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Chapter 1

Introduction

Nowadays, high rate digital communications are very important. It allows increased rate
and number of users, achieving good performances. In order to position our work, we first
present the global transmission scheme in Fig. 1.1.

Source Coding

Source Decoding
Estimation
Equalization

Modulation

Spreading
Physical Channel

Demodulation
Despreading

Channel Coding

Channel Decoding

Figure 1.1: Usual communication chain.

To illustrate our problem, let us describe the elements of this chain. We begin in the trans-
mitter with the following blocks:

• Source coding: in this block, source data are compressed andreshaped. Some parts of
the source signal are more vulnerable than others.

• Channel coding: structured redundancy is added to make datarobust to errors caused
by the channel. The code rateR is defined as the ratio between transmitted information
bits and the number of transmitted bits. The source can be encoded in an uniform way
or in a heterogeneous one in order to take into account the properties of the source
signal (unequal error protection (UEP) techniques).

• Modulation: the order and the type of the modulation are managed here (PSK, ASK,
QAM, multicarrier modulation), the power of transmitted symbols, or the spreading
when we have to deal with a multiple access system by code spreading.

• The physical channel: disturbances are introduced. The channel leads to inter symbol
interferences (ISI caused by fading channel) due to multi-paths, multiuser inteferences
(MUI), and adds (e.g. white gaussian or impulse) noise.

The receiver is composed of corresponding blocks, that can be described as follows:
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• Estimation and Equalization: the transmission channel is estimated (multiple paths).
Equalization allows to reduce or cancel ISI.

• Demodulation/Despreading: used to find bits from received symbols and to separate
users in a multiple access system.

• Channel decoding: corrects remaining errors in the previous obtained binary sequence.

• Source decoding: reconstruction of the emitted data by decompression of the sequence
going out from channel decoder.

In this work, we will focus on the optimization of channel codes for UEP, which has to
minimize the effect of errors on media reconstruction by adapting the channel code to the
structure of the source data (errors should rather affect less important bits, considering the
properties of the source). Here we will only consider Low-Density Parity-Check (LDPC)
codes, which are very flexible and have very good performances. Studies of other UEP
methods have already been done especially for UEP Turbo Codes [24].

Within the framework of channel coding optimization for UEPusing LDPC codes, analysis
of UEP properties of LDPC codes thanks to usual or detailed parameterization permits to
express the bit error probability for each class of sensibility of the codeword. An optimization
method is then proposed. In [17] a construction method is developped in order to achieve
UEP for a given code rate and given UEP constraints (proportions of classes), only by
modifying the irregularity profile of bit nodes, and considering the check node profile to
be fixed.

The goal of this work was to focus on UEP properties of LDPC codes achieved by pruning
and puncturing. By pruning some bits in a codeword, i.e. to fix(e.g. to 0) and then not
transmit them, or equivalently replacing the corresponding columns by zero columns in the
parity check matrix, we directly modify the irregularity profile of check nodes, and can
achieve some UEP configuration. The resulting code, of lowercode rate, is a subcode derived
from a mother code. Thus we study consequences of modifying check nodes profile. The
idea behind is achieving different UEP configurations with different pruning schemes and
the same decoder.

By changing the check-nodes profile, we will see that we construct codes that converge faster
on a part of the codeword, but also achieve UEP at infinite number of iterations.

This thesis is structured as follows. In Chapter 2 we presentan overall study of LDPC
codes and specially the density evolution, the analytic tool to analyze these codes and their
behavior. An overview of usual optimizations of LDPC codes is given in Chapter 3, as well
as an introduction to Unequal Error Protection (UEP) methods. In Chapter 4 is explained the
work of this thesis, i.e. the developped theory for UEP LDPC codes, a practical system to
realize it, and expected experimental results. Finally, conclusions are given in Chapter 5.



3

Chapter 2

General Presentation of LDPC Codes

LDPC (Low-Density Parity-Check) codes are known as a familyof high-performance codes,
that are capacity-achieving on some standard channels likethe binary erasure channel. They
stand for an alternative to Turbo Codes, which achieve very good performance codes on some
standard channels too. The following aspects guided us to consider this family of channel
codes in UEP applications:

• Performances fit with UEP target multimedia communications: like Turbo Codes,
LDPC codes have iterative decoding, that allows to reach biterror probabilities of
10−5 − 10−6, for a wide range of signal to noise ratios. These are the required orders
for sensible applications such as fixed picture or video transmissions. A delay caused
by the interleaver must be tolerated. Therefore LDPC codes can be an alternative to
Turbo Codes for UEP target multimedia transmissions.

• Systematic code: For our appications, a systematic code is very useful. In such a code,
information bits are integrally copied into the codeword. The first interest is that even
in case of decoding errors (convergence to a word that is not acodeword), we should be
able to find the systematic part, although with errors. Moreover if the receiver has no
channel decoder, the source decoder has only to ignore the redundancy part. Building
a systematic code from any code is very easy.

• Easy to parameterize and then to optimize: one of the biggestadvantages of this family
of codes is the possibility to optimize according to the channel and the application,
thanks to the explicit (analytical) characterization of the state of the decoder during
iterations in an asymptotic approach (infinite codeword length), that is function of
channel and receiver parameters. This represents a huge advantage compared to Turbo
constructions for which no analytical description exists,only simulation based on
EXITcharts.

