Unequal Error Protection
LDPC Codes

Diploma Thesis

Lucile SASSATELLI

[\ -

UNIVERSITE
de Cergy-Pontoise

International
University
Bremen
Issuance date: 04.04.2005
Submission date: 03.09.2005
Supervisor: Prof. Dr.-Ing. W. Henkel

September 13th, 2005



CONTENTS

Contents

1 Introduction

2 General Presentation of LDPC Codes

2.1 Definition, Parameterization, and Usual Notations . ...... . . . . . ..

2.1.1 Definitions . . . . . . . ..

2111
2.1.1.2
2113

RegularLDPCCodes . . . . . .. ... .. ... ....

Irregular LDPCCodes . . . . . ... ... ... .....

Systematic codingof LDPCcodes . . ... ... ...

2.1.2 Decoding LDPC Codes by Belief Propagation. . . . . . . .....

2.1.3 Density evolution and Gaussian Approximation . . . ...... . .

2131
2.1.3.2
2.1.3.3
2134
2.1.35

3 State of the Art

Density evolution . . . . .. ... ... .........
Gaussian Approximation: Mutual Information Evada
Mutual Information for a Gaussian Consistent Cleénn
EvolutionEquations . . . . . ... ... ... ......

Stability Condition. . . . . ... ... ... .......

3.1 Optimization of LDPC codes over some channels . . . . .. ... ..

3.1.1 Optimisation over AWGN Channel . . .. ... ..........

3.1.2 Optimization over otherchannels . . .. ... ... ........

3.2 UEP Optimization: An Introduction . . . . .. ... .. ... .. ...

12
13
14
17

18
18



CONTENTS [

4 UEP LDPC Codes 23
4.1 UEP properties created by irregularities over bitnodes . . . . . . . .. 23

4.1.1 Parameterization and Asymptotic Study of such UEPC@®des 24

4.1.2 CostFunctionforsuchUEP . . . ... .. ... ... ....... 25
4.2 Short LDPC: UEP linear block code optimization . . ... ....... 26

4.2.1 Algebraic Properties and Unequal Error Protection..... . . . . 27

4.2.2 TheDerived Algorithm . . . . . . . . .. ... ... ... ..., 27

4.2.3 Results under Maximum likelihood and Belief PropageDecoding 28
4.3 Optimization of the Check-Node Profile . . . . .. ... ... ..... 33
4.3.1 Parametrization of UEP LDPCcodes . ... ... ... ... ... 3 3

4.3.2 Density evolution for the detailed representatioth d&P properties 34

4.3.3 SetofPossibleGoodCodes . . .. ... ... ........... 42
4.3.4 A particular choice to realize UEP over checknodes .. .. .. 44
4.3.4.1 Thechosencodingscheme . .. ............. 44
4.3.4.2 Case we don’'t need P: only info columns of H are pruned
andprotected. . . . ... ... ... ... ... 46
4.3.4.3 Case we prune away redundancy in H or choose prdtecte
columnamongit,and thenneedP. . . . . . . ... ... 46
Existenceof . ... .. ... ... ... ... ... 46
Coderate ofthesubcode . . . . . ... ... ... ..... 48
Computation of the preprocessing matrix . . . .. ... .. 50
4.3.4.4 Hierarchical optimization algorithm . . . . . . . .. .. 52
4345 Results . .. ... .. ... 54
44 Puncturing . . . . . . . . e e 56
5 Conclusions 62
A 64
A.1 Transition from proportions of edges to proportionsofles . . . . . . .. 64
A.2 Transition from proportions of nodes to proportionsdfes . . . . . . .. 65

A.3 Expression of the code rate in terms of proportions . . ...... . . ... 65



CONTENTS

Bibliography

67



Chapter 1

Introduction

Nowadays, high rate digital communications are very imguatt It allows increased rate
and number of users, achieving good performances. In oodgogition our work, we first
present the global transmission scheme in Fig. 1.1.

Source Coding »| Channel Coding| .{ Z;i";:it:;n } ,,,,,,,,, _{ Physical Channe]

1
. . Demodulation Estimation
Source Decodini Channel Decodin Despreading Equalization

Figure 1.1: Usual communication chain.

To illustrate our problem, let us describe the elementsisf¢hain. We begin in the trans-
mitter with the following blocks:

e Source coding: in this block, source data are compressetkahdped. Some parts of
the source signal are more vulnerable than others.

e Channel coding: structured redundancy is added to makeolatiat to errors caused
by the channel. The code rakds defined as the ratio between transmitted information
bits and the number of transmitted bits. The source can badexdn an uniform way
or in a heterogeneous one in order to take into account theepies of the source
signal (unequal error protection (UEP) techniques).

e Modulation: the order and the type of the modulation are mgaddere (PSK, ASK,
QAM, multicarrier modulation), the power of transmitteddyols, or the spreading
when we have to deal with a multiple access system by codadipige

e The physical channel: disturbances are introduced. Thenghdeads to inter symbol
interferences (ISI caused by fading channel) due to maltiig, multiuser inteferences
(MUI), and adds (e.g. white gaussian or impulse) noise.

The receiver is composed of corresponding blocks, that eatebcribed as follows:



e Estimation and Equalization: the transmission channestisnated (multiple paths).
Equalization allows to reduce or cancel ISI.

e Demodulation/Despreading: used to find bits from receiwedi®ls and to separate
users in a multiple access system.

e Channel decoding: corrects remaining errors in the previdaiained binary sequence.

e Source decoding: reconstruction of the emitted data byrdpoession of the sequence
going out from channel decoder.

In this work, we will focus on the optimization of channel esdfor UEP, which has to
minimize the effect of errors on media reconstruction bypaidig the channel code to the
structure of the source data (errors should rather affsstil@portant bits, considering the
properties of the source). Here we will only consider LowaBigy Parity-Check (LDPC)

codes, which are very flexible and have very good performan&udies of other UEP
methods have already been done especially for UEP TurbosJadg

Within the framework of channel coding optimization for UESing LDPC codes, analysis
of UEP properties of LDPC codes thanks to usual or detailedrpeterization permits to
express the bit error probability for each class of sengjtmf the codeword. An optimization
method is then proposed. In [17] a construction method igld@ped in order to achieve
UEP for a given code rate and given UEP constraints (prapwstof classes), only by
modifying the irregularity profile of bit nodes, and congidg the check node profile to
be fixed.

The goal of this work was to focus on UEP properties of LDPCesoalchieved by pruning
and puncturing. By pruning some bits in a codeword, i.e. tddig. to 0) and then not
transmit them, or equivalently replacing the correspogdiolumns by zero columns in the
parity check matrix, we directly modify the irregularitygiiie of check nodes, and can
achieve some UEP configuration. The resulting code, of laede rate, is a subcode derived
from a mother code. Thus we study consequences of modifyiegkcnodes profile. The
idea behind is achieving different UEP configurations wiiffiedent pruning schemes and
the same decoder.

By changing the check-nodes profile, we will see that we canstodes that converge faster
on a part of the codeword, but also achieve UEP at infinite rarrabiterations.

This thesis is structured as follows. In Chapter 2 we preaentverall study of LDPC
codes and specially the density evolution, the analytittmanalyze these codes and their
behavior. An overview of usual optimizations of LDPC codggiven in Chapter 3, as well
as an introduction to Unequal Error Protection (UEP) meshdd Chapter 4 is explained the
work of this thesis, i.e. the developped theory for UEP LDR@es, a practical system to
realize it, and expected experimental results. Finallgctgsions are given in Chapter 5.



Chapter 2

General Presentation of LDPC Codes

LDPC (Low-Density Parity-Check) codes are known as a fawiilyigh-performance codes,
that are capacity-achieving on some standard channelhikieinary erasure channel. They
stand for an alternative to Turbo Codes, which achieve veogigperformance codes on some
standard channels too. The following aspects guided usrsider this family of channel
codes in UEP applications:

e Performances fit with UEP target multimedia communicatiolise Turbo Codes,
LDPC codes have iterative decoding, that allows to reacleitodr probabilities of
10-% — 1075, for a wide range of signal to noise ratios. These are theinedjorders
for sensible applications such as fixed picture or videcsiraasions. A delay caused
by the interleaver must be tolerated. Therefore LDPC codasbe an alternative to
Turbo Codes for UEP target multimedia transmissions.

e Systematic code: For our appications, a systematic codsyauseful. In such a code,
information bits are integrally copied into the codewortheTirst interest is that even
in case of decoding errors (convergence to a word that iscadeword), we should be
able to find the systematic part, although with errors. Meeedf the receiver has no
channel decoder, the source decoder has only to ignoredbadancy part. Building
a systematic code from any code is very easy.

e Easyto parameterize and then to optimize: one of the biggksintages of this family
of codes is the possibility to optimize according to the ctedrand the application,
thanks to the explicit (analytical) characterization of #tate of the decoder during
iterations in an asymptotic approach (infinite codewordytely that is function of
channel and receiver parameters. This represents a hugetage compared to Turbo
constructions for which no analytical description exisig)y simulation based on
EXITcharts.

e A not completely explored domain: the optimization of LDP@les irregularity for
standard and non-standard channels has already beendstesipecially by Poulliat
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in [17] for UEP applications, but only considering bit nod€aiblications on the use
of pruning on LDPC codes do not seem numerous (e.g. some i0 stapping sets
cite18), and almost non-existent when pruning is consdlereachieve UEP inside a
codeword.

2.1 Definition, Parameterization, and Usual Notations

LDPC codes are low density linear block codes, introduced@hitager [8] in 1963. An
LDPC code inGF(Q) (with @ = 2%) is represented by its sparse parity mat#hof size
(N — K) x N whose non zero elements belong to the Galois fielt( ). N is the codeword
length, K the number of information bits related to a codewarfl,> N — K the number
of redundancy bits, and the code réte= K/N > 1 — M/N, with equality ifH is fullrank.
The code is the set of wordscGF(Q)* such thaftl.c = 0. WhenQ = 2, this the case
binary LDPC codes and their description is done by parityatiqus. Wher) > 2, this
is the case of non binary LDPC codes. In this work, we consdér binary LDPC codes.
In each case, the structure the parity matrix can be regulaoto A code is regular if the
number of non zero elements in every rows (respectivelyroog) is constant. Irregular if
these numbers are not constant.

2.1.1 Definitions
2.1.1.1 Regular LDPC Codes

Definition 2.1 A regular LDPC code with its three parameteid/,¢.,t,) is defined by a
matrix with exactlyt. and¢, ones per column and row, respectively.

The code rate iR = K/N > 1 — t./t,, with equality if H is fullrank. Those three
parameters define a family of regular codes, and one code gth@family is given by

a particular realization of the parity-check matrix. In ajuralent way, an LDPC code can
be represented by a bipartite graph, called factor graph §tZanner graph, made of two
kinds of nodes: variable nodes representing bits of codéwand check nodes associated
to parity-check functions. Those two kinds of vertices am&dd with each other by edges
indicating to which parity equation variable nodes, i.e #éissociated bits, take part in.

Thejith bit node and thé&h check node are connectedij; = 1. The degree of connection
of a bit node (the same for a check node) is the number of edigesdlto this node. A
node is said connected or of degreeif it is connected to i edges. Figure (2.1) shows
the representation of a regular code parametrizedy= 8,t. = 2,t, = 4). One code
corresopnds to one particular realization of the intedeav
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Codeword

Parity check

|?@@?@@?? o

Interleaver IT ‘

Y ¥ KK oo

Figure 2.1: Representation of regular cod®&’ (= 8,t. = 2,t., = 4). The upper scheme is a
realization of the code, the bottom the family.

2.1.1.2 Irregular LDPC Codes

A code is irregular if it is not regular. The usual parametation of irregular LDPC codes
is done by means of polynomials:

e Polynomial associated to variable nodes:

temax

AMz) = Z PV
i=2

where \; is the proportion of edges of the graph connected to bit nofleegree;,
andt...... is the maximum number of edges linked to a bit node.

e Polynomial associated to check nodes:

trmax

pla) = pia
=2

wherep; is the proportion of edges of the graph connected to checksiofidegreg,
andt, ... i1s the maximum number of edges linked to a check node.

