

I. INTRO

HTTP adaptive video streaming (HAS) has caught a par-
ticular attention recently as an efficient way to stream video
over network. Within this approach, videos encoded with
different quality levels are divided into short segments (from
2 to 10 seconds long) each of them stored as a separate file.
In this way, each segment can be requested with a different
quality, thus allowing the video player to adapt video quality
during the playback according to current network conditions
and user preferences. A number of algorithms are proposed
to make video quality decisions. For instance, Rate-based
algorithms are using previous download bit-rate samples;
Buffer-based approach ([1], [2]), instead, makes decisions
relying on the playback buffer occupancy. Recently, Yin
et al. [3] proposed a Model Predictive Control (MPC)
algorithm for segment quality selection in HAS which
outperforms previous solutions. MPC combines several QoE
metrics in a principled way and solves an optimization
problem in order to select video qualities for segments.

Storing each video segment as an HTTP object makes
video content easily cacheable. This gives an opportunity to
alleviate quickly growing network load caused by consider-
able increase in Internet video popularity. However, Lee et
al. ([4]) have shown a particular issue using rate-based video
quality selection with caches. A common network set-up can
be simplified as shown at Fig. 1, where connectivity between
Client and Cache has higher bit-rate than the other one. In
this case, rate-based quality selection algorithm is shown
to incorrectly estimate network conditions due to difference
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in path capacities to the cache and to the video server,
thus making wrong quality decisions resulting in severe
Quality of Experience (QoE) degradation. A number of
studies have demonstrated their vision on solving this issue.
Some propose traffic shaping to influence quality decisions
on client [5], or predict client decisions in order to prefetch
potentially necessary segments [6]. Other studies ([1], [2])
do not rely on network entities collaboration, and propose to
use playback buffer for quality decisions as it is not directly
affected by difference in path capacities.

We have previously studied direct caching impact on the
rate-based and buffer-based algorithms and how do they
compare to the theoretical optimal [7]. MPC has been shown
to perform better compared to the formers in absence of
cache but there is no evaluation on the impact of caches
on this algorithm. The purpose of this paper, therefore, is
to study the effect of cache presence on the MPC video-
rate selection algorithm. We show that MPC is subject to
increased video quality instability in presence of a cache,
and demonstrate that cache-awareness might alleviate this.

The paper is structured as follows. Sec. II provides a
description of MPC video quality selection algorithm, and
studies the impact of cache on it. Sec. III proposes a way to
improve MPC to be cache-aware. Sec. IV presents detailed
evaluation of advantages of cache-aware MPC compared to
the cache-unaware one. Finally, Sec. V concludes the work.

II. MPC
A. Background on MPC

Yin et al. have identified that the problem of segment
video quality selection in HTTP Adaptive Video Streaming
(HAS) can be formulated as an optimal control problem and
proposed the Model Predictive Control (MPC) algorithm for
selecting the video quality of segments in HAS [3]. The
central point of the MPC algorithm is a linear optimization
problem, consisting of maximizing the Quality of Experi-
ence (QoE) value under video playback-related constraints,
including buffer dynamics and expected segment download
time. Yin et al. define the QoE as the function as in Eq. (1).
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This function is a weighted mixture of the following QoE
related metrics: Video Quality (), Buffer Deficit dBp,
Startup Delay 7T and Video Quality Instability |Qy1 —
Q|- From these metrics, we can derive more informative
ones which can be used for a complex QoE assessment:

o Average Video Quality, the ratio of sum of all the
qualities selected for segments during playback to the
number of segments;

o Total Stall Time, the cumulative duration of buffer
deficit over K segments (or simply the total time
playback was blocked during playback);

o Startup Delay, the time elapsed between the request
for playback and the playing of the first video frame.

o Average Quality Instability, the ratio of sum of all
quality differences between two consecutive segments
to number of segments minus one.

« Average Buffer Level, the ratio of sum of all playback
buffer levels over number of segments.

Coefficients A, 1 and s are providing a mechanism to tune
the expression so as to adapt it to particular QoE objectives.
The effects imposed by changing these coefficients (weights)
are related to the summand(s) having larger weight, i.e.,
to the QoE metric(s) in focus. For example, combina-
tion (A =1, =10, us = 100) will presumably minimize
startup delay and stall time on the expense of the video
quality and its instability. We will focus on this weight
configuration in the rest of the paper as users are generally
most distracted by stalls, as shown in [8].