• A not completely explored domain: the optimization of LDPC codes irregularity for
standard and non-standard channels has already been studied, especially by Poulliat
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in [17] for UEP applications, but only considering bit nodes. Publications on the use
of pruning on LDPC codes do not seem numerous (e.g. some to avoid stopping sets
cite18), and almost non-existent when pruning is considered to achieve UEP inside a
codeword.

2.1 Definition, Parameterization, and Usual Notations

LDPC codes are low density linear block codes, introduced byGallager [8] in 1963. An
LDPC code inGF (Q) (with Q = 2q) is represented by its sparse parity matrixH of size
(N−K)×N whose non zero elements belong to the Galois fieldGF (Q). N is the codeword
length,K the number of information bits related to a codeword,M ≥ N − K the number
of redundancy bits, and the code rateR = K/N ≥ 1 −M/N , with equality ifH is fullrank.
The code is the set of wordsc ∈GF (Q)K such thatH.c = 0. WhenQ = 2, this the case
binary LDPC codes and their description is done by parity equations. WhenQ ≥ 2, this
is the case of non binary LDPC codes. In this work, we consideronly binary LDPC codes.
In each case, the structure the parity matrix can be regular or not. A code is regular if the
number of non zero elements in every rows (respectively columns) is constant. Irregular if
these numbers are not constant.

2.1.1 Definitions

2.1.1.1 Regular LDPC Codes

Definition 2.1 A regular LDPC code with its three parameters(N, tc, tr) is defined by a
matrix with exactlytc andtr ones per column and row, respectively.

The code rate isR = K/N ≥ 1 − tc/tr, with equality if H is fullrank. Those three
parameters define a family of regular codes, and one code among this family is given by
a particular realization of the parity-check matrix. In an equivalent way, an LDPC code can
be represented by a bipartite graph, called factor graph [12], or Tanner graph, made of two
kinds of nodes: variable nodes representing bits of codeword, and check nodes associated
to parity-check functions. Those two kinds of vertices are linked with each other by edges
indicating to which parity equation variable nodes, i.e. the associated bits, take part in.

Theith bit node and thelth check node are connected ifHl,i = 1. The degree of connection
of a bit node (the same for a check node) is the number of edges linked to this node. A
node is saidi connected or of degreei if it is connected to i edges. Figure (2.1) shows
the representation of a regular code parametrized by(N = 8, tc = 2, tr = 4). One code
corresopnds to one particular realization of the interleaver.
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Codeword

Parity check

Codeword

Parity check

Interleaver

Figure 2.1: Representation of regular code (N = 8, tc = 2, tr = 4). The upper scheme is a
realization of the code, the bottom the family.

2.1.1.2 Irregular LDPC Codes

A code is irregular if it is not regular. The usual parameterization of irregular LDPC codes
is done by means of polynomials:

• Polynomial associated to variable nodes:

λ(x) =

tcmax
∑

i=2

λix
i−1

whereλi is the proportion of edges of the graph connected to bit nodesof degreei,
andtcmax is the maximum number of edges linked to a bit node.

• Polynomial associated to check nodes:

ρ(x) =
trmax
∑

j=2

ρjx
j−1

whereρj is the proportion of edges of the graph connected to check nodes of degreej,
andtrmax is the maximum number of edges linked to a check node.

Those two quantities are linked by the code rate:

R = 1 −
∑trmax

j=2 ρj/j
∑tcmax

i=2 λi/i

There is also a dual parameterization of the previous one:

• Polynomial associated to data nodes:

λ̃(x) =
tcmax
∑

i=2

λ̃ix
i−1

whereλ̃i is the proportion of bit nodes of degreei.
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• Polynomial associated to check nodes:

ρ̃(x) =
trmax
∑

j=2

ρ̃jx
j−1

whereρ̃j is the proportion of check nodes of degreej.

The transition from one paramatrization to another is done by:

λ̃i = λi/i
P

k λk/k
ρ̃j =

ρj/j
P

k ρk/k

λi = iλ̃i
P

k kλ̃k
ρj =

jρ̃j
P

k kρ̃k

Thus a family of irregular codes is parametrized by(N, λ(x), ρ(x)). The regular case is a
particular case of this parameterization whereλ(x) andρ(x) are monomials. Figure (2.2) is
a graphical representation for this kind of code.(λ(x), ρ(x)) defines the irregularity profile
of the code according to columns and rows.

Parity check

Degree of connectivity

Codeword

Interleaver

Figure 2.2: Representation of a family of irregular codes.