Those two quantities are linked by the code rate:
S pili
iy Nifi

There is also a dual parameterization of the previous one:

R=1-

e Polynomial associated to data nodes:

temazx

Az) = Z X'
i=2

where); is the proportion of bit nodes of degree
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e Polynomial associated to check nodes:

wherep; is the proportion of check nodes of degree

The transition from one paramatrization to another is dgne b

Yo i S _pild
N=SsOuE PSS
Ai = >k kA Pi = S

Thus a family of irregular codes is parametrized(By, A\(x), p(z)). The regular case is a
particular case of this parameterization wh&fe) andp(z) are monomials. Figure (2.2) is
a graphical representation for this kind of cod&(x), p(x)) defines the irregularity profile
of the code according to columns and rows.

Degree of connectivity

RRYLRY

Interleaver IT |

M=N-K

Figure 2.2: Representation of a family of irregular codes.

2.1.1.3 Systematic coding of LDPC codes

For practical reasons, codes should be systematic: intaymhits are directly copied into
the codeword. In general building the generator matrix @fid is not too easy. Never-
theless it is possible to encode using the parity matrix.eBdwmethods exist to make the
encoding to be systematic. However they are out of our sc@will only consider the
simplest method using an upper triangular matrix for H wite®on the main diagonal: info
bits are associated to the non triangular part, and reduydats are computed recursively
from parity equations, and associated to the triangular pEne sparcity of the matrix is
more or less preserved. We will thus only consider systenmaditrices.
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2.1.2 Decoding LDPC Codes by Belief Propagation

Although a maximum likelihood decoding of LDPC codes is jlalss the complexity in-
creases too much as soon as we consider sufficiently longcatiech is important to obtain
decent performances. A sub-optimum decoding algorithrowkrnas Sum-Product algorithm
or Belief Propagation (BP) algorithm is used instead. leagds along edges messages for-
warding probabilities or logarithmic likelihood ratiosl(R). To each branch two messages
are associated, one for each direction. The principle of 8Bayes rule applied locally
(on every bit of the codeword) and iteratively to estimatesteriori probabilities (APP) of
every bit. It has been shown that over a cycle-free graple (tese), local factorization of
Bayes rules leads to exact computation of APP of bit nodethisrcase, messages over the
whole graph are independent from each other. However, imacyodle free graph (which
is the case for any finite length LDPC code), messages arendepéendent, and then APP
are not computed exactly, that says that the algorithm iptinal anymore. The sparcer
the graph, that says H, will be, the less numerous cycleshejland the less important the
dependency between messages will be.

Definition 2.2 The messages over edges are one dimensionnal and dall& for loga-
rithm likelihood ratio. L L R of a message coming from a variable node will be denoted by
andu will denote a message coming from a variable node. They apeively defined by

_ o plyle=0)
v = log p(y\c—l) (2.1)
B p(y'lc =0)
u = logp( 7= 1) (2.2)
(2.3)

wherec is the bit value of the node and y denotes all the informatiaailable to the node up
to the present iteration obtained from edges other than treaarryingo. ¢ is the bit value

of the variable node that gets the message from the checkumtizthe present iteration
obtained from edges other than the one carrying

Let us now present the BP algorithm, where messages oves egeone dimensionnal

(LLR), with v = log 441, the outcoming message from a bit node ane log (y :z :Og

the outcoming message from a check node. Each decodingateimconsists of two stages:

e Update of a bit node of degréénotations on Fig. (2.3))

—u0+ Z u(l b Vm=1.1
k=1,k#m

v, 1S the message (LLR) over theth edge coming out of a bit node. The messages
are the LLR coming out of a check node angds the LLR of the channel observation.
At the first iteration, every messagesare equal to zero.
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Check node

Figure 2.3: Update of variable nodes.

e Update of a check node of degrgénotations on Fig. (2.4))

Bit nodes

Check node

Figure 2.4: Update of check nodes.

0 j N0

Uk _ _ .
tanhT = _H#ktanh 77Vk = ].j

uy 1S the message (LLR) over thi¢h edge coming out of a check node. The messages
v,,, are the LLR coming out of a bit node.

One interation of the BP algorithm is accomplished when aksages of the graph have
been computed once by the previous equations. Aftéerations, we can compute the
aposteriori ratio for each bit node given by:

Vapp,n = Up + ZU]E;L),VH =1,...,.N
k=1

And the final decision on binary values of data nodes is taken b
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1 —si S,
Ty, = g;‘(””’>,v

n=1..,N

2.1.3 Density evolution and Gaussian Approximation

Here the analysis and optimization of LDPC codes presentad asymptotic context under
BP decoding.

2.1.3.1 Density evolution

In [19] and [20], a general method that permits to predichgstptic preformances is pre-
sented: the authors of [20] proved a so-called concentratieorem according to which
decoding performances over any random graph converge éwetage performance when
the codeword length is large enough. Thus, relevant evatuaf performances of LDPC
codes is possible only in the limit case of infinite codewadgths. The infinite graph can
then be considered as a tree (cycle-free graph), which altowconsider every messages
independent from each other. The method calethsity Evolution, proposed in [19, 20],
follows the evolution of probability densities of messagpseading over the whole graph
when using belief propagation. Messages are assumed tadbpendent and identically
distributed (iid). Let express this evolution of densitisnessages [19].

Let o denote one bit node to which is associated the observatiea log (

Py|x (Ya|Ta=1) )
Update of bit noder of degree:

Py |x (Yalza=—1) }*

Mo,a = U + My + ...+ 1My (2.4)

Update of check nodé of degreey:

mog =" (v(ma) + ... +y(my1)) (2.5)
where
v:R— GF(2) xR
z—y(z) = (Sign(z), —log <tanh |Qi|))
with

0 if z2>0
0 with proba0.5if z =0
1 with proba0.5if z =1
1 if z2<0

sign(z) =

Figure (2.5) shows what density evolution computes: thesidies 7, ; and@),;,; of the two
kinds of messages in function éf and@),, respectively. Let us do this computation.
Hypothesis:
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UaNPO

g

Figure 2.5: Densities of messages over edges.

e The zero codeword for being transmit= 1.

e Cycle-free graph (all messages are independent) (due tmwtimentration theorem to
cycle-free case for infinite code length).

P,(z) is the average probability of the codes of the family, suct gub-jacent graph be a
tree.

Pi(2) = P(m{), < 2|za = 1)

Let @ denote the convolution.

e At a bit node:

By the independence assumption, random variables thauareed up in Eq. (2.4)
are independent. So, the density of their sum is the corieolaf their densities.

Pl+1 Py® Q®(z Y (2.6)

So, for an irregular graph:

Py = Z Pi;".P(edge connected to bit node of degrge

P =Y NPy@Qft Y

P = PRy @ \Q) (2.7)
With A(.) = 37, A (1)®0-
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e Ata check node:
Assuming that if
X ~ Fx(Z)

Then
Y(X) ~T(Fx(2))
Using Eqg. (2.5), we obtain in the same way:
QLY =T (D(PL)®U ) (2.8)
So '
Q1 = Z PjQz(i_ll)
j

And by linearity of "1

Q=171 (Z ij(Pl+1)®(j_1)>
J

Qi = I (p(D(Pn) (2.9)
With p(.) = 32, p; ()20,

e By combining Eq. (2.7) and Eq. (2.9) we obtain the desiredngon forP,,; in terms
of P:

Definition 2.3 Density evolution presented in [19] is expressed by

Pii=P@ (T (p(T(R)))

The zero codeword for being transmit, they computed egustiescribing density evolution
along the iterations, and this analysis led to the followimgin results, when binary inputs
and symetric outputs channels are considered (rememlerbivaary input: = 0, 1 channel
Is said to be output-symmetric if and only if the conditiohpr@bability for the output fulfills

p(ylz =0) = p(—ylz = 1)):
e Consistence

Definition 2.4 A density of probabilityf (z) is said to be consistent (i.e. with expo-
nential symmetry) iff

f(z) =e"f(-x), VzeR

According to [19], if the channel is a binary input outputrayetric channel the initial
densities of messages are consistent in the sense of D4&j.(P2oposition 1 of [19]
page 629), and this property is kept along the iterationgobding (Theorem 3 of [19]
page 628).
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e Convergence
According to the consistency conservation propertiese¢fém 7 and 8 of [19]) show
that the error probability%(” is a non increasing function éfand converges to zero as
[ tends to infinity, or equivalently as the message denskitieds toA ..

e Stability condition
Analysing convergence by density evolution, (Theorem 518 [page 630) shows
that studying the stability in the neighborhood of the fixeihp allows to determine
a necessary condition on the parameters of the code to etfeucenvergence of the
error probability to zero.

Theorem 2.1 LetS = [, fo(x) exp~©°/2 dz, wheref, is the consistent initial density
of messages, and Iat(z) andp (z) denote the derivatives of irregularity polynomials
Aw) = S M)t and p(x) = S5 py(w)ar L I N'(0)p'(1) < 7, then
the error probability will converge to zero, otherwise it amzero value will minimize
it.

This condition gives an upper bound on the valye

Under BP decoding, density evolution permits to show thaPCDcode have a threshold
behavior: there is an optimal threshalt of signal to noise ratio beyond which the block
error probability converges to zero for an infinite codewtanagth. In the case of AWGN
(Additive White Gaussian Noise) channel, the optimal thodd is given by the signal to
noise ratio’* = (E,/Ny)*. Asymptotic performances of BP decoded LDPC codes can be
compared with the Shannon limit, and we can then determirad aduld be the best family

of codes for a given channel. This has been done in [19] to fiedlegree distribution pairs
(A(z), p(x)) that have the lowest threshold at a given code rates.

2.1.3.2 Gaussian Approximation: Mutual Information Evolution

We now present the asymptotic study od LDPC codes over the RWi&annel, what we
are going to use from now. Since the previous introduced ifeesolution method is
too complex to be easily applied, a simpler version has betoaduced by Chung [6] for
the particular case of the transmission over Gaussian ehaimensities of messages are
modeled by Gaussian density or mixture of Gaussian desdirea regular and irregular
codes, respectively. Thanks to the consistency of messdgeg stages of BP decoding,
this approximation allows to boil down the asymptotic dengdstudy to study of only one
parameter along the iterations. This kind of density apjpnation has first been introduced
by ten Brink for the analysis of the convergence behaviohefiterative decoding of parallel
concatenated codes [22] using EXIT charts. This approastthen been used for a lot of
concatenated system, like turboequalization, by modehiegnput extrinsic information by
a Gaussian density (m, 2m). Due to the difficulty to express density update rules in many
of the systems, input-output relation are computed by M@wsdo simulations, which is
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equivalent to an asymptotic study when considering infiostgeword lengths.

The huge advantage of LDPC codes is that their parameterpaatheters of the channel
allow to find an analytical relation between the value of thedg parameter (which can
be m for example) between iteratiohand/ + 1. In [6] densities of messagescoming
from check nodes andfrom bit nodes are modeled by consistent Gaussian denslties
seems realistic for messagesbut debatable for messagegFigure 4 and 5 in [6]). We
assume transmission using BPSK modulation over an AWGNraavhose noise variance
is 2. The zero codeword is transmitted (since for a channel aad®® decoder fulfilling
symmetry condition, error probabilities at thé iteration do not depend on the transmitted
codeword). Therforey, is GaussianV(2/0%,4/0%) which is consistent according to Def.
(2.4). Theorem 3 of [19] (p.628) asserts that consistenkgs along iterations for a given
binary-input memoryless output-symmetric channel. Themgrder to be able to model
message densities to be Gaussian, they must fulfil the tensis condition: N (m, o?)

is consistent if and only it = 2m. That is the reason why the density evolution can
be expressed as a one parameter evolution. [6] chose the oheaessages, but we can
chose, still under the Gaussian approximation of the mesdagsities, to follow the mutual
informations of a virtual AWGN channel, whose output wouklrhessages or « coming
out from bit nodes or check node, respectively.

2.1.3.3 Mutual Information for a Gaussian Consistent Chanel

Let v be a message such that- N (+m, 2m) that is the output of a binary-input Gaussian
channel. The mutual information betweeand inputc of the virtual channel is given by:

x, = I(v,¢) = H(v) — H(v|c)

/ Z fc fv\c )logQ(Z fc(C)fv|C(U|C))dU

c==+1 c==+1

/ ch fv\c IOgQ(fv\c( | )))dU

= 3 Z fv|c log2 (fv|c(v|c = 1)+fv\c(v|c = _1)))+% Z /fvc(v‘c) 10g2(fU‘C(U‘C))dU
e=+17/R

c—:l:l
So

2 fule(v]c)
Z / fv\c 10g2 fv|c(v|c - +1) + fv|c(v|c - _1)>dv

c:l:l

We now shorterf,.(v|c) by f(v|c). Since the channel is symmetric, we hgye|c = —1) =
f(=vle = 1), and by consistency(—v|c = 1) = f(v|c = 1) exp~?, this implies:

2f(v|e =+1)
flule=+1) + f(vle = —1)

- / f(v]e = +1) logy )
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- /Rf(v|c = +1) logg(f(v‘ifz(vfl):(;j)e_v))dv

T, =1— / f(v|e=+1)logy(1 + e ¥)dv
R

(v —m)?

x,=1— \/ﬁ /Rlog2(1 +e™) exp(—T)dv = J(m) (2.10)

J is called the mutual information function, linking mutuafermation of a Gaussian con-
sistent channel to the mean of messages whose densiyris 2m). Equation (2.10) is

rewritten as:
J(m) =1—E,(logy(1+¢e™)), x~ N(m,2m) (2.11)

J is continuous and a strictly monotonous function,/sd exists and permits to compute
the mean of messages from the mutual information.