The analytical expression Eq. (1) allows to make a deci-
sion about qualities of all video segments at once as a result
of optimization. Such an approach, however, can hardly
be implemented in reality due to common unavailability
of accurate link capacity predictions for the entire movie
duration, so authors have called upon using a short look-
ahead window (e.g., 10 seconds long) as it is possible to
develop accurate predictor for such short windows. The
MPC algorithm hence is a two-phase algorithm where the
first phase is a Prediction and the second is an Optimization.
During prediction phase the download bit-rates for the next
segments in the look-ahead window are anticipated; these
predictions are used as input to the optimization phase.
To ensure QoE maximization, the MPC algorithm forms a
control loop where results of decisions are used to decide
the quality of future segments. To avoid solving a linear
optimization problem before downloading each segment,
Yin et al. [3] propose efficient pre-computation and data
representation as a potential solution.

B. MPC in presence of a cache

Various studies show that network caches may cause
undesirable effects on the video playback QoE in the In-
ternet ([4], [7]). While MPC is extensively evaluated and
proven to be nearly optimal in absence of cache, little is
known about its ability to deal with network caches.

To understand how MPC behaves in presence of cache, let
us assume a reference network consisting of a client and a
video server, connected by the intermediate network cache,
as depicted on Fig. 1.
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Figure 1. Reference environment

In this network, the link between the client and the
cache has considerably larger bit-rate capacity than the one
between the cache and the server; such a generalization
can be reasonable for modern mobile networks with edge
caches. The video to be streamed is encoded into several
qualities, where the highest quality has an average bit-rate
greater than cache-server link bit-rate, but lower than the
other link. Based on [7], we expect that in these conditions
segments fetched by MPC will be stored in the cache. During
the next playback of the same video, those cached segment
qualities will most likely be fetched again, but now from the
cache hence with a greater download rate. In this case, MPC
will increase its network conditions estimation and fetch
segments of higher qualities than in the previous playback,
which in turn will also be cached. This process will repeat
over several consecutive playbacks until all the segments of
the highest quality will become cached, allowing MPC to
take full advantage of the faster link and thus to provide
better QoE. Our study aims at understanding the behaviour
of MPC during this transient phase.

We have implemented the reference environment in our
Python simulator using segment quality sizes from real
HTTP Live Streaming-ready video (MPEG-2, H.264, Big
Buck Bunny'). The weight coefficients in MPC objective
function are: A = 1, p = 10 and ps = 100. In the
simulator, we repeated 5 times a sequence of 8 consecutive
playback runs of the same video where the cache is flushed
before the first run of a sequence. Each run is started
after the end of the previous one. This approach mimics
independent plays of “not so popular” short videos, i.e.,
very unlikely to be played by several clients simultaneously.
Fig. 2 validates the progressive caching of segments with
repetitions of playbacks to eventually reach the highest video
quality after 5 playback repetitions. The x-axis shows the
video playback run while the y-axis is the average value of
the metric of interest over the 5 repetitions with the 95%
confidence interval, namely average video quality, average
quality instability, and average buffer level. We omit to
depict evolution of the stall time as our weight configuration
mostly eliminates those.

! Available at https://peach.blender.org
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Figure 2. MPC performance depending on cache presence and cache-awareness; Client-Cache link is fixed to 2Mbps, Cache-Server link is fixed to 4Mbps

With Fig. 2, one can note that MPC is able to take
advantage of the presence of a cache in terms of average
video quality played at the client but that it comes at
the expense of a higher average quality instability during
transience, which could potentially decrease the QoE as
users are sensitive to quality fluctuations.

Fig. 2 also points out large average buffer levels differ-
ences with and without caches. Playback buffer level is not
a subject for optimization, therefore put out of focus in favor
of the optimized QoE metrics. Due to this fact, we can see
that average buffer levels during playback do not exceed
4 seconds without cache. This means that playback is very
likely to stall in case of a major perturbation in the network,
which is a major limitation of the objective function shown
at Eq. (1). Presence of a cache improves this figures already
from the second consecutive run.