2.1.1.3 Systematic coding of LDPC codes

For practical reasons, codes should be systematic: information bits are directly copied into
the codeword. In general building the generator matrix G from H is not too easy. Never-
theless it is possible to encode using the parity matrix. Several methods exist to make the
encoding to be systematic. However they are out of our scope.We will only consider the
simplest method using an upper triangular matrix for H with ones on the main diagonal: info
bits are associated to the non triangular part, and redundancy bits are computed recursively
from parity equations, and associated to the triangular part. The sparcity of the matrix is
more or less preserved. We will thus only consider systematic matrices.
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2.1.2 Decoding LDPC Codes by Belief Propagation

Although a maximum likelihood decoding of LDPC codes is possible, the complexity in-
creases too much as soon as we consider sufficiently long codes, which is important to obtain
decent performances. A sub-optimum decoding algorithm, known as Sum-Product algorithm
or Belief Propagation (BP) algorithm is used instead. It spreads along edges messages for-
warding probabilities or logarithmic likelihood ratios (LLR). To each branch two messages
are associated, one for each direction. The principle of BP is Bayes rule applied locally
(on every bit of the codeword) and iteratively to estimate a posteriori probabilities (APP) of
every bit. It has been shown that over a cycle-free graph (tree case), local factorization of
Bayes rules leads to exact computation of APP of bit nodes. Inthis case, messages over the
whole graph are independent from each other. However, in a non cycle free graph (which
is the case for any finite length LDPC code), messages are not independent, and then APP
are not computed exactly, that says that the algorithm is notoptimal anymore. The sparcer
the graph, that says H, will be, the less numerous cycles willbe, and the less important the
dependency between messages will be.

Definition 2.2 The messages over edges are one dimensionnal and calledLLR, for loga-
rithm likelihood ratio.LLR of a message coming from a variable node will be denoted byv,
andu will denote a message coming from a variable node. They are respectively defined by

v = log
p(y|c = 0)

p(y|c = 1)
(2.1)

u = log
p(y

′|c′
= 0)

p(y′|c′ = 1)
(2.2)

(2.3)

wherec is the bit value of the node and y denotes all the information available to the node up
to the present iteration obtained from edges other than the one carryingv. c

′
is the bit value

of the variable node that gets the message from the check nodeup to the present iteration
obtained from edges other than the one carryingu.

Let us now present the BP algorithm, where messages over edges are one dimensionnal

(LLR), with v = log p(y|c=0)
p(y|c=1)

, the outcoming message from a bit node andu = log p(y
′
|c

′
=0)

p(y′ |c′=1)

the outcoming message from a check node. Each decoding iteration is consists of two stages:

• Update of a bit node of degreei (notations on Fig. (2.3))

v(l)
m = u0 +

i
∑

k=1,k 6=m

u
(l−1)
k , ∀m = 1...i

vm is the message (LLR) over themth edge coming out of a bit node. The messagesuk

are the LLR coming out of a check node andu0 is the LLR of the channel observation.
At the first iteration, every messagesuk are equal to zero.
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Variable node

Check nodes

Figure 2.3: Update of variable nodes.

• Update of a check node of degreej (notations on Fig. (2.4))

Check node

Bit nodes

Figure 2.4: Update of check nodes.

tanh
u

(l)
k

2
=

j
∏

m=1,m6=k

tanh
v

(l)
m

2
, ∀k = 1...j

uk is the message (LLR) over thekth edge coming out of a check node. The messages
vm are the LLR coming out of a bit node.

One interation of the BP algorithm is accomplished when all messages of the graph have
been computed once by the previous equations. AfterL iterations, we can compute the
aposteriori ratio for each bit node given by:

vapp,n = u0 +

i
∑

k=1

u
(L)
k , ∀n = 1, ..., N

And the final decision on binary values of data nodes is taken by:
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m̂n =
1 − sign(vapp,n)

2
, ∀n = 1, ..., N

2.1.3 Density evolution and Gaussian Approximation

Here the analysis and optimization of LDPC codes presented in an asymptotic context under
BP decoding.

2.1.3.1 Density evolution

In [19] and [20], a general method that permits to predict asymptotic preformances is pre-
sented: the authors of [20] proved a so-called concentration theorem according to which
decoding performances over any random graph converge to itsaverage performance when
the codeword length is large enough. Thus, relevant evaluation of performances of LDPC
codes is possible only in the limit case of infinite codeword lengths. The infinite graph can
then be considered as a tree (cycle-free graph), which allows to consider every messages
independent from each other. The method calledDensity Evolution, proposed in [19, 20],
follows the evolution of probability densities of messagesspreading over the whole graph
when using belief propagation. Messages are assumed to be independent and identically
distributed (iid). Let express this evolution of densitiesof messages [19].

Let α denote one bit node to which is associated the observationuα = log
(

pY |X(yα|xα=1)

pY |X(yα|xα=−1)

)

.

Update of bit nodeα of degreei:

m0,α = uα + m1 + . . . + mi−1 (2.4)

Update of check nodeβ of degreej:

m0,β = γ−1 (γ(m1) + . . . + γ(mj−1)) (2.5)

where
γ : R → GF (2) × R

z → γ(z) =

(

sign(z),− log

(

tanh
|z|
2

))

with

sign(z) =











0 if z > 0

0 with proba 0.5 if z = 0

1 with proba 0.5 if z = 1

1 if z < 0











Figure (2.5) shows what density evolution computes: the densitiesPl+1 andQl+1 of the two
kinds of messages in function ofPl andQl, respectively. Let us do this computation.
Hypothesis:
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i

j

uα ∼ P0

m
(l)
0,β ∼ Ql

α

β

m
(l)
0,α ∼ Pl

Figure 2.5: Densities of messages over edges.