2.1.3.4 Evolution Equations

Let z{") andz!?) be the mutual information associated to messages comingdheck nodes
to variable nodes and from variable nodes to check nodgsectgely. From [7], we have
the following update relation:

e Update at variable nodes

temax

Z Nl (= +zJ Lz=0)) (2.12)

e Update at check nodes

trmax

—1—Zp] (G —1J (1 —=))) (2.13)

Proof: Let« denote a bit node, and the mean of message. From Eq. (2.4) we have

mg)a =TUy +M _(l 2 +...+ mgl 11)

Assuming thatn is m,, the average over the whole graph of messages coming fronk chec
nodes, and by symmetry of the channel:

2
Ty, = ~5 + (degree o). m mi-n (2.14)

And using theJ function, we haven,, = J'(z.,). S0, in the same way as for general den-
sity evolution, making the average over the whole graph adsages coming from variable
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nodes leads to Eq. (2.12).
Proof of Eq. (2.13):
Now let 5 denote a check node. We can rewrite :

mo,a __ 1
—log <tanh(%)) = —log (67))

emoa + 1

Now remember that, by Bayes rule:

Pz = 1y) ) ( P(ylz =1) )
Mo =log| =——— | =log | ———
e T8 (P@: =—1ly)) ~ P\ Plyle=—1)
wherez is the random variable describing the codeword bit value@ated to the variable
nodec«, andy is the random variable describing all the information ipmoated into this
message. Let[0] = P(y|x = 1) andv[l] = P(y|x = —1). A message going out of a check
node will be generally called. So

—log (tanh(mg’a)) = —log (%))

[0]/v[1] +1
—log (tanh(%)) = —log <%))

Using the Discrete Fourier Transform, we have:
DFTo[0] ] [1 1 o[0] T [ v[0] + v[1]
{DFTUH] } B { 1 -1 } ’[v[l] } B {U[O]—v[l] }

mo,a

Finally we have

—log <tanh( )) = DFTwv

Defining DFTv = log (ggzm) This means that a check node sums up the messages,
but in the frequential domain. Moreover according to Eq.1@2.we express the mutual

information of D F'Tv:

zppre =1 — E (logy(1 + e_DFTU»

U_l 2 v
xDFTvzl_E(log2(1+€ ))Zl_E(logz( - ))

e’ +1 e’ +1

wppre =1 —E (1 —logy(1+e™")) =E (logy(1 +e7"))

Which is exactly:
TprTe = 1 — 1y (215)

We can then describe the evolutiomof -, exactly in the same way as, since the update
of DFTu is exactly the same asg ,:

DFTmy), = DFTm{’ + ...+ DFTm",
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That says
DFTmy), = (j — 1) DFTm)
With DFTmY) = J"Y(DFTx,.) = J (1 — x,.), we obtain:
Tppre = J ((J — 1)J (1 — zyc))

Finally over the whole graph:

TDFTu = ij j - 1 (1 - xvc))

Applying Eg. (2.15), we proved Eg. (2.13):

trmax

—1—Zpg (j—1J (1 —=zl)

Note that we can also express the evolution by following treamof messages over the
graph when decoding. To do so, we need the funcfion

Definition 2.5
o(x) = \/_ tanh — ¢ =R du if x>0 (2.16)
o(r) = 1,ifz=0 (2.17)
(2.18)

We then express the evolution of the mean, computed exactheisame way as the mutual
information.

temax

m® = o711 -[1— Z id(m ) (2.19)
t’!m(ll

ml = s+ (b-1)> pmiY (2.20)

(2.21)

The combination of Eq. (2.12) and (2.13) yields the EXIT thafrthe code defined by
(M), p(x)). Itis an explicit non-linear function of\(z), p(z)) and of parameters of the
channel ¢? in our case):

2} = F(\ p,ali ), 0%) (2.22)

wherel = [\, ..., A,,...]" andp = [ps, ..., py,...)" - Several optimization methods exist,
which can considep(z) as fixed in order to makeé' linear in A. The convergence threshold
is defined by the smallegf, /N, beyond whichz!) — 1 whenl — oc.
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2.1.3.5 Stability Condition

Under the Gaussian approximation, [6] provides a loosilgtacondition in the neighbor-
hood of the fixed point:

61/202
Mg SN = (2.23)
175 (5 — 1)
whereas the general condition given by density evolution is
61/202
Ao <\ = (2.24)

>y oG — 1)
Jensen’s inequality shows that the first condition is lotisen the secund one:

trmax trmax

[[6-v"<Y nG-1)

Jj=2 Jj=2

The stability condition is very important because it colsttbe mutual information behavior
at very low error probabilities (or equivalently, when thatomal information is near to 1).
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Chapter 3

State of the Art

This chapter is meant to first introduce principal posdiksi for optimizations using the
characteristics of LDPC codes, and then we focus on alreadiiesl UEP optimization
strategies, before in next chapter presenting our owresfies.

3.1 Optimization of LDPC codes over some channels

3.1.1 Optimisation over AWGN Channel

One of the most common criteria is to minimize the convergeéhoeshold of LDPC code of
code rateR:

* : 1 2

0= argnilgn(2Ra2 |F(\, x,07) > x,Vx€[0,1]) (3.2)
In order to simplify the optimization, we can first only optaa \(z) for a fixed p(z).
Optimization is carried out in two stages:

e Maximization of code rate for fixed(z) ando?:
The most used cost function consists in optimizes the cotte Ra The problem
becomes linear since the cost function and the constragasrbe linear in\(x), and
thus can be solved by linear programming. For giy¢n) and o2, we determine
A(x) that maximizesR. Let A = (Ao, ..., A\, 10 and1/t, = [1/2,...,1/temas]”-
Remembering the relation o

S pili

> Nifi

the optimization problem can be expressed &g; = arg maXA(%TA) under the

constraints:

R=1-



3.1. OPTIMIZATION OF LDPC CODES OVER SOME CHANNELS 19

Mixture constraint:

M1=1

Proportion constraint:
Vz =2.. 'tcma:ca )\16[07 1]

Convergence constraint:

2
vre[0, 1], F(A, z, —) > @
o

Stability constraint ;

61/20

S G

e Threshold minimization

Definition 3.1 A concentrated degree distribution over check nodes is ety the
polynomial
p(x) = p* = 4 (1 — p)a*

From here we will call improperlgoncentrated codea code with such a concentrated
p polynomial.

OnceR is determined, we increaﬁ as long ask can be reached. The resulting
threshold(E,/Ny) is 6 = 57-. p(x) can now be optimized. From Theorem 2 of
[6] (page 665), we learn that a concentrated degree distsiboptimizes the speed
of convergence. That's why, assumip@r) in this form, this optimization means
optimizing one parametef = k£ — p which is the average degree of connectivity
of check nodes. Finally, the degree distribution gaifz), p(x)) that minimizes the
threshold is chosen.

Hence, the evolution of mutual information in the form of aymptotic study for infinite
codeword length shows that an optimal vajig exists for eacht.,..., that allows to reach
a minimum convergence threshold. This threshold appr@8hannon capacity whep,,...
increases, and thentoo (these two parameters are strongly linked togethee)Fgg (3.1)
extracted from [7].

This is similar to Gallager’s result under maximum likelyliodecoding, according to which
densest codes are the best regarding the convergenceaidreBlio important remarks must
be made:

e This asymptotic result is verified only for large codeworddth (e.g. N = 30000),
but for short ones (e.gV = 1000), the tree assumption is not valid enough. Cycles in
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é‘l

tcmax =12

< Infinitely dense code :
P e e e touches capacity

Capacity |- i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|

Figure 3.1: Gap to the capacity, for given code rate.

the graph of densest codes worsen them, breaking messagemaency and thus BP
optimality. Less dense codes have higher girth (the girthedength of the smallest
cycle), which ensures best efficiency of BP decoding. Heheecbde hierarchy for
"short” code length is the contrary of the expected one.

e A second remark, important for our work on UEP, is to hightititat the convergence
threshold deals with the global behavior of the code, and iesee that a lower BER
than the global one can be achieved for most protection edasen if the global
threshold is increased. Differences between classes apédd on which offset on
global threshold is allowed, but this will be seen in detaihext chapter.

3.1.2 Optimization over other channels

Similar optimizations can be performed for other channBE(, BSC, Laplace, AWGN
[19, 20], Rayleigh), among which optmization strategieswaritiple access channels, mul-
ticarriers channels, memory channel or high spectrum effay channels. We restricted
ourselves to an introduction into the usual LDPC optim@atior AWGN channels. This
offers some insights and links to our UEP optimizations.
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3.2 UEP Optimization: An Introduction

Let us consider the transmission of media like voice, fixedge or video, whose char-
acteristics are heterogeneous sensibility to errors inddta stream. The code stream of
source-encoded blocks is hierarchically structured amdatos:

e Headers to describe the type and parameters of compression.

e Structure control data that are indicators of code streamlspnization, position, or
indexing.

e Compressed data delivered from the source coder: e.g. lspeeoder coefficients,
image texture, or movement vectors.

This constitutes a very logical ensemble, and it is obvibas ¢rrors on headers is a disaster
since true reconstruction parameters of the compresseomatknown at all. The final result
at the receiver will then be completely different accordiagerror localization. Sensibility
classes can be distinguished inside compressed datadamgéo the compression system
used. For video, errors on movement vectors are more disgutian errors on texture. The
same holds for low frequency coefficients in fixed images,re&@® high frequency ones are
generally associated to details. Actually uniformly potiteg such a code stream would be
sub-optimal. This highlights the interest of realizing gual error protection by modifying
on the irregularity of a code.

When speaking about irregularity for UEP, we distinguisbtegns with irregularity caused
by puncturing and/or pruning, and those with intrinsicgukarity:

e Irregular punctured/pruned systems: Puncturing consfat®t emitting some bits of
the codeword, thereby decreasing the initial code Fat€he receiver knows the punc-
turing pattern, and considers not transmitted bits as ezasThis technique worsens
the performance of the code allowing to obtain a wide rangeuafs. Unequal error
protection can then be achieved by applying different cadesrto each part of the
source data, according to the required robustness. Anaidnenf adding irregularity
is using a pre-processing block before the code, in orderunepit. Puncturing and
pruning will be the chosen method to realize UEP in our world has been further
studied in [24] for Turbo Codes.

e Intrinsic irregularity systems:
One can think of systems without a posteriori added irregylalock, but with intrin-

sic unequal protection properties.

e [4,16] presented unequal error protection linear codesedri codes can achieve
different protection inside a codeword, i.e., averagedrgprobability is not uni-
form inside the codeword. These properties are due to agebharacteristics
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of the parity-check matrix, considering maximum likelitbdecoding (MLD,
syndrome decoding). The protection level of tkiebit is associated to its local
minimum distance, which is exactly the minimum codewordghéwith a one
in theith position. This is also the degree of independence ofittheolumn
in the parity-check matrix: the minimum number of columnattare included
in linear combination that leads to zero, with coefficiene @t thesith column.
The local minimum distance associated to each bit of theword®determines
the maximum number of errors in the whole codeword, stithaihg this bit to
be corrected. The local minimum distance can be greaterttieglobal one,
which means that théth bit can be corrected even if the whole codeword is
not recovered by MLD. That explains the interest of such sagieder MLD,
when considering in the previously mentioned JPG transams$or example.
Construction methods of such codes have been presented digitproblem is
the poor control that we can have over the proportions of gses, which can
be very disturbing for the latest application.

e Another family of such irregular coding systems is multidecoded modulation.
Each bit of a symbol is associated to a given code, whichrdifiem others by
its code rate. Then the protection level of bits depends erctiie, and on the
position in constellation labelling, which means that twods of irregularities
can be exploited.

e LDPC codes can be punctured [9] in order to create averagguiarity. Punctur-
ing influences the code rate: average performances diffescles two codewords
encoded with different puncturing patterns. Nevertheless more suited to
make use of an irregularity that leads to unequal error ptiate of bits inside a
codeword: most connected bits will have lower error proligbiThis has been
highlighted in [6], and applied for optimization for sevetensmit channels.
The optimization for AWGN done by Poulliat in [17] will be wented in the
next chapter.