III. CACHE-AWARENESS

In case of weight configuration focusing on minimizing
stalls and startup time, MPC with cache-unaware predictor
manages to provide overall high quality playback under
cache presence. However, increased average quality instabil-
ity is observed at the early stages of the transient phase when
the cache is being populated. This instability phenomenon
may seem minor as it only happens during a short transient
phase. However, in case of cache contention the “not-so-
popular” videos might remain cached only for a limited
amount of time and hence suffer from this phenomenon.

The reason for such an instability in presence of network
caches lies in the way cache-unaware MPC determines
which quality to use for the segments to retrieve. As shown
in Sec. II, MPC indirectly needs to know the download bit-
rate of the next segment in order to optimize the maximal
average segment quality that can be requested to the server to
fulfill playback buffer occupancy requirements. With cache-
unaware predictor, this approach yields nearly optimal as
long as all the segments share the same network bottleneck
(i.e., downloaded with about the same download rate).
However, this assumption doesn’t hold true when a cache
is put between the client and the server. In this situation,
as the cache-unaware MPC is unable to determine which
segments will be retrieved from the network cache and
which ones will be retrieved from the server, it ends up

over-estimating the download bit-rate to retrieve segments.
It will thus request segments for a quality higher than what
can really be retrieved as in the transient phase high quality
segments are not all in the cache yet. MPC control loop will
then reduce the download rate prediction for the following
segments as it measures the actual rate while retrieving
segments. However, the lower quality segments requested
by MPC might then be retrieved from the cache, which will
fool MPC that will again overestimate the download rate and
thus request high bit-rate segments that cannot be retrieved
as they are not cached yet. This download rate prediction
error is at the origin of the video quality instability observed
for MPC in case of the presence of a network cache.

To study the cache-awareness of MPC we therefore
consider a download rate predictor having an exact knowl-
edge of whether segments are coming from cache or not,
thus giving an upper bound in algorithm performance. In
contrast to predictor in our cache-unaware MPC model,
where the entire download rate prediction vector (of length
equal to lookahead horizon) is in fact filled with just one
EWMA (Exponentially Weighted Moving Average) value,
our cache-aware MPC tracks two different EWMAs. One is
for segments coming from the cache, and the other one is for
segments coming from the server. Based on its knowledge of
cache state, our idealized cache-aware predictor is therefore
able to predict the expected download rate for each future
segment based on its cache or server origin and optimize its
segment quality selection according to its objective function.
In this way, the cache-aware predictor takes advantage of
the cache presence while leaving a room for fluctuating
download rates, which it is not aware of.

IV. EVALUATION OF CACHE-AWARENESS

To obtain an upper bound of our cache-aware MPC, we
simulated a perfect cache-awareness. For this, the simulator
records which segments/qualities have been requested during
each consecutive playback run and keeps this information
between runs, thus providing perfect cache-aware predictor
with a complete cache state.

To evaluate our cache-aware predictor we implemented a
trace-driven simulator in Python. It uses segment sizes from
areal HLS-ready video (Big Buck Bunny) at the input of the
optimization in order to compute its runtime parameters such



as playback buffer occupancy and video quality decisions.
The video consists of 300 chunks of 2 seconds each, and
is encoded into 8 qualities with average bitrate of 350, 470,
630, 850, 1150, 1520, 2040, and 2750 kbit/sec.

The cache is simulated according to Fig. 1. In the sim-
ulator it is operating by assigning download bit-rates of
Client-Cache or Cache-Server links to particular qualities
of particular segments. These download bit-rates are, in
turn, used for calculating the actual playback buffer after
reception of each segment as a function of previous playback
buffer occupancy, selected segment quality size, and the
mentioned download bit-rate.