• The zero codeword for being transmit:x = 1.

• Cycle-free graph (all messages are independent) (due to theconcentration theorem to
cycle-free case for infinite code length).

Pl(z) is the average probability of the codes of the family, such that sub-jacent graph be a
tree.

Pl(z) = P (m
(l)
0,α ≤ z|xα = 1)

Let ⊗ denote the convolution.

• At a bit node :
By the independence assumption, random variables that are summed up in Eq. (2.4)
are independent. So, the density of their sum is the convolution of their densities.

P
(i)
l+1 = P0 ⊗ Q

⊗(i−1)
l (2.6)

So, for an irregular graph:

Pl+1 =
∑

i

P
(i−1)
l+1 .P (edge connected to bit node of degreei)

Pl+1 =
∑

i

λiP0 ⊗ Q
⊗(i−1)
l

Pl+1 = P0 ⊗ λ(Ql) (2.7)

With λ(.) =
∑

i λi(.)
⊗(i−1).
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• At a check node :
Assuming that if

X ∼ FX(z)

Then
γ(X) ∼ Γ(FX(z))

Using Eq. (2.5), we obtain in the same way:

Q
(j−1)
l+1 = Γ−1

(

Γ(Pl+1)
⊗(j−1)

)

(2.8)

So
Ql+1 =

∑

j

ρjQ
(j−1)
l+1

And by linearity ofΓ−1

Ql+1 = Γ−1

(

∑

j

ρjΓ(Pl+1)
⊗(j−1)

)

Ql+1 = Γ−1 (ρ(Γ(Pl+1))) (2.9)

With ρ(.) =
∑

j ρj(.)
⊗(j−1).

• By combining Eq. (2.7) and Eq. (2.9) we obtain the desired recursion forPl+1 in terms
of Pl:

Definition 2.3 Density evolution presented in [19] is expressed by

Pl+1 = P0 ⊗ λ
(

Γ−1 (ρ(Γ(Pl)))
)

The zero codeword for being transmit, they computed equations describing density evolution
along the iterations, and this analysis led to the followingmain results, when binary inputs
and symetric outputs channels are considered (remember that a binary inputx = 0, 1 channel
is said to be output-symmetric if and only if the conditionnal probability for the output fulfills
p(y|x = 0) = p(−y|x = 1)):

• Consistence

Definition 2.4 A density of probabilityf(x) is said to be consistent (i.e. with expo-
nential symmetry) iff

f(x) = exf(−x), ∀x∈R

According to [19], if the channel is a binary input output-symmetric channel the initial
densities of messages are consistent in the sense of Def. (2.4) (Proposition 1 of [19]
page 629), and this property is kept along the iterations of decoding (Theorem 3 of [19]
page 628).
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• Convergence
According to the consistency conservation properties, (Theorem 7 and 8 of [19]) show
that the error probabilityP (l)

e is a non increasing function ofl and converges to zero as
l tends to infinity, or equivalently as the message densities tends to∆∞.

• Stability condition
Analysing convergence by density evolution, (Theorem 5 of [19] page 630) shows
that studying the stability in the neighborhood of the fixed point allows to determine
a necessary condition on the parameters of the code to ensurethe convergence of the
error probability to zero.

Theorem 2.1 Let S =
∫

R
f0(x) exp−x2/2 dx, wheref0 is the consistent initial density

of messages, and letλ
′
(x) andρ

′
(x) denote the derivatives of irregularity polynomials

λ(x) =
∑tcmax

i=2 λi(x)xi−1 andρ(x) =
∑trmax

j=2 ρj(x)xj−1. If λ
′
(0)ρ

′
(1) ≤ S−1, then

the error probability will converge to zero, otherwise it a non zero value will minimize
it.

This condition gives an upper bound on the valueλ2.

Under BP decoding, density evolution permits to show that LDPC code have a threshold
behavior: there is an optimal thresholdδ? of signal to noise ratio beyond which the block
error probability converges to zero for an infinite codewordlength. In the case of AWGN
(Additive White Gaussian Noise) channel, the optimal threshold is given by the signal to
noise ratioδ? = (Eb/N0)

?. Asymptotic performances of BP decoded LDPC codes can be
compared with the Shannon limit, and we can then determine what could be the best family
of codes for a given channel. This has been done in [19] to find the degree distribution pairs
(λ(x), ρ(x)) that have the lowest threshold at a given code rates.

2.1.3.2 Gaussian Approximation: Mutual Information Evolution

We now present the asymptotic study od LDPC codes over the AWGN channel, what we
are going to use from now. Since the previous introduced density evolution method is
too complex to be easily applied, a simpler version has been introduced by Chung [6] for
the particular case of the transmission over Gaussian channel. Densities of messages are
modeled by Gaussian density or mixture of Gaussian densities for a regular and irregular
codes, respectively. Thanks to the consistency of messagesalong stages of BP decoding,
this approximation allows to boil down the asymptotic decoding study to study of only one
parameter along the iterations. This kind of density approximation has first been introduced
by ten Brink for the analysis of the convergence behavior of the iterative decoding of parallel
concatenated codes [22] using EXIT charts. This approach has then been used for a lot of
concatenated system, like turboequalization, by modelingthe input extrinsic information by
a Gaussian densityN(m, 2m). Due to the difficulty to express density update rules in many
of the systems, input-output relation are computed by Monte-Carlo simulations, which is
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equivalent to an asymptotic study when considering infinitecodeword lengths.