In the following we will present our work that concentrated tavo approaches. The first
considers LDPC code as a linear block code and optimizesatie according to the local
minimum distances [4, 16]. The second approach is an asyimmtptimization for BP
decoding and is based on pruning and puncturing of a motlu&r. co
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Chapter 4

UEP LDPC Codes

In the previous chapter, we presented the family of LDPC spds parameterization and
the asymptotic study of belief propagation (BP) decodirengity evolution under gaussian
approximation. We are now going to focus on the possibditieat both dimensions of their
irregularity profile provide, to achieve unequal error pation inside a codeword.

In the first section of this chapter the usual UEP optimizabbLDPC codes is presented,
which allocates most important bits to the most connecteidviz nodes. We then develop
a pruning method for linear block codes, completely derifrech [4, 16], that has no real
practical interest. Finally check optimization is carrmat. This is not usual method due to
the fact that check profile must be concentrated. But thikbgikeen in detail. We then look
at the pruning method to optimize the check irregularity] &inally analyse briefly what an
optimal puncturing of such an UEP code could be.

4.1 UEP properties created by irregularities over bit nodes

We now present the optimization realized by C. Poulliat in,[18]. This was a quite unusual
optimization when it was presented because known methods feeusing on the global
average performances, such as the convergence threshaldiean channel or puncturing
pattern. The global convergence of the error probabilityeim is usually the only one cost
considered, because the parameterization, and the enokdguations of LDPC codes do not
distinguish information and redundancy inside codewordi@msider an infinite code length
and an infinite number of iterations. We try to see how to splize those equations for UEP
created by irregularities on bit and check nodes. We aredsted here in local convergence
of a part of codeword, associated to sensitive data, forefinitmber of iterations, which
determines the following kind of optimization.
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4.1.1 Parameterization and Asymptotic Study of such UEP LDE Codes

Let us assume the proportion of each clasf sensibility defined by the source. We use
from here
= {ak\k = 1NC — 1}

wherelN, is the number of classes over the whole codeword, informdits are spread over
the V. — 1 first classes, thé/.th class containing the whole redundancy. We have

The proportions of bits in codeword inside classes are
]_9 = (OélR, c. 7aNC—1R> 1-— R)

We still havep(z) = Y77 p;ai~!, but define

k)

ts:ma,x

)\(Ck)(x) _ Z )\Z(Ck)xi—l

1=2

and
k)

ts:ma,x

E\(Ck)(x) _ Z S\Z('Ck)xi_l
=2
which are polynomials of proportion of edges linked to degrbit nodes belonging to the
kth class, and proportion of degrébit nodes belonging t@';.
Specified evolution equation of mutual information can therderived from Eqg. (2.12) and
Eq. (2.13):

e Update check nodes

trmazx

) =1- Zp] (G —1J 1 —al))) (4.1)
e Update variable nodes

0 =555 (24 sietn) @2)

k=1 i=2

Equation (4.2) is obtained by adding the mutual informatimming into each class of
bitnodes since there is no overlap between the classes. &kectin derive convergence
and stability conditions from the fact that = ZkNC A(C’“
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4.1.2 Cost Function for such UEP

Under the Gaussian approximation, [6] gives the error drdihaassociated to degreebit

node at théth iteration:
2 4 iJ (o)
Pi(l):Q \/02+22 (33 ) (4-3)

Proof. Let X be the random variable that denotes the a posteriori privyadfione bit. Let
us express the error probability of one bit:

P(bit) — P(X <Obit 0).% + P(X > 0fbit = 1).%
)

1 1
= P(X <0Jbit = 0).5 + P(—X <0Jpit =1 5 (4.4)
Thanks to the symmetry of the channel:
P.(bit) = P(X < 0|bit = 0) (4.5)

Let X, be the random variable whose distribution\N$0, 1). Under Gaussian approxima-
tion, X is Gaussian consistent for any iteration according to thensgtry of the channel and
the conservation of the consistence along the iteratidisit = 0 ~ N(m,o* = 2m). Let
now X denote improperlyX |bit = 0, but this will make the expressions clearer. We then
have:

X, = X—-m
g
X, = ~_¢
o 2
Which yields
2
X=0cX,+—
Inserted in Eq. (4.5), we finally have
0_2
P.(bit) = P(oX,+ 5 <0)
g
= PX,<—=
= P(X.23)

Finally

Now we remember that
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We conclude that

P.(bit) = Q ( %) (4.6)
By replacing the meam of the sum of messages coming into that bit by the its exprassi
of Eq. (2.14), we obtain Eq. (4.3). 0

Beyond the asymptotic convergence threshdld,(xg,)) is an increasing function éf Since
Q is a decreasing function, 4.3 shows that at a given numbeteadtions, the more a
bit is connected, the more it is protected, considering #soaated error probability (the
convergence of this node is faster).

The protection of one class can then be expressed as

1 2 i (al)
P = " S AMQ (\/“ Z 5 ) (4.7)

2 4\ —1(,0 2 k) 71,0
Pl )\(Ck)‘] l(xcv> = T tcmzn‘] l(xm))
@(\/ = )< B < Q) ) (4.8)

with

1 temaz

which is the average degree of a bit nodé€in The minimum bound is directly obtained by
the convexity of the)(.) function, and the maximum bound by the decreasing ofi2he
function.

The derived linear programming algorithm is meant to aahiyoint optimization of\(Cx)
and tﬁ’;”,{m under the constraints of proportion, code rate, convergestability, and hier-

archical constraints (since the optimization is sequértti@ irregularity profile of already
optimized classes must not be modified by the current opatiaia).

4.2 Short LDPC: UEP linear block code optimization

We are now going to present some results regarding UEP gatiran of LDPC code con-
sidering it as linear block code under maximum likelihoodaling. Our optimization
algorithm is based on computating of degree of independehcelumns of theH matrix.
This approach has a huge drawback: due to computation tirces) ibe applied only to very
short codes < 50), and thus excludes required practical approach. Howeienay still
serve as a first step towards understanding UEP createdelgyiarities over check nodes.
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4.2.1 Algebraic Properties and Unequal Error Protection

Masnick in [16] and then Boyarinov in [4] presented lineaequal error protection codes
under MLD.

Definition 4.1 Inside a codeword, the local minimum distank®f the:th bit is exactly the
minimum codeword weight with one in tfth position.

Definition 4.2 The degree of independence of itfe column of the parity-check matrix of
the code is the minimum number of columns that are includedlimear combination that
equals zero, with a coefficient one at tiie column.

Lemma 4.1 The local minimum distancé of theith bit of the codeword is the the degree
of independence of thiéh column of the parity-check matrix of the code.

Definition 4.3 The protection levef; of the:th bit of a codeword is the maximum number
of errors in the codeword that still allows the correctiontbis bit.

i —1
5

fi=1

Thus, the local minimum distance associated to each bitefctddeword determines the
maximum number of errors in the whole codeword that stibwa$ the correction of this bit.
The local minimum distance can be greater than the globalelmieh means that thah bit
can be corrected even if the whole codeword cannot be relsbyr&ILD.

Those algebraic properties can be linked/Aajority Logic Decodingpresented in [3] which
works on a poorer difinition of local minimal distance to sitfypthe decoding.

4.2.2 The Derived Algorithm

Classes are not defined by their proportions at the beginmihgeh is another drawback of
the linear coding approach. Actually, we do not intend tostauct an arbitrary linear block
code, but a subcode of a mother code from which we choosegiecolumns to be removed
in the parity-check matrix in order the resulting parityeck matrix be the matrix defining a
code with the required properties.

Here are the parameters of the optimization:

e Let us denote the set of initial (i.e. mother code) local mimm distances by, =
[wq(1), ..., w1 (No)], which has to evolve ta), along the optimization.

e Let ¢; be the number of different zero linear combinationswgfcolumns (we have
¢; > w;), andCjthe set of corresponding indicesi(d(C;) = ¢;).
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In our example:

e We start from a regular mother code with parametéfs & 20,t. = 3,t, = 6),
the number of info bits of the subcod€, = 3. This defines a subcode length of
Nl = NQ - (KQ _Kl) - 13

e Letthe required UEP profile be, = [w,(1), ..., w2 (K1)], which are the required local
minimum distances on info bits of the subcode.

e U is the vector where indexes of columnstbfto be pruned away are stored (length
K, — K3).

® Wiy IS the initial w, vector, ordered in decreasing order, before optimizatioa o
selected column.

We sequentially choose the best column to be optimized bgingnin wy;,;; from left to
right Fig. (4.1).

4.2.3 Results under Maximum likelihood and Belief Propagabn De-
coding
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Figure 4.1: Sheme of the encoder of the subcode



4.2. SHORT LDPC: UEP LINEAR BLOCK CODE OPTIMIZATION

MLD on UEP and nonUEP short codes
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—&— MLD allbits nonUEP
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Figure 4.2: MLD on UEP and non UEP short codes
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BP on UEP and nonUEP short codes
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Figure 4.3: BP on UEP and non UEP short codes

Figures (4.2) and (4.3) show that the code of length 20 seettsrithan the UEP length 13
one in any case, although biggest differences betweeneslass be seen in the last code.
This could have two possible reasons:

e The Gallager’s result: the densest code is the best under (dbhD even BP because
it is longer in our case)

e The rescaling due to the huge differencies between the tde ates /2 and3/13)

Moreover, considering the mother code as an LDPC code unBeddgoding, we would

say that it is not UEP at all since it is completely regular @hand check nodes). On
the contrary, considering it as a linear block code undedsyme decoding, it has some
UEP properties, since local minimum distances are eithe&r64 dhis specificity of unequal

error protection that depends on the code and on the mearecotiahg, has to be further
explained.

All the essential ingredients for the explanation are ayeavailable from [23], where we

extract some required definitions.

Definition 4.4 (Cycle) A cycle of lengthd is a set of d variable nodes anticonstraint
nodes connected by edges such that a path exists that ttavelsgyh every node in the set
and connects each node to itself without traversing an edigeet
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Definition 4.5 (C4 Cycle set) A set of variable nodes in a bipartite graph i€g set if (1) it
hasd elements, an¢2) one or more cycles are formed between this set and its neigtgoo
constraint set. A set @fvariable nodes does not form(@, set only if no cycles exist between
these variables and their constraint neighbors.

Definition 4.6 (Sq Stopping set) A variable node set is called a$y, set if it hasd elements
and all its neighbors are connected to it at least twice.

Definition 4.7 (L4 Linearly dependent set) A variable node set is called ah,; set if it is
comprised of exactly elements whose columns are linearly dependent but any tsabse
these columns is linearly independent.

According to Lemmad and Theoren2 of [23], we can summarize the relationship between
Cy, SqgandLy in Fig (4.4).

—

Ca S,

Figure 4.4: Venn diagramm showing relationship 6f;, S; and L.

That says that the local minimum distance of each variabtierns associated to a cycle
of length2d,,,,, but the converse is not true (the variable nodes that foriycke @are not
necessarily dependent). So an ML decoder can successtdbdeé an erased stopping set
because the associated local minimum distances of the acelast necessarily low, whereas
such a stopping set can never be overcome by an iterativeldeco

Thus, the local minimum distance of one bit, defined in Defl)4s an upper bound on the
depth plus one of the biggest local tree that starts at theidered variable node. Let us then
analyse the case of a regular LDPC code:

e For afinite code lengthv:

e Under Maximun Likelihood Decoding, the code is decoded iroptimal way,
in the sense of the minimum distance. The code can have UHRpies due
to its local minimum distances, associated to some cycleteangraph, that
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can be different from each other. The UEP properties are degendent on
the realization of théd matrix. The local properties of the code are taken into
account by the MLD.

e The Belief Propagation is sub-optimum decoding, and qgltetjal” in the sense
that it does not take into account local properties randarrdated with theH
matrix. Local differences will be created by the local sydthmalities of BP
decoding at finite code length, and some of these sub-optiessdre associated
to small local minimum distances.

e For an infinite code length: Belief Propagation decodingnésMaximum Likelihood
Decoding. The minimum distance tends to infinity and thetlengthe smallest cycle,
called the girth, too. Therefore, all local minimum distaa¢end to infinity too and
UEP properties defined by the two means of decoding tend thebsame.