We simulate link fluctuations with a mobile dataset [9],
which has a collection of download bit-rate traces from
Telenor HSPA network experienced in a number of scenarios
(e.g., city bus commute, intercity car trip). To make it
suitable for our simulations, we have joined the download
bit-rate traces from several dataset scenarios having close en-
vironment, with the resulting tracefile having 1213 samples.
We have only selected bitrate traces larger than 60000 Bytes
per second. % In order to achieve the required average bit-
rate, each trace sample is being multiplied by a factor in the
simulation process. This factor is specifically calculated to
set the average of all trace samples to a certain value. In the
simulation, we apply this trace by assigning its samples one
by one to each quality of each segment, so that each of the
latter is associated with a unique download rate sample, with
which it will be downloaded in simulation. Three different
connectivity configurations are considered in our simulator:

o f (fixed), where both links have fixed capacity: Client-
Cache is 4 Mbps, Cache-Server is 2 Mbps. Note that
the Cache-Server link capacity is lower than average
bit-rate of the maximum video quality encoding.

e cv (client variation), where Client-Cache link is fluctu-
ating with an average rate of 4Mbps while the Cache-
Server link is stable at 2 Mbps.

o sV (server variation), where Cache-Server link is fluctu-
ating with an average rate of 2 Mbps while the Client-
Cache link is stable at 4 Mbps.

For the reference simulation, the following parameters are
selected: maximum playback buffer is 40 seconds; look-
ahead window is 5; video quality instability weight is 1;
buffer deficit weight is 10; startup delay weight is 100. this
configuration is equivalent to the one recommended by Yin
et al. [3] with only exception of large startup delay weight
used for fixing the latter to the same value (0) across all the
simulations. Each algorithm is being run eight consecutive

2This is done to alleviate inherent drawback of cache behaviour modeling
in our simulation. As download bit-rate is assigned to the particular quality
of a segment, accepting low bit-rate traces may cause unrealistic situation
when large segment, e.g., of 500 kB, will be assigned a very low download
bit-rate, e.g., of 10 kBps. In this case the download time will be simulated
as 50 seconds, during which the communication link bit-rate would have
become larger in real world so segment would have downloaded faster.

times (runs), within each of them cache state is kept. This
experiment of eight runs is repeated five times for statistical
analysis, with cache being flushed before first run of a new
repetition. This parameters resemble ones used in Sec. II-B.

A. Cache-aware predictor evaluation

First of all, we have simulated perfectly cache-aware
predictor with the reference parameters in order to directly
compare its results with cache-unaware MPC implementa-
tion. Simulations (presented by the curve labeled “Cache-
aware MPC” in Fig. 2) have shown that cache-awareness
can significantly alleviate average quality instability com-
pared to the cache-unaware MPC model, while the rest
of the shown metrics are not experiencing any noticeable
improvement. In order to more deeply observe the effect
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Figure 3. Relative advantage of cache-aware MPC to cache-unaware MPC
in a presence of a cache, for reference parameters

of cache-awareness, we have simulated communication link
capacity fluctuations. Fig. 3 depicts relative gain in percents
in total over transient phase of QoE metrics of perfect
cache-awareness compared to cache-unaware MPC with a
confidence interval of 95%, i.e., how proportionally larger
is the value of former compared to latter. It can be seen
from the curves that, alike to the configuration with fixed
links, cache-aware model improves noticeably the average
quality instability performance (i.e., decreasing its value)
but does not introduce any significant advantage for average
video quality and average buffer level. Additionally, Fig. 3
shows an important difference of fotal stall time; though
relative advantage of cache-aware predictor in total stall
time is considerable, the absolute values are often negligible,
especially in case of cv and f connectivity configurations.
The problem of low playback buffer, mentioned in Sec. II-B,
becomes noticeable when network connectivity is configured
as sv, which makes Cache-Server capacity prediction very
difficult. Fig. 4 shows the stall times over consecutive runs in
the mentioned case. As can be seen, stalls are not completely
suppressed with cache-awareness; rather, cache-awareness
eliminates stalls after less consecutive runs — as compared
to the cache-unaware algorithm.

B. Sensitivity analysis

In order to study how does cache-awareness compared to
the cache-unaware MPC under different setup parameters,
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we perform a sensitivity analysis. The following varying
parameters are examined:

« Maximum playback buffer: 10, 20, 40 sec;

o Look-ahead window: 2, 3, 5, 10 segments;

« Number of qualities the video is encoded into: 4, 8, 16.
Each combination of these parameters has been explored.
The results are represented in the same manner as in Fig. 3.