The huge advantage of LDPC codes is that their parameters andparameters of the channel
allow to find an analytical relation between the value of the study parameter (which can
be m for example) between iterationl and l + 1. In [6] densities of messagesu coming
from check nodes andv from bit nodes are modeled by consistent Gaussian densities. This
seems realistic for messagesv, but debatable for messagesu (Figure 4 and 5 in [6]). We
assume transmission using BPSK modulation over an AWGN channel whose noise variance
is σ2. The zero codeword is transmitted (since for a channel and the BP decoder fulfilling
symmetry condition, error probabilities at thelth iteration do not depend on the transmitted
codeword). Therforeu0 is GaussianN(2/σ2, 4/σ2) which is consistent according to Def.
(2.4). Theorem 3 of [19] (p.628) asserts that consistency iskept along iterations for a given
binary-input memoryless output-symmetric channel. Then,in order to be able to model
message densities to be Gaussian, they must fulfil the consistency condition: N(m, σ2)

is consistent if and only ifσ2 = 2m. That is the reason why the density evolution can
be expressed as a one parameter evolution. [6] chose the meanof messages, but we can
chose, still under the Gaussian approximation of the message densities, to follow the mutual
informations of a virtual AWGN channel, whose output would be messagesv or u coming
out from bit nodes or check node, respectively.

2.1.3.3 Mutual Information for a Gaussian Consistent Channel

Let v be a message such thatv ∼ N(±m, 2m) that is the output of a binary-input Gaussian
channel. The mutual information betweenv and inputc of the virtual channel is given by:

xv = I(v, c) = H(v) − H(v|c)

xv = −
∫

R

(
∑

c=±1

fc(c)fv|c(v|c)) log2(
∑

c=±1

fc(c)fv|c(v|c))dv

+

∫

R

(
∑

c,v

fc(c)fv|c(v|c) log2(fv|c(v|c)))dv

xv = −1

2

∑

c=±1

fv|c(v|c) log2(
1

2
(fv|c(v|c = 1)+fv|c(v|c = −1)))+

1

2

∑

c=±1

∫

R

fv|c(v|c) log2(fv|c(v|c))dv

So

xv =
1

2

∑

c=±1

∫

R

fv|c(v|c) log2(
2fv|c(v|c)

fv|c(v|c = +1) + fv|c(v|c = −1)
)dv

We now shortenfv|c(v|c) byf(v|c). Since the channel is symmetric, we havef(v|c = −1) =

f(−v|c = 1), and by consistencyf(−v|c = 1) = f(v|c = 1) exp−v, this implies:

xv =

∫

R

f(v|c = +1) log2(
2f(v|c = +1)

f(v|c = +1) + f(v|c = −1)
)dv
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xv =

∫

R

f(v|c = +1) log2(
2f(v|c = +1)

f(v|c = +1)(1 + e−v)
)dv

xv = 1 −
∫

R

f(v|c = +1) log2(1 + e−v)dv

xv = 1 − 1√
4πm

∫

R

log2(1 + e−v) exp(−(v − m)2

4m
)dv = J(m) (2.10)

J is called the mutual information function, linking mutual information of a Gaussian con-
sistent channel to the mean of messages whose density isN(m, 2m). Equation (2.10) is
rewritten as:

J(m) = 1 − Ex(log2(1 + e−x)), x ∼ N(m, 2m) (2.11)

J is continuous and a strictly monotonous function, soJ−1 exists and permits to compute
the mean of messages from the mutual information.

2.1.3.4 Evolution Equations

Let x(l)
cv andx

(l)
vc be the mutual information associated to messages coming from check nodes

to variable nodes and from variable nodes to check nodes, respectively. From [7], we have
the following update relation:

• Update at variable nodes

x(l)
vc =

tcmax
∑

i=2

λiJ(
2

σ2
+ iJ−1(x(l−1)

cv )) (2.12)

• Update at check nodes

x(l)
cv = 1 −

trmax
∑

j=2

ρjJ((j − 1)J−1(1 − x(l)
vc )) (2.13)

Proof: Let α denote a bit node, andm the mean of messagem. From Eq. (2.4) we have

m
(l)
0,α = uα + m

(l−1)
1 + . . . + m

(l−1)
i−1

Assuming thatm is mcv the average over the whole graph of messages coming from check
nodes, and by symmetry of the channel:

m
(l)
0,α =

2

σ2
+ (degree ofα).m(l−1)

cv (2.14)

And using theJ function, we havemcv = J−1(xcv). So, in the same way as for general den-
sity evolution, making the average over the whole graph of messages coming from variable
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nodes leads to Eq. (2.12).
Proof of Eq. (2.13):
Now letβ denote a check node. We can rewrite :

− log
(

tanh(
m0,α

2
)
)

= − log

(

em0,α − 1

em0,α + 1
)

)

Now remember that, by Bayes rule:

m0,α = log

(

P (x = 1|y)

P (x = −1|y)

)

= log

(

P (y|x = 1)

P (y|x = −1)

)

wherex is the random variable describing the codeword bit value associated to the variable
nodeα, andy is the random variable describing all the information incorporated into this
message. Letv[0] = P (y|x = 1) andv[1] = P (y|x = −1). A message going out of a check
node will be generally calledu. So

− log
(

tanh(
m0,α

2
)
)

= − log

(

v[0]/v[1] − 1

v[0]/v[1] + 1
)

)

− log
(

tanh(
m0,α

2
)
)

= − log

(

v[0] − v[1]

v[0] + v[1]
)

)

Using the Discrete Fourier Transform, we have:

[

DFTv[0]

DFTv[1]

]

=

[

1 1

1 −1

]

.