Thus, UEP properties depend on the code and also on the wayt kadecoded: the
optimization must be done as a function of the chosen degadethod. This is, of course,
practically determined by the code length since at BwW/N < 500), MLD will be used,
otherwise BP.

4.3 Optimization of the Check-Node Profile

We first describe the specific parameterization of UEP LDPd&spthen the density evolu-
tion for thisdetailed representatiqrand finally our optimization algorithm. Itis based on the
optimization of the check node irregularity profile, whid¢hl€onsiders local performances,
but not only for a finite number of iterations anymore.

4.3.1 Parametrization of UEP LDPC codes

A very useful parameterization for our work is ttetailed representatioaf irregular LDPC
codes presented by Kasai in [11]. They constructed new iiesrolf LDPC codes which are
sub-ensembles of conventional irregular LDPC code enssnibhe detailed representation
they adopted allows to design optimal codes more accurbtehgstricting choices for the
interleaver.

Definition 4.8 Let B and D be two sets or irregularity degrees. A functionBx D — [0, 1]
is said to be thgoint degree distributioof (B, D) if Y ,c 5 > ,ep m(b,d) = 1. This function
describing the connections between the different degredseccode is called thdetailed
representation of the code.
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Definition 4.9 We also defingnarginal degree distributions of variable and check blocks

with respecto 7 by
Az) = Z Ao’

vEB
and
plr) = par’
dE€D
with
Npo= Y wbd), pa= Y w(b.d)
d<€D bEB

Definition 4.10 For 7 (b, d), we define two fractions

(b, d)
P

(b, d)
Ao

A(b,d) = : p(b,d) ==

It can be verified thab(b, d) equals the fraction of edges connecting nodes of ddgaedd
among all edges of degrée

This detailed representationan be used to describe the methods for different Poisson con
structions explored by MacKay et al. in [15]. They distinglun Poisson, a super-Poisson
and a sub-Poisson construction, which differ from eachrdifie¢he variance of the distribu-
tion of the high weight columns per row.

In this work, we focus only on the influence of the check nodegularities on the UEP
properties, i.e., on the distribution of rows weight. We sider codes with a regular bit
nodes profile (all of the same degree).

4.3.2 Density evolution for the detailed representation ath UEP prop-
erties

Theorem 3 in [11] states that under local tree assumptioneptrd2T and some other
constraints, for any < [ < T, the distribution functiong);(d) of messages originating
from check nodes of degrekand P,(b) of messages originating from bit nodes of degree
are equal to

Qud) =TH T A, d)P(b)* ) (4.9)
bEB
Py(b) = Po(b) @ (Y p(b, d)Qi-1(d))**Y) (4.10)

dED
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Note thatP;(b) and @Q;(d) do not depend ol andb, respectively. These expressions are
directly derived from equations (2.8) and (2.6), respetyiv

Let s still denote2/0%. From Eqg. (4.9), we can derive a Gaussian approximationhfer t
detailed representation:

d—1

mP(d) = ¢ (1= [1= Y Ab,d)p(mP(b)] ) (4.11)
bEB
mP(b) =s+(b—1)>_ p(b,dym{"(d) (4.12)
dED

and

a:gi}(d)1j((d1j ( = > A, d)zl) )) (4.13)
beB
2 () = J <8+(b D> pbd)g " (2l 1)(d))>

dED

We may mention the equality betweem,(d) in (4.11) andf; in [6] in the case thaB
denotes the degrees of irregularity over the whole grd@nd; denote the same thing: the
connectivity degree of one check node. Léke the mean over the whole graph of messages
coming out of check nodeg;(s, t) is the mean of messages coming out of a check node of
degreej in terms ofs = 2/0% andt the mean at the previous iteration. In [6] we find

fls.t) =6 (1 - (1 =) Nl + (i 1>t>> )

From this equation we observe that the lowey {®r equivalentlyd in our work, the higher
are the messages coming out of check node of degre®, i.e. the faster is the local
convergence of these. Figure (4.5) extracted from [6] slibevgapsf; (s, t)—t that represent
this local convergence. The curves are parameterizefl byincreases as the number of
iterations increases, from left to right. We clearly seeqtavious quoted effect of j on the
local convergence. We must also notice that the differeet@den messages coming from
check nodes of different degrees seems not to decrease \ehedidg.

b and: denote the same thing: the connectivity degree of one biendetr denote the
function¢(.) of the mean over the whole graph of messages coming out obdési; (s, )

is the functiong(.) (see Def. (2.5)) of the mean of messages coming out of bitsiofle
degree in terms ofs = 2/0? andr the mean at the previous iteration. In [6], we find

hi(s,r) = ( (1—1) i“f pJQb — )~ 1)>

We see from this equation that the higher {er equivalently in our work), the lower ig)(.)
of the messages coming out of bit node of dedr@®, i.e. the faster is the local convergence
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of these messages. Figure (4.6) extracted from [6] showgahsh, (s, r) — r that represent
this local convergence. The curves are parameterized bydecreases as the number of
iterations increases, from right to left. We clearly seephavious quoted effect afon the
local convergence and the flattening out of differences betnmessages coming from bit
nodes of different degrees at high enough number of itergtio contrast to the behavior at
check nodes side.

This check nodes behavior is a very interesting, and we Vab@&ate on more.
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Figure 4.6: h;(s,r) — r fori = 2,..,20 (top to bottom)

The behaviors of different degrees check nodes seem to mediféerent despite of the

increasing number of iterations. This behavior is diretitiiged with the erasure-correction
capability of a check node. In the sequel, we do not provigleraus argumentation, but we
try to give an intuition on what is happening at both kinds ofles.

An erasure message corresponds ta/th& L = 0 since we have absolutely no information
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from the channel if the bit wag or 1.

e At a bit nodeLLRs are summed up. Then it is sufficient to have at least one gessa
not erased to ensure that all the messages but one comingtliilserbit node are
different from 0. So the probability that at least one messagnot erased grows with
the connectivity of the bit node, which explains that the enabit node is connected,
the more it is protected.

e At a check nodd.LR are multiplied (improper but equivalent singenh . = 0) <
(L = 0)). Then, it is sufficient that two messages are erased to hhileeahessages
coming from this check node equal to 0. So the probability #deast two messages
are erased decreases with the connectivity of the check mddeh can explain the
less a check node is connected, the more it can correct imgpenasures.

Remember thal LRER, and0 < tanh(LLR) < 1. At a high number of iterations, many
LLRs are high.

e At a bit node, the important L Rs are the highest because they are summed up. At a
given high numbet of iterations, we decide that a message coming out of a b nod
is of bad quality if the correspondingL R is below a fixed threshold that does not
depend on the considered bit node or on the number of itesatidt a high enough
number of iterations, a bit node produces bad message (i.e. dloR) if the number
of incoming highZ L Rs is below a fixed number that we choose in terms of the number
of iterations, i.e. in terms of the order of the currdrtRs that can be added to reach
the fixed threshold, but not in terms of the degree of the hitesthe quality criterion
for the messages is the same over the whole graphfét) denote this maximum
number of highL L Rs that produce bad messages at/théteration. Letp, denote the
probability that aL. LR be considered as high (i.e. message of good quality) dtlihe
iteration.

Then we can write

Pb(Zi(’L) = P(a message coming from a bit node of degrbe of bad qualitjhigh numbet of iter)
min(fiz(l),7)
. r in(fiz(l),i)—k
= Z Omin(fix(l),i)pl (1 — pl)mm(fz:c( ),i)
k=0

Since
llim LLR =
we have
lim fiz(1) =0
whereas the connectivity degréef a bitnode is, of course, fixed when decoding.
Therefore,

lim min( fix(l),7) = fiz(l)

l—o0
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Hence, at high enough number of iterations, we obtain

fiz(l)
1) T
lim Pb(ad Z Ofwc pl )f Ok

l—o00

and then can state that the probabilﬂé(éfi(z') that a bit node of degreeproduces a
bad message tends to be independent of its degwdeen the number of iterations
increases sufficiently.

We conclude that when the number of iterations tends to tgfitihe probabilities
Plfflfi(z'l) and Plffl)d(iQ) of two bit nodes of different degreés andi, to generate bad
messages tend to be the same. This means that all the var@ids of the graph of
any degree have the same behavior at a high number of itesatio

This explains that the UEP created by irregularities ovenbdes disappears at a high
number of iterations.

e Whereas at check node side, high R have no influence since they are translated by
ones by the hyperbolic tangent and then multiplied. The nmpgortantL L Rs, which
determine the quality of outgoing messages, are the srhales. A message coming
out of a check node is of bad quality if at least one of the inogni. L ks is small. Let
q; denote the probability that&L R entering into a check node be considered as small
at a given high number of iterationsThen we can write:

Plfgi () = P(amessage coming from check node of degrbe of bad qualityhigh numbet of iter)

= P(at least one of incoming L R be smalllhigh number of iter)
J—
= ZC’“ (1 —gq) "
k=
Since we are at a given high number of iterations, this carppeoaimated by

POGHY=G-1)-q

Let us now express the ratio between the probabilities ajaing L L Rs of a check
node to be small for two check nodes of different degreemd js:

P& _ Gi— Da
PO () Ga—Da

Pb(cll)d(jl) -1
Pn(G2)  J2 =1
This ratio is a constant. It does not dependggni.e., on the number of iterations,
for high enough number of iterations. The behaviors of difé check nodes remains
different even at high number of iterations, i.e., at a lowdoror rate.
This explains that the UEP created by irregularities oveckmodes remains at a high
number of iterations which we exploit in this work.

(4.14)



4.3. OPTIMIZATION OF THE CHECK-NODE PROFILE 40

We continue by switching from mean of messages to their nhutt@mation, in order to be
able to plot EXIT charts (Extrinsic Information Transferacts) for UEP codes and express
the error probability.

B andD can either be the degrees contained in the whole graph, endeip (4.13) desbribe
the usual Gaussian approximation of density evolution erdégrees inside one class of
protection. We have seen at the very beginning of this cindipé¢ a class is defined by the
bit nodes that belong to it. The check nodes belonging tossahall be the ones linked to
the bit nodes of this class.

The averaged mutual information of messages going fromhkekcnodes of this class to
the bit nodes of this class can be expressed as

2O = 3T AW ST 5O b, d)al)(d)

bECy, A<y,

with p(©%) (b, d) := Zgggg and A\ = 3" e, (b, d), thenY e, p0(0,d) = 1.
b

Together with Eq. (4.13), we obtain

0P =1 STND ST p D@ [(@d-D)I 1= S Abd)e

bEC, dECy, vEgraph

And so we can express the difference defining the convergdmee classe, i.e., the medium
quality arriving to its bit nodes, compared to the mediumligyaf all messages of the graph
at the previous iteration.

2O _ =1 _ 1 Z)\Ck Z )(bd)J<(d1J ( Z (b, d)x )) 20D

bEC), dECy, vEgraph
(4.15)
which is in our particular case of regularity over bit nodg& ) = 6(i — 3)):
2
A1 el =1 Y @ (@) = TG+ - )T el ) ) - ol
dECy,
We can rewrite this as
2 =l = 1= 3 p @I (d = 1)L = al))) = a2l (4.16)

A€y,
In the following we will keep the last expression of this gamce the relation between”

andz!,™" does not depend on parameters included in the optimization.

According to Eq. (4.6), we can express the error probakalgyociated with a bit at tHéh

iteration by
Pbit) = O <\/mean of messa2ges coming into))it (4.17)
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In our particular case of aregular degree distribution denodes, the difference between
bits is due anymore to their degreef connection, but caused by the degree of connection of

the check nodes linked to this bit (callgt] (bit)| later) Equation (4.3) (extracted from [6])
is

gil_;h Za Q( (xvc ))

And the error probability of bits inside clags. is:

_ (l)(Ck)
€ J A (zee )
RS Q( T )

PO _ (\/S + B =1J 1 4ec, P9(d)(1 = J((d—1)J 1~ xf)lc)(?)))))))