1) Maximum buffer: Small playback buffers help the
cache-aware predictor to reveal its strengths. As can be seen
from Fig. 5, not all the parameters are clearly improved, but
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the relative gain in average buffer level shows a trend of
increasing with lower maximum buffer. On the other hand,
the absolute performance over the transient phase is better
with larger buffers. This can be underpinned by the fact that
very small buffers give less margins to manoeuvre for the
cache-unaware algorithm when facing severe link capacity
fluctuations due to caching. On the contrary, large enough
buffers (able to keep 10 — 20 video segments) make the
cache-unaware MPC more robust to these fluctuations, thus
lowering numerical advantage of a cache-aware predictor.
Finally, results from large buffers (> 30 segments) are not
significantly different from the previous ones.

2) Look-ahead window: Fig. 6 gives an insight regarding
sensitivity of cache-aware advantage to different look-ahead
windows. It can be noted that larger windows do allow
cache-aware predictor to yield even better results compared
to cache-unaware MPC. Average video instability and av-
erage buffer level are noticeably better with window of 10
than with window of 2, while average video quality and
total stall time remain statistically the same. In absolute
values, however, the performance of the algorithms are
being improved with growing look-ahead window, especially



comparing the shortest ones (2 to 3 segments long).

3) Number of qualities in video encoding: As the original
video has been encoded into 8 qualities and because relation
of video file sizes to their qualities is non-linear, we used
logarithmic interpolation to make synthetic segment sizes
for 4 and 16 qualities levels.

Generally, the advantage of cache-awareness grows with
growing number of qualities, in configuration with reference
parameters (Fig. 7). All the metrics are being improved
with increasing number of qualities, but effect on average
quality instability and total buffer level shows particular
improvement. In absolute values, increasing the number of
qualities is observed to induce more average instability and
larger total stall time. The reason for this is that larger
number of qualities provides a capability of a more fine-
grained quality selection which might decrease video quality
instability with cache-awareness, whereas the cache-unaware
MPC would need to jump between more quality levels as to
handle the fluctuating segment download rate.

C. Practical issues of determining cache state

Accurately predicting the cache state (i.e., which segment
qualities were cached before) is a complicated task without
directly collaborating with cache. To achieve this without
the latter, we propose to use intra-video popularity profiles
(where each segment is assigned a probability of being
watched) leveraging the user retention distribution, and to
estimate quality decisions during previous video playback.

Our considerations are built upon the fact that average
video quality grows gradually over playback runs, thus
suggesting that segment quality decisions are usually close
between two consecutive runs. If the download bit-rate of
segment K is noticeably larger than of previous segments’,
it is likely that it comes from a cache. Using the intra-video
popularity profile, we can estimate the probability of next
segment to be cached. If the profile suggests (comparing it
with thresholds) that segment K + 1 will be cached, but
its download bit-rate is too low (i.e., likely that it came
from video server), then we might presume that previous
client’s playback buffer could have depleted hence it could
have backed off to a lower quality. In this case we can try
to estimate which quality it was by performing optimization
with the same runtime parameters except for playback buffer,
which we believe was zero for the previous client. Such
an approach can potentially yield good results, in case if
the intra-video popularity profile is accurate and algorithm’s
threshold for cached/not cached decisions are adjusted upon
each wrong decision. Improvement notwithstanding, dis-
cussed ideas will significantly increase algorithm complex-
ity. We therefore let its implementation and evaluation for
future work.

V. CONCLUSION

In-network caching is one of the effective methods to
tackle the problem of quickly growing video traffic but vari-

ous studies show that caches may have a negative impact on
Quality of Experience when HTTP adaptive video streaming
is used. In this paper, we assess the impact of network caches
on the cache-unaware MPC quality selection algorithm. We
demonstrate that, in cases when the MPC objective function
is focused on eliminating stalls, it takes advantage of caching
in terms of video quality on the expense of its instability.
The reason for the latter is that cache-unaware MPC is not
able to accurately predict download bit-rate when cache is
present. In order to identify whether cache-awareness can
confront this drawback, we propose an upper bound for
cache-aware predictor to MPC that knows the exact cache
state at any point of time. Though significantly increasing
algorithm complexity in a practical implementation, such
a predictor has shown to bring noticeable improvement by
reducing video quality instability.
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