[

v[0]

v[1]

]

=

[

v[0] + v[1]

v[0] − v[1]

]

Finally we have

− log
(

tanh(
m0,α

2
)
)

= DFTv

Defining DFTv = log
(

DFTv[0]
DFTv[1]

)

. This means that a check node sums up the messages,

but in the frequential domain. Moreover according to Eq. (2.10) we express the mutual
information ofDFTv:

xDFTv = 1 − E
(

log2(1 + e−DFTv)
)

xDFTv = 1 − E

(

log2(1 +
ev − 1

ev + 1
)

)

= 1 − E

(

log2(
2ev

ev + 1
)

)

xDFTv = 1 − E
(

1 − log2(1 + e−v)
)

= E
(

log2(1 + e−v)
)

Which is exactly:
xDFTv = 1 − xv (2.15)

We can then describe the evolution ofxDFTu exactly in the same way asxvc since the update
of DFTu is exactly the same asm0,α:

DFTm
(l)
0,β = DFTm

(l)
1 + . . . + DFTm

(l)
j−1
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That says
DFTm

(l)
0,β = (j − 1)DFTm(l)

vc

With DFTm(l)
vc = J−1(DFTxvc) = J−1(1 − xvc), we obtain:

xDFTu = J
(

(j − 1)J−1(1 − xvc)
)

Finally over the whole graph:

xDFTu =
∑

j

ρjJ
(

(j − 1)J−1(1 − xvc)
)

Applying Eq. (2.15), we proved Eq. (2.13):

x(l)
cv = 1 −

trmax
∑

j=2

ρjJ((j − 1)J−1(1 − x(l)
vc ))

Note that we can also express the evolution by following the mean of messages over the
graph when decoding. To do so, we need the functionφ.

Definition 2.5

φ(x) = 1 − 1√
1πx

∫

R

tanh
u

2
e

−(u−x)2

4x du, if x > 0 (2.16)

φ(x) = 1, if x = 0 (2.17)

(2.18)

We then express the evolution of the mean, computed exactly in the same way as the mutual
information.

m(l)
u = φ−1(1 − [1 −

tcmax
∑

i=2

λiφ(m(l)
v ]

j−1

) (2.19)

m(l)
v = s + (b − 1)

trmax
∑

j=2

ρjm
(l−1)
u (2.20)

(2.21)

The combination of Eq. (2.12) and (2.13) yields the EXIT chart of the code defined by
(λ(x), ρ(x)). It is an explicit non-linear function of(λ(x), ρ(x)) and of parameters of the
channel (σ2 in our case):

x(l)
vc = F (λ, ρ, x(l−1)

vc , σ2) (2.22)

whereλ = [λ2, . . . , λtcmax
]T andρ = [ρ2, . . . , ρtrmax

]T . Several optimization methods exist,
which can considerρ(x) as fixed in order to makeF linear inλ. The convergence threshold
is defined by the smallestEb/N0 beyond whichx(l)

vc → 1 whenl → ∞.
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2.1.3.5 Stability Condition

Under the Gaussian approximation, [6] provides a looser stability condition in the neighbor-
hood of the fixed point:

λ2 ≤ λ?
2 =

e1/2σ2

∏trmax

j=2 (j − 1)ρj

(2.23)

whereas the general condition given by density evolution is:

λ2 ≤ λ?
2 =

e1/2σ2

∑trmax

j=2 ρj(j − 1)
(2.24)

Jensen’s inequality shows that the first condition is looserthan the secund one:

trmax
∏

j=2

(j − 1)ρj ≤
trmax
∑

j=2

ρj(j − 1)

The stability condition is very important because it controls the mutual information behavior
at very low error probabilities (or equivalently, when the mutual information is near to 1).
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Chapter 3

State of the Art

This chapter is meant to first introduce principal possibilities for optimizations using the
characteristics of LDPC codes, and then we focus on already studied UEP optimization
strategies, before in next chapter presenting our own strategies.

3.1 Optimization of LDPC codes over some channels

3.1.1 Optimisation over AWGN Channel

One of the most common criteria is to minimize the convergence threshold of LDPC code of
code rateR:

δ? = arg min
σ2

(
1

2Rσ2
|F (λ, x, σ2) ≥ x, ∀x∈[0, 1]) (3.1)

In order to simplify the optimization, we can first only optimize λ(x) for a fixed ρ(x).
Optimization is carried out in two stages:

• Maximization of code rate for fixedρ(x) andσ2:
The most used cost function consists in optimizes the code rate R. The problem
becomes linear since the cost function and the constraints become linear inλ(x), and
thus can be solved by linear programming. For givenρ(x) and σ2, we determine
λ(x) that maximizesR. Let λ = [λ2, . . . , λtcmax

]T and1/tc = [1/2, . . . , 1/tcmax]
T .