+1 - 2

Then we can then derive bounds on the error probability cdsala,, wheredﬁg’; IS the
minimum degree of checks belonging to the class

9 +1

J S+ (B Sueq, I (PO@1 - J(@- DI —alE) |
Q < P9 <

(4.18)

Js+@1ﬂ1<1ﬂug%)Jlﬂ$$@D0
@ 2

However more interesting bounds seem to be the ones direatthe difference between
mutual informations, defining the convergence of one clasgpressed in our particular
case as:

1Y (Suee, PO (Dd =17 (1= ) =2l <ald™ =2l <1 (W) = a1 - 2ld)) - 287V @.29)

We see a dependency on the average check connection degineectEs<),:

(Ck Z p Ck

dECy,

Our algorithm is directly derived from the given bounds in. E4.19). It is first meant to
speed up the convergence, but we will see that UEP propatiesemain at high number
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of iterations. At given g then at givencgfl), we try to maximize the bounds of Eq. (4.19)

by optimizing jointly both parametepsCs) andd'<*)

Therefore, the most protected classes, at a given numbégrafions, are the ones linked
with check nodes of lowest degrees, and even at high numbierations according to

Eq. (4.14). We should highlight two results of the asymtajpproach that appear to be
contradictory to the first section of Chapter 3:

e The correction capability of a check node increases wheooitsection degree de-
creases, whereas

e The convergence threshold decreases when the connectipeedef check nodes
increases (with variable nodes degree).

We may think that at low SNR (bad quality of messages), and nawber of iteration
(increases the risk that poof;| bit receives only bad messages), the hierarchy of classes
is reversed. This is not the case when looking at simulatiahsny SNR, at any number

of iterations, the class with the smallgshas the lowest BER. We should rather think that
improving convergence of some classes, still acting onlchedes, implies worsening some
others (see Fig. (4.10)), and worsening the overall comrerg threshold of the code. That's
why we should define the set of possible good codes, consglpractical code length and
expected performances.

4.3.3 Set of Possible Good Codes

Irregularity on the check profile leads to two problems:

e Concentration problem: influences the speed of convergence of the code. Indeed
Chung has shown in [6] that a concentrapéd) polynomialp(z) = pz?+ (1 —p)z®*
defined in Def. (3.1) maximises the speed of convergence efmimole code. To
achieve UEP properties by irregularity on checks profitdeltolerance on concentra-
tion, and then on the global speed of convergence has to beedeflhe global code
will converge slower, but its most protected class will cenge faster that the ones of
concentrated code Fig. (4.9). However, the problem is naxtemely important,
since the complexity is not so much increased with the nurobé&erations due to
intelligent scheduling algorithms [5].

e Density problem: according to Gallager’s result, densest codes have theslogap
to capacity. At given code rate, there is one optimum avecag@ectivity of check
nodesp that minimizes the gap to the capacity Fig. (3.1) (for inéntiode length
and infinite number of iterations). This key parameter ofdbde, linked witht..,,,..,
determines the density of the code. The denser is the grhaplhigher have to be the
connectivity ratio. If the value off is moved from the optimum, the value 6f,..
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must be changed too. Thus, at a giveR,., the requireds can be achieved wether
with a concentrated degree distribution at check node sidejth an unconcentrated
one. But obtaining UEP by reducing the degree of some ched&sneeds to adapt
temaz- If ONe does not do so, the global convergence thresholdeoédide, expressed
by E},/N, will increase. That is the main problem in the chosen optatidn scheme
hat we present later. Our optimization, by removing bit rpdecreaseswhile ...,

is kept. The UEP less dense code must have higher thresholee\rer if we consider
finite (quite short) code lengtl, a reducingy approach could be relevant due to the
reversed hierarchy (chapter 3 first section). Bor= 1500, both codes have quite
same global threshold (at infinite number of iterationsth&ugh thresholds of these
found UEP codes are the same, UEP properties are quiteatifferg. (4.10). Possible
approach for long codes would be to first choose a tolerarisetebn global threshold
Fig. (4.7) in order to fix a trade-off between differences lalsses and degradation
of the threshold, but this work is not able to ensure that npostected classes of
unconcentrated code with degraded threshold will have l@m®r probability than
the global more concentrated code with lower gap to capdaityiong code length.
We should quantify, for high number of iterations, the gditooal thresholds of most
protected classes in function of the amplitude over chegkes. Somehow for short
enough code length, the chosen optimization seems to hentle

Convergence threshold

Set of potential good codes

0+e€

Average degree of connectivii

Figure 4.7: Set of potentially good codes.

Thus, at short enough code length, and low or high numbeeddtibns, such approach that
reduces in our chosen optimization system is quite flexible:



4.3. OPTIMIZATION OF THE CHECK-NODE PROFILE 44

¢ If the transmission has to be achieved, even with poor guali allow big amplitude
on degrees of check nodes. For example if one wants to traasdfG picture even
with bad quality, putting headers and very low frequency D&oEfficients in most
protected classes ensures the transmission, even if thiémggicture is quite fuzzy.

e If initial global threshold must be kept, this UEP methodpwing a p polynomial
almost concentrated (three consecutive degrees), canebeasea kind of patch, or
second stage method after UEP optimization over bit nodes.

Remember that the spreading of degrees of check nodes shoulite a problem if the
maximum degree of connection of bit nodes is adapted, i.a.jant optimization. It could
raise a problem if the check optimization is proceeded #fiebit nodes optimization, as a
second stage. If it is done before, a constraint Qn, should be added in the optimization
of bit node profile if one wants to keep the best convergenesskiold.

4.3.4 A patrticular choice to realize UEP over check nodes

The goal of this work was to focus on UEP properties led by giand puncturing meth-
ods. Actually by pruning some bits of the codeword, it meanisxt(e.g. to 0) and then not
to transmit them, or equivalently, replace the correspogdolumns in thed matrix by 0,
we directly modify the irregularity profile of the check najend can achieve some UEP
configuration. The resulting code is a subcode derived fronotner code. By doing so, we
intend to reach different UEP configurations, with diffarpruning schemes, with the same
mother code and the same decoder.

We assume the number of information components of the sebtmbe given. Then the
code rate of the subcode is given too. We will see that the abaduedundancy is the same
in the mother code and in the subcode.

4.3.4.1 The chosen coding scheme

Figure (4.8) shows the coding scheme that we use as a stpding

Let H andG be the parity-check (siz&/, x N,) and generator (siz&, x N,) matrices of
the mother code and assume that they are in a systematiciterrfu(l rank). LetR, be the
code rate of the mother code. The subcode has a given numipéo bits: ;. Then we are
able to prune away, — K; columns of theH matrix and the subcode would have a length
of Ny = Ny — (K, — K3). We introduce a preprocessing generator matrix, cafésize
K, x Ky), which is used to fix the desired bits of the codewords of theede.

Letu be the number of pruned bits, then the code rate of the subsode

KQ—’LL
R, =
! NO—U
K

T Ny (Ko - K) (4.20)
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Information P G . Codeword
- Ko X N N
lengthK; K1 x Ko oo lengthNy — Ko + K

Mother code
Subcode
Figure 4.8: Scheme of the subcode encoder

Then we can writd?; as a function ob = u/Ny:

_RQ—U
o 1—vw

Rl (U)

which is a decreasing function of Whatever the number of bits we prune away, pruning
decreases the code rate.

This preprocessing matrix is not needed if we prune away ocolymns of information of
theH matrix, and choose th&; best protected columns among the information columns of
theH matrix, which reduces a lot the possible UEP configurations.

Let G’ of sizeK,x K, be:G" = [protected columns d&, columns ofG to be pruned awdy
andB of size Ky x Ky be:B = [Ig,, 0x, x(ky—Kky)]-

We are going to choose some columndbfo be pruned away. This means that the corre-
sponding bits of the codeword of the subcode must equals zerdixed deterministically.
Then the corresponding columns of the generator matrix efstibcode have to be made
of only zeros. Once we determined thg best protected columns of tii& matrix of the
mother code, the corresponding columns in the generatanwdtthe subcode have to be
columns of the identity matrix, since the UEP code must b&esyatic to be able to control
UEP over information bits.

Then the preprocessing matRxwhich is the tool to achieve the UEP we chose, is designed
such that

U

P-G =B (4.21)

We are going to verify that we can choose totally freely #ye— K bits to prune away and
the K, best protected among thé, bits of the mother code by discussing different choices
of columns to prune away and to protect, and showkhpermits to reach the expected and
desired code rate.
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4.3.4.2 Case we don’t need P: only info columns of H are pruneand protected.

ThenHg and G4 are the parity-check and generator matrices of the sub@vdeybtained

by removing columns to prune away Hi, and the corresponding ones, which are columns
of the identity, inG where we remove also corresponding rows (i.e. the row whereet
was the one). Since the best protected columns are choseingsibformation columns,
they are already made of the identity. Theg andG; are of sizeM x Ny — (Ko — K7)

and K7 x Ny — (Ko — K;), respectively. They are both of full rank (becausgis made

of the identityIlx, andHy of I,,, since pruned columns are not identity columns which are
associated to the redundancy). Then the code rate of thedemwould be:

rank(Hj) Ky

Ri=1- =
! N—(Ko— K1) Ny— (Ko— K,)

The obtained rate is the desired one.

4.3.4.3 Case we prune away redundancy in H or choose protedi€olumn among it,
and then need P

We prune non identity columns @&, and then may have raf&’) < K, which can raise
a problem on the existence ofRxmatrix that fulfills Eq. (4.21) becaus&’ can be not
invertible anymore. We first prove that we can find a full rdhknatrix, and then will see
that the code rate of the subcode is the one desired.

Existence ofP

Definition 4.11 A matrix is in areduced row echelon form if it is made of a triangular
upper part of size the rank of the matrix, after linear conaions of its rows, and then
permutation of the columns.

Definition 4.12 A matrix will be said in areduced row form if the previous manipulations
on its rows have been made, but without permutting its cotuatthe end.

So we may have ranfc’) < K,. We want to find a condition o’ such that we can
computeP that fulfills Eq. (4.21).

Theorem 4.1 A necessary and sufficient condition @h that allows to computd® that
fulfills Eq. (4.21) is:
rank(G') > K; (4.22)
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Proof: Let G, beG’ in areduced row form (i.e. without any manipulation on theiomns
of G'). We prove that such linear combinations on the row&ostill allow to find aP-
matrix such that

P, -G, =B (4.23)

Let gzk denote thekth row of theG, matrix. Then we have the linear combinatigs). =
Zl ' a¥g,. Let A be the matrix where at any colunirand rowk its element is equal to

l

Remember that for any matrices
rankA - B) < min(rank(A), rankB)) (4.24)
e Necessity
Using Eq. (4.24) in Eq. (4.23) we obtain
rank(B) = K; < min(rank(P2),rank G,))

A necessary condition is then
rank Gs) > K,

since rankG) = rank(G') by construction ofG, this condition is equivalent to

rank G') > K,

e Sufficient
Assuming that ranfGy) > K7, the computed®, matrix from Eq. (4.23) will be of
rank greater or equal t&; by construction. Since

G, =AG
we translate Eq. (4.23) by
P,-A-G =B (4.25)
which means that
P=Py.A (4.26)

and from which we can infer
rankP,- A =P) > K,

The P matrix will be computed by using Eq. (4.26).

The condition
rankG') > K,

is then necessary and sufficient to ensure the existence afrax® that fulfills Eq. (4.21),
and sinceP is of sizeK; x K, P will be of full rank according to Eq. (4.25). 0
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Let rg denote rankG’). Equation (4.23) can be represented by

non zero part of reduc row for 1
Giyx
Pa. _ _ _ Q_X ’ _ _ _ - OKlX(Ko—Kl)
1
0 (Ko—rg)x Ko
(4.27)

ProvidedG’ fulfills Condition (4.22), a solution foP,, exists, and if rankG') < K, then
we have degrees of freedom 5, and then also foP.

Code rate of the subcode Let us now compute the rate of the subcode. For this, we
consider the decoding. We have two possibility for the deupd

e Either we use the decoder of the mother code without addigtheng, the parity-
check matrix of the subcode will exacti,,,other with pruned columns removed.
This allows to save memory and complexity, but does not eixplbthe available
parity-check equations since the ones of the preprocessugl are not used, which
limits the performances.

Then we have
B rank(Hmotherpruned)

No — (Ko — Ky)

A constraint, calle@ode rate constrainh the optimization algorithm, ensures that
the parity-check matrix of the subcode, i.e. the matrix af thother code with-
out the pruned columns, will have a code rate]—\pfm, or that equivalently

0
ran k([_Imotherpruned)'

R =1

e Or we use all the available parity-check equations to hattebgerformances. Let us
study this case in what follows.