Remembering the relation

R = 1 −
∑trmax

j=2 ρj/j
∑tcmax

i=2 λi/i

the optimization problem can be expressed as:λopt = arg maxλ(1/tc
T λ) under the

constraints:
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• Mixture constraint:
λT 1 = 1

• Proportion constraint:
∀i = 2 . . . tcmax, λi∈[0, 1]

• Convergence constraint:

∀x∈[0, 1], F (λ, x,
2

σ2
) ≥ x

• Stability constraint ;

λ2 ≤
e1/2σ2

∑trmax

j=2 ρj(j − 1)

• Threshold minimization

Definition 3.1 A concentrated degree distribution over check nodes is defined by the
polynomial

ρ(x) = ρxk−1 + (1 − ρ)xk

From here we will call improperlyconcentrated codea code with such a concentrated
ρ polynomial.

OnceR is determined, we increaseσ2 as long asR can be reached. The resulting
threshold(Eb/N0) is δ = 1

2Rσ2 . ρ(x) can now be optimized. From Theorem 2 of
[6] (page 665), we learn that a concentrated degree distribution optimizes the speed
of convergence. That’s why, assumingρ(x) in this form, this optimization means
optimizing one parameterρ = k − ρ which is the average degree of connectivity
of check nodes. Finally, the degree distribution pair(λ(x), ρ(x)) that minimizes the
threshold is chosen.

Hence, the evolution of mutual information in the form of an asymptotic study for infinite
codeword length shows that an optimal valueρopt exists for eachtcmax, that allows to reach
a minimum convergence threshold. This threshold approaches Shannon capacity whentcmax

increases, and thenρ too (these two parameters are strongly linked together), see Fig. (3.1)
extracted from [7].

This is similar to Gallager’s result under maximum likelyhood decoding, according to which
densest codes are the best regarding the convergence threshold. Two important remarks must
be made:

• This asymptotic result is verified only for large codeword length (e.g.N = 30000),
but for short ones (e.g.N = 1000), the tree assumption is not valid enough. Cycles in
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Capacity
touches capacity

Infinitely dense code :

tcmax = 3

tcmax = 12

Figure 3.1: Gap to the capacity, for given code rate.

the graph of densest codes worsen them, breaking message independency and thus BP
optimality. Less dense codes have higher girth (the girth isthe length of the smallest
cycle), which ensures best efficiency of BP decoding. Hence the code hierarchy for
”short” code length is the contrary of the expected one.

• A second remark, important for our work on UEP, is to highlight that the convergence
threshold deals with the global behavior of the code, and we will see that a lower BER
than the global one can be achieved for most protection classes, even if the global
threshold is increased. Differences between classes will depend on which offset on
global threshold is allowed, but this will be seen in detail in next chapter.

3.1.2 Optimization over other channels

Similar optimizations can be performed for other channels (BEC, BSC, Laplace, AWGN
[19, 20], Rayleigh), among which optmization strategies onmultiple access channels, mul-
ticarriers channels, memory channel or high spectrum efficiency channels. We restricted
ourselves to an introduction into the usual LDPC optimization for AWGN channels. This
offers some insights and links to our UEP optimizations.
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3.2 UEP Optimization: An Introduction

Let us consider the transmission of media like voice, fixed image, or video, whose char-
acteristics are heterogeneous sensibility to errors in thedata stream. The code stream of
source-encoded blocks is hierarchically structured and contains:

• Headers to describe the type and parameters of compression.

• Structure control data that are indicators of code stream synchronization, position, or
indexing.

• Compressed data delivered from the source coder: e.g. speech encoder coefficients,
image texture, or movement vectors.

This constitutes a very logical ensemble, and it is obvious that errors on headers is a disaster
since true reconstruction parameters of the compression are not known at all. The final result
at the receiver will then be completely different accordingto error localization. Sensibility
classes can be distinguished inside compressed data, according to the compression system
used. For video, errors on movement vectors are more disturbing than errors on texture. The
same holds for low frequency coefficients in fixed images, whereas high frequency ones are
generally associated to details. Actually uniformly protecting such a code stream would be
sub-optimal. This highlights the interest of realizing unequal error protection by modifying
on the irregularity of a code.

When speaking about irregularity for UEP, we distinguish systems with irregularity caused
by puncturing and/or pruning, and those with intrinsic irregularity:

• Irregular punctured/pruned systems: Puncturing consistsof not emitting some bits of
the codeword, thereby decreasing the initial code rateR. The receiver knows the punc-
turing pattern, and considers not transmitted bits as erasures. This technique worsens
the performance of the code allowing to obtain a wide range ofrates. Unequal error
protection can then be achieved by applying different code rates to each part of the
source data, according to the required robustness. Anotherway of adding irregularity
is using a pre-processing block before the code, in order to prune it. Puncturing and
pruning will be the chosen method to realize UEP in our work, and has been further
studied in [24] for Turbo Codes.