So in this last case, let Usrget pruning and consider the subcode as an usual serial
concatenation(without any interleaver, discussed later) of the two cddemdG (i.e. the
mother code).

H,, ... is not anymore the parity matrix of the subcode since anqgihgty equations are
added. The subcode is defined by:

GSZP.GZK1XN0

HS : (NO_Kl) X NQ

H, is made ofH,,, ;40 @and theH, parity matrix of the generator preprocessing maRix
H, is of size( Ky — K;) x Ky:

H, = [ I, k) Rigo x| (4.28)
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Ix,— ) is the identity associated to redundancy columns of theogie®e, andR (x,— x,)x x;
are associated to information bits of the subcode.
The same form foH of the mother code:

H=[ Iy -y T ro)xro | (4.29)

The K, bits of the codeword of the precod®are directly copied into thé&(, information
bits of the mother code. The ha¥g, in this form:

Hmother

H, = - - - (4.30)

O(Ko—Kl)X(No—KO) Hp(Ko—Kl)XK()

That can be rewritten as

Hs _ INO—KO T(NO—KO)XKO (431)
O(Ko—Kl)X(No—KO) Hp(Ko—Kl)XK()

G is in a systematic form buP is not, i.e. H,, ., iS in a systematic form butl, is not.
We are only sure that the bits of the whole codeword that Fydéirity-check equations of
the precodeP are the information bits of the mother code. The parity-&heatrix Hg

of the subcodés not in a systematic formin Eqg. (4.31), and then we cannot distinguish
columns of redundancy and columns of information of the edkdn this form. To puH,

in a systematic form, i.e. in a reduced row echelon form, tenpitations on its columns
that we would have to do will show that the information of thisode can correspond to
redundancy of the mother code (be careful to not confuseosigband precode).

We now want to show that after having pruned day— K, columns of theHg matrix in the
given non systematic form, we have

rankHg) = Ny — K,

in order the code rate to be

rank(Hs) B K,
No — (Ko — K1) Ny — (Ko — K;)

Ri=1-

Proof: By doing linear combinations on the rows of the maly, only the K, — K last
rows of the matrixt are manipulated. Then to pHE, in a systematic form, only thé&,

last columns of the matri¥l, are permuted. We then obtain the following formkdf (EQ.

(4.32)) calledH,,,,, where the lask’; columns are associated to thg information bits of
the subcode, and thi€, — K; pruned columns are taken among fiig— K columns, which
are the columns of a squarred upper triangular matrix.

In,— T (N,
H,,,. = Mo~ Ho (No~Ko)x Ko (4.32)
O(KO—Kl)X(NO—KO) IKO—Kl R(Ko—Kl)XKl
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Equation (4.32) shows that at least tNg — K first columns are independent from each
other, then if we pruné&’y, — K of these columns we have

rank H) = rankHs,,) > Ny — Ky

But what we prune is redundancy of the subcode (be aware tcombtise with redundancy
of the precode or the mother code), by constructioHgf ;. Therefore, since the number of
rows of the parity-check matrix is exactly the number of medancy bits, we must remove
the row corresponding to the pruned column (of same indidb@solumn, where there is
the one on the main diagonal). Then at the end of prurdihg,, is of sizeN, — K; — (K, —
Ki) x Ny — (Ko — Kj)i.e. Ng — Ko X Ny — (Ko — K;), then we have

rank H) = rankH,,,,) < Ny — Ky

We conclude
rankKHg) = Ny — K,

What ensures that whatever the columns we choose to prung #weacode rate of the

subcode will beR; = 1 — NI‘E‘%I}%) = NO_(E_KI). Note that The resultingls;, s, un

after pruning will be equal t&,,,t,crprun if We chose to prune only information bits of the
mother code, otherwise different.

Then, it is sufficient that the condition (4.22) be fulfilledllie able to compute tH2 matrix
and have a code rate of the subcode equal to the one desiesif @e choose columns to
be pruned away and best protected columns among redundbtigyraother code.

Computation of the preprocessing matrix After having verified that we can choose the
Ky — K, bits to be pruned away and ti#& best protected among thé, bits of the mother
code, we are going to explain how tRematrix is computed.

Let us describe the solution of the system:
Asys'Csys - Bsys

whereA,ys (size Ky x Kj)is G, after permutting its columns to transfer it into an echelon
form, and then transposind., s (Size K, x K;) is B after permutting columns in the same
way asG., and then transpose, aflys (size K, x K;) is P, transpose. Letg still denote
the rank ofG'.

1 Cgys = Bgys (4.33)




4.3. OPTIMIZATION OF THE CHECK-NODE PROFILE 51

We can note that providedy < K,, we have(K, — rg) degrees of freedom for the
coefficients 0fCgys.

Vi€, K
Ko

Csys(laj) = Z asys(lal)-csys(laj)+bsy8(1>j)

l=rg+1

Ko

Csys(rg,j) - Z asys(rg, l).Csys(l,j) + bsys(r.%j)
l=rg+1

These(K; x rg) equations determine the elementdbthat can be chosen arbitrarily, and
the way to compute the remaining elements from the choses one

We are now proposing a method to fix these degrees of freedbm fatt to fix them adds
information that we could use by considering the preprangssatrix simply as a precoder.
A first possibility would be to think of it in terms of a seriabiacatenation of two codes (the
outer code of generator matiX, and the inner one the mother code), and could decode this
in an iterative way, for example, if we firld to be an LDPC code (due to its size), and adding
an interleaver. However the serial concatenation of two Cl@Bdes does not improve too
much the decoding, even if the girth is improved. Anothersgmbty is to consider theP
matrix as some additional parity-check equations, as stiowexpression oH,. Let us
choose an arbitraryd,,, for example such that it improves the UEP properties ofasting
bits by choosing its irregularity accordingly, or as a pdrih,...... to decrease the required
memory. Note that the user will have to choose the consgaintthe optimization and so
the strength of UEP, according to his available memory andgssing power.

OnceH,, is chosen, we are now describing how to comptifes(rg + 1 : Ko, 1 : K3).
H, : (K, — K;) x K, whose elements are h(i,j) altf : K, x K; whose elements are d(i,j)

Hp ' PT - O(KQ—Kl)XKl
is rephrased as
V(Z,])E[l, KO - Kl] X [17 Kl]

Ko

> hi, egys(l,j) =0

=1

rg Ko Ko

Zh(i>l)[ Z asys(l,m)csys(m,j) + bsys(laj)] + Z h(i,l)csys(l,j) =0

=1 m=rg+1 l=rg+1
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Finally,
Ko rg rg
> cas(m )G m) + > (i Daga(lm)] =Y h(i, Dbsys(1, 5)
m=rg+1 =1 =1

Rewritten in matrix form, this reads:

Agys(l:7rg,rg+1: Ky)

I(ro—rg)

Bgys(1:7g,1: Ky)

O(KO—TQ) x Ky
(4.34)

Hp-{ ].[Csys(rgle:Ko,l:Kl)}:{

Let E denote the matrix resulting from the multiplicationtbé two first terms. In order to
ensure the existence of a solution, it is sufficient that fahk< K, — rg. However Eq.

(4.22) yields rankt)) < min(K, — K5, Ky — rg), assuming thaH,, is chosen to be of full
rank. Thus, we are sure to have a unique solutio@g@n(rg+1 : Ky, 1 : K;), provided the

previous condition ran}G') > K, holds.

4.3.4.4 Hierarchical optimization algorithm

Let us remember the bounds of Eq. (4.19) on which our optinas based:

1= (9 = 1711 = 2l)) =2l <2l ) <1-J ((Wies) = )71 (1 - al)) =2l

with

(Ck Z p Ck

d<Cy,

Due to the chosen coding schend@, and the mother code are fixed at the beginning of the
optimization, therefore the code rate is fixedRo= m, and the optimization does
not consider it at all. Let us denote the minimum degree otkmedes of the whole graph
by j...» (j @andd are used to denote the same thing), and their average‘ﬁye optimization
focuses on the two important quantities of bounds (4.8 andd'%"), and is composed

of two main stages, for given class:

man !

e We choose thén, K;) most protected bitnodes.

e At givend,,;,, we try to put a maximum number of check nodes linked to thése b
nodes tad,,;, in order to decreasg*.

e We check, if the following constraints are fulfilled. If yes:

e We decreaséd,,;, by one if the tolerance that we fixed regarding the conceatras
not yet reached, and start over again.

Note that we work withd,,;, and notdﬁfi’;) because the composition of th@, class is
updayed at the beginning of each iteration of the optimiratilgorithm, which allows to
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take advantage of all the possibilities of pruning of evemgak nodes. We determine the
composition of the clesses only at the very end of our algorit
In a more detailed way:

Definition 4.13 Ny(bit) denotes the set of check nodes linked to variable neide
N1 (bit) is the set of bit nodes linked to each check node belonging tit).

Definition 4.14 d, (bit) denotes the average of degrees of checks linked to thaiicede-
able nodéit, and|set| be the cardinal of the sett. Then we have:

- | N1 (bit)]
dl(b’ét) = W

Then, the adopted algorithm can be described as it follows:

For each clas§’;,.

¢ while (the constraints are fulfilled and the tolerance otiertireak of concentration is
not reached)

e d, over the whole graph are arranged in an increasing order
e for each check node i, we search for a bit to pruned away, such that
bitprunca = arg maxy;(dy (bit)) under:
¢ hierarchical constraints:
® byrunea & Ciy Vi <k
¢ b,..nea Must not be linked with a check node of degree greater or equal
to the concentration constraint

e avoid unvoluntary pruning (a column df can become independent
from all the others and then does not define a code anymore)

e usual constraints (described in Chapter 2)
e proportion constraint

Nc trmazx
Dok pt =1
k=1 j=2

Where/}jc’“) is the proportion of check nodes of degrebelonging to
the (), class.

e code rate constraint
Let us denote the number of pruned columns at the currematierof
the optimization procedure hy, then the code rate at this iteration has

to beR = % We then must have

temax trmax

A -
1-m3y F=>"
i=2 j=2
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e convergence constraint (see Eq. (2.22))

2yl = F(A, p,al Y, 0%)
e stability constraint (see Eq. (2.24))
* el/2”
MR S -

This condition is automatically fulfilled in the case of a uéay mother

code.

At the end of the optimization. Constraint that ensures thistence of aP matrix (see

Condition (4.22)):
rankKG') > K,

4.3.45 Results

Curves correspond to a regular LDPC mother code of ledgth= 2000 and code rate
= 1/2. The subcode has a length 8f = 1000 and code ratd?; = 1/3. The N,

classes to be optimized are defined by the proportigiis for & < N, — 1 (the number

of info bits in the clasgCy is a(k) - R, - Ny if k < N, — 1, and>_ 1 a(k) = 1, and

(1—Ry).Ny = (1— Ryp).Ny in the last one which then contains the whole redundancyd. Th

optimization is done fofV, = 3 classes withv(1) = 0.1, «(2) = 0.9. The mother code has

parameters (2000,3,6).

Optimizations to obtain unconcentrated (degrees for chéetween 2 and 6) and almost

concentrated (degrees for checks between 4 and 6) degrées ae done to compare the

performances.

The decoding is done bu using only the pruned parity-chedkix@ the mother code.

Check profile of the almost concentrated code

j

2

3

4

5

6

Class1

0.000000e+0(¢

0.000000e+0(¢

9.038095e-01

9.619048e-07

0.000000e+0(¢

Class?2

0.000000e+0(¢

0.000000e+0(¢

6.666667e-01

3.333333e-01

0.000000e+0(¢

Class3

0.000000e+0(

0.000000e+0(

3.556667e-01

4.863333e-01

1.580000e-01

Check profile of the unconcentrated code

j

2

3

4

5

6

Class1

1.590476e-01

1.971429e-01

3.314286e-01

2.695238e-01

4.285714e-02

Class?2

1.111111e-07

4.888889e-07

4.066667e-01

4.600000e-01

7.333333e-07

Class3

1.333333e-03

8.666667e-03

1.603333e-01

4.816667e-01

3.480000e-01
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EXITchart of UEP codes 3 classes (0,1-0,9), concentrated and unconcentrated check degrees

0.95—

0.85—

0.8

0.75—

0.7—

0.6—

- o ~ —&— conc classl

05 B — —<— conc class2

g —6— conc class3
—0O— unconc classl
—O— unconc class2

0.45— —O— unconc class3
| | | | | | | |

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.9: EXIT curves of classes of almost concentrated and uncoratedt check irregularity
codes.

Fig. (4.9) shows EXIT curves defined in Eq. (4.16) for eaclsslaf almost concentrated
and unconcentrated check irregularity codes. The morergtecfass is protected, the more
the less protected ones are degraded: the best protecssctheals a faster convergence in the
unconcentrated code than the corresponding one in the ctvatexl code. The intermediate
classes are quite equivalent whereas the last class of tuncentrated code has a slower
convergence than the corresponding one in the concentrated

Figure (4.10) shows the behavior at low bit-error rates clltiannot be seen from an EXIT
curve. This would be near th@, 1) point in the EXIT chart, i.e. at a high number of
iterations. Here for 30 iterations. We clearly see that UEsperties remain also at a high
number of iterations, which constitutes a huge differemoenfUEP properties generated
by irregularities over bit nodes, which induces convergespeed differences. The check
optimization would be a means to achieve UEP at low numbeteshtions (accelerating

the convergence), and at a high number. This behavior carfaieed by Fig. (4.5) and

the comments following it in the first section. As well we Istibve better performance at
30 iterations for the first class of the unconcentrated cbde for the concentrated one,
equivalent performance for the middle class, and poorefopeances for the last one.
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conc and unconc 30iter
10° T

——&— conc class1
—<— conc class2
—&— conc class3
—B— unconc classl | -
—O— unconc class2 | |
—O— unconc class3

107

107°

Eb/NO (dB)

Figure 4.10: BER of almost concentrated and uncocentrated check iadgutodes

These created UEP properties that remain even at a high mwhiberations might be very
interesting since techniques to improve a lot the numbeeodiions without increasing too
much complexity exists [5].

4.4 Puncturing

The puncturing could be a method to realize UEP by increasi@gode rate and worsening
certain bits, but without the possibility to improve soméers. In a punctured code, the
guality of the messages coming to interesting checks (iedonging to one class) would
be more important than the degrees of these checks. At a clusikwe add up erasure
messages (i.e. withL R, defined in Def. (2.2), that equals zero) instead of makiegtle-
terministic by pruning (i.eL L R equals infinity that makes the bitnode and the linked edges
disappear from the graph). Then instead of achieving UER lmnpuncturing the code, we
can be more interested in puncturing the code whose UEP asectdy irregularities over
check nodes and bit nodes. The puncturing must then be cinepaith the UEP properties.
In order to match the definitions of [9], we have to define amidfiae some variables.
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The oldr of the Def. (4.8) that defines the detailed representatiéfC codes turns té%.

Definition 4.15 G, ; is the set of bit nodes of degréénked to check nodes of degrge
Definition 4.16 ./ is the proportion of puntured symbols(#,; before decoding.

Remember the useful following definition (4.10)

Definition 4.17 A(i, j) and p(i, j) are the proportion of bit nodes of degréeamong bit
nodes linked to check nodes of degreeand the proportion of check nodes of degree
among check nodes linked to bit nodes of degreespectively.

Thus we define

Definition 4.18 The total puncturing fractiop®) is the proportion of punctured variable
nodes over the whole graph:

7

p@ =35 Pii, 5)r
J

Proof:

p® = ) Proba(bitnode be of degréand be punctured)

p(o) = XZ: Z Proba(bitnode be of degréand linked to check of degregeand be punctured)
i

p© = Z Z Proba(bitnode be puncturiitnode is of degreéand linked to check of degreg

(]
P = Y Pili )]
(]

With an analysis with Gaussian approximation, we can fotleevevolution of the proportion
of punctured symbols when decoding. To do so, we need soree d@dffinitions.

Definition 4.19 " is the probability for the message coming from a check nodiegice
j to be zero at théth iteration.
e™ is the probability that the message of a variable node of elegis zero.

7
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These quantities are easily computed as

el =13 A, 5) (1 — ey

and .
=3 . )n (6)
J

Proof:
1- 5§k) = Proba{ coming from a check node of degrg¢é&e non zero)

= Z Proba(j — 1) v coming from bit of degreé be non zerthit is linked to check of degreg)

= Z Proba¢ comes from bit of degregbit is linked to check of degreg)

Proba be non zer{bit of degreei )’ !

= > AGHA—ey (4.35)

ef.’” = Proba{ coming from a bit node of degréebe zero)

= Z Proba(i — 1) u coming from check of degregbe zerdcheck is linked to bit of degred

J
P(uo be zero)

= Z Probag, comes from check of degregcheck is linked to bit of degregP(u, be zerdbit €G; ;)

J
Probaf: be zerdcheck of degreg)' !

o 0 e i—1
= > ol (27)
J
(I

These quantities are used to compute the residual pungqmmportionvrg? and the propor-
tion p*) of punctured symbols at theh iteration:

trmazx

k 0 cn (k=1)\g
7Tz'(,j) = ﬂ-z'(,j)(z /)(%J)gg' ))

7j=2
p® = "3 Pii ) (4.36)
J

i

Since we are interested in UEP and our criterion is the diffee between the evolution of
messages, let us express the mean of messages coming frokndues in terms of the
puncturing pattern. To do so, we need some other definitions.
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First in order to shorten the notations, let us define
T (0)
)‘i7j = )\(Z J) T4
1—-m _ )
)\z‘,j = A(i,7)(1 - )

AT = ZP’L(Z,]W
J

which are the initial proportion of punctured bits of degie@mong all the bits linked to
check nodes of degreie the initial proportion of unpunctured bits of degre@mong all the
bits linked to check nodes of degrg@and the initial proportion of punctured bits of degree
i, respectively.

Definition 4.20 Lety'*), be the probability that exactlys messages coming into a bit node
of degreem are not erased at théth iteration. If C"* denotes the binomial coefficient, we

have
Cm( k 1))m€(k—1)”_m

Thus, we can express the updated mean of a check node of geagee

j—1
m® () = ¢t (1 - (ﬁ { Zp\jj Zx(k)l b(Im$V) + AT ink)1’l¢(lm£k_l) i muo)}}]
(4.37)
The term in the squared brackets is composed of mean of nesssaming from bit nodes
punctured (there is no observation from the channelsse 0) at thekth iteration and the
mean of messages coming from bit nodes unpunctured athheeration.

We have
m =" pmiP(j)
j

= Z Z Pi(i, jym{P ()

The evolution of the puncturing fraction in Eq. (4.36) inaties that the residual puncturing
fraction while decoding does not depend on SNR but only ord#tailed distribution pair
(Pi(x,y) = 32,2, Pi(i, )"y aO(a,y) = 32,50, 7(i, j)a* 'y’ ~"). Thus, as long
as the degree dlstrlbutlon satisfigst! < e(k for anyk > 0, we can reduce the residual
puncturing fraction to any small value, regardless of théRSAfter enough iterations;*)
andz=(®) converge to zero ang;; becomes;;, which simplifies Eq. (4.37).

j—1

mP )= [ 1= 1= e — mlD) + X570 — Dml Y + my,)]
(4.38)
We abbreviate the sum W_n and define a functioi/ such that

= Y e = DmE) F AT - DY 4 my)]

7

T(k) — H(muoa)\ﬂ— (k 1))

J ZJ’
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m® = Y gt (1 L=

%

= D po (1 [1—Z[A?eﬁ((i—1)m(f_”)+A§_”¢((i—1)m(f_”+mu0)]] )

where

rED =3I - DmED) + AT (( - DmlEY - my,)]

with

Definition 4.21 AT denotes the proportion of punctured bits of degréeat equals, accord-
ing to Bayes rule,

Let us now show the following relation betwee}‘i) andr®),

- ijra('k) (4.39)
j
Proof:
S o =375 06 (0 — DmE )+ AT~ Dml Y+ my, )]
j i
By definition
piAij = Pi(i, j)

Then

S o =3 N (P )7 e((@ — mE) + Pii, )70 e((@ — DmEY +my,)]

According to Def. (4.21)

Zpg —ZA%(( DmE D)+ A0 = DmiE Y + my, )

Which is exactly

= Z pﬂ]('k)
j
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Then we have

my =Y o)
J

W = S (1 D)
J

For error-free decoding, this last recursive equation rgrat to infinity, which ism ™ >

m¥) for anyk > 0, or equivalently, with
k
j
which leads to another form for the condition of the convaogeof the decoding

r®) > =) (4.40)

The design goal optimal puncturing defined in [9] is to maxiethe puncturing fractiop®
for a givenE, /Ny, such that Eq. (4.40) is fulfilled.

In our case of UEP code, the UEP using checks irregularitgegined” by the comparison
between the gaps

P D = (o, AT ) (4.41)

J ,J0 ]

k) _ p(k=1) H (muy,, A", T(k—l)) _ pk=1)

Finally, puncturing such a UEP code requires to define aaoka limiting how much the gap

(4.41) can be decreased (it can not be increased) in ordet estroy the UEP properties
more than we are allowed. These constraints on local gapsmtgfVEP must be included in

the design of the detailed puncturing distributizcﬁj). The design of the detailed puncturing
distributionwz.(g) could be done with the same means as used in [9] digcretized density

evolution but this has not been studied further in this work.



62

Chapter 5

Conclusions

In this work we have proposed a method to optimize the unegyuat protection properties
of LDPC Codes. We have shown that it is possible to adapt thekinds of irregularities
in order to speed up the local convergence. We first discussedefinition of UEP prop-
erties, and highlighted the fact that an LDPC code can have pigperties if decoded by
maximum-likelihood, but none if decoded by belief propamat UEP properties must then
be defined depending on the used decoding.

We have adopted a detailed representation of LDPC codesiatjdo describe subsets of
possible interleavers that fit the UEP requirements, to dééinal convergence and to find
a cost function. Since the irregularities of the bit nodefiprdhave already been studied,
we especially focused on the check node profile optimizakteeping the bit node profile
set regular. We found that the irregularities over checkesadibes not only influence the
speed of a local convergence, but also generates diffesdrdviors at different parts of
the codeword at high number of iterations, in contrast tegiatarities over bit nodes; we
tried to explain these two behaviors formally. This factttb&P properties remain at high
number of iterations is very interesting if we consider reéoceork in [5] which reduces
the complexity of decoding, and then allows a higher numlbetecations with the same
resources. However, acting on check irregularities ingdigb-optimality of the overall code
in the case when the maximum degree of bit nodes is not adaptddve then had to define
a validity domain for our optimization, that then can be ¢daesed and achieved whether as
a second stage in the optimization of the whole code, i.er &ft nodes optimization, or as
a first stage that would add a constraint on the followingroation. We would then have
to keep all the parameters in the cost function, and optittieecheck node profile in terms
of the fixed bit nodes profile.

On a practical point of view, we tried to optimize a so-caledther code by pruning, i.e. by
making some bits deterministic, in order to construct a edb¢with lower code rate, that
fulfils the UEP requirements, and that can be decoded by the skecoder as the mother
code, or a better one according to the available memory ofabeiver. Finally we tried
to briefly analyze what the optimal puncturing of such UEPesoshould be, still using the
detailed representation of LDPC codes, in order to compertba code rate loss due to
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pruning.
Such an optimization provides flexibility in selecting thepeopriate scheme from perfor-
mance, computational-complexity and memory-requirespatspectives.

As further tasks, testing the robustness to variationsaggutions of classes should be useful
considering practical applications of such codes. Anotttak would be to optimize both
kinds of irregularities in a joint way, and not sequentialhymore, by properly describing the
cost function, and still considering the required perfanggand the constraints of the target
system. The difficulty of such an approach would lie in the-finearity of the optimization.



64

Appendix A

A.1 Transition from proportions of edges to proportions of
nodes

>
I

proportion of bit nodes of degree

number of bit nodes of degrée
number of bit nodes in the whole graph

number of edges linked to bit nodes of degree

> number of edges linked to bit nodes of degree
k k

total number of edges

total number of edges,
2 oh g

Which is translated by
Ai

i — ! >\_k
k k

>

The same arguing is carried out to obtain the similar expwadsr f;.
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A.2 Transition from proportions of nodes to proportions of
edges

)\i_

proportion edges linked to bit nodes of degiee

number edges linked to bit nodes of degiee

number of edges in the whole graph

number of bit nodes of degree
>, humber of to bit nodes of degréek

total number of bit nodes,.:
>, total number of bit nodes;.k

Which is translated by

A — A\id
> op Ak
The same arguing is carried out to obtain the similar expsader p,.

A.3 Expression of the code rate in terms of proportions

R=1

total number of check nodes

total number of bitnodes
According to the previous proofs, we easily obtain :

» total number of edges
R=1-=

J
total number of edges
> :
Finally
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