• Intrinsic irregularity systems:

One can think of systems without a posteriori added irregularity block, but with intrin-
sic unequal protection properties.

• [4,16] presented unequal error protection linear codes. Linear codes can achieve
different protection inside a codeword, i.e., averaged error probability is not uni-
form inside the codeword. These properties are due to algebraic characteristics
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of the parity-check matrix, considering maximum likelihood decoding (MLD,
syndrome decoding). The protection level of theith bit is associated to its local
minimum distance, which is exactly the minimum codeword weight with a one
in the ith position. This is also the degree of independence of theith column
in the parity-check matrix: the minimum number of columns that are included
in linear combination that leads to zero, with coefficient one at theith column.
The local minimum distance associated to each bit of the codeword determines
the maximum number of errors in the whole codeword, still allowing this bit to
be corrected. The local minimum distance can be greater thanthe global one,
which means that theith bit can be corrected even if the whole codeword is
not recovered by MLD. That explains the interest of such codes under MLD,
when considering in the previously mentioned JPG transmission, for example.
Construction methods of such codes have been presented, buta big problem is
the poor control that we can have over the proportions of the classes, which can
be very disturbing for the latest application.

• Another family of such irregular coding systems is multi-level coded modulation.
Each bit of a symbol is associated to a given code, which differs from others by
its code rate. Then the protection level of bits depends on the code, and on the
position in constellation labelling, which means that two kinds of irregularities
can be exploited.

• LDPC codes can be punctured [9] in order to create average irregularity. Punctur-
ing influences the code rate: average performances differ between two codewords
encoded with different puncturing patterns. Neverthelessit is more suited to
make use of an irregularity that leads to unequal error protection of bits inside a
codeword: most connected bits will have lower error probability. This has been
highlighted in [6], and applied for optimization for several transmit channels.
The optimization for AWGN done by Poulliat in [17] will be presented in the
next chapter.

In the following we will present our work that concentrated on two approaches. The first
considers LDPC code as a linear block code and optimizes the code according to the local
minimum distances [4, 16]. The second approach is an asymptotic optimization for BP
decoding and is based on pruning and puncturing of a mother code.



23

Chapter 4

UEP LDPC Codes

In the previous chapter, we presented the family of LDPC codes, its parameterization and
the asymptotic study of belief propagation (BP) decoding: density evolution under gaussian
approximation. We are now going to focus on the possibilities that both dimensions of their
irregularity profile provide, to achieve unequal error protection inside a codeword.

In the first section of this chapter the usual UEP optimization of LDPC codes is presented,
which allocates most important bits to the most connected variable nodes. We then develop
a pruning method for linear block codes, completely derivedfrom [4, 16], that has no real
practical interest. Finally check optimization is carriedout. This is not usual method due to
the fact that check profile must be concentrated. But this will be seen in detail. We then look
at the pruning method to optimize the check irregularity, and finally analyse briefly what an
optimal puncturing of such an UEP code could be.

4.1 UEP properties created by irregularities over bit nodes

We now present the optimization realized by C. Poulliat in [17,18]. This was a quite unusual
optimization when it was presented because known methods were focusing on the global
average performances, such as the convergence threshold ona given channel or puncturing
pattern. The global convergence of the error probability tozero is usually the only one cost
considered, because the parameterization, and the evolution equations of LDPC codes do not
distinguish information and redundancy inside codeword and consider an infinite code length
and an infinite number of iterations. We try to see how to specialize those equations for UEP
created by irregularities on bit and check nodes. We are interested here in local convergence
of a part of codeword, associated to sensitive data, for finite number of iterations, which
determines the following kind of optimization.
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4.1.1 Parameterization and Asymptotic Study of such UEP LDPC Codes

Let us assume the proportion of each classCk of sensibility defined by the source. We use
from here

α = {αk|k = 1..Nc − 1}

whereNc is the number of classes over the whole codeword, information bits are spread over
theNc − 1 first classes, theNcth class containing the whole redundancy. We have

Nc−1
∑

k=1

αk = 1

The proportions of bits in codeword inside classes are

p = (α1R, . . . , αNc−1R, 1 − R)

We still haveρ(x) =
∑trmax

j=2 ρjx
j−1, but define

λ(Ck)(x) =

t
(k)
cmax
∑

i=2

λ
(Ck)
i xi−1

and

λ̃(Ck)(x) =

t
(k)
cmax
∑

i=2

λ̃
(Ck)
i xi−1

which are polynomials of proportion of edges linked to degree i bit nodes belonging to the
kth class, and proportion of degreei bit nodes belonging toCk.
Specified evolution equation of mutual information can thenbe derived from Eq. (2.12) and
Eq. (2.13):

• Update check nodes

x(l)
cv = 1 −

trmax
∑

j=2

ρjJ
(

(j − 1)J−1(1 − x(l)
vc )
)

(4.1)

• Update variable nodes

x(l)
vc =

Nc
∑

k=1

tcmax
∑

i=2

λ
(Ck)
i J

(

2

σ2
+ J−1(x(l−1)

cv )

)

(4.2)

Equation (4.2) is obtained by adding the mutual informationcoming into each class of
bitnodes since there is no overlap between the classes. We then can derive convergence
and stability conditions from the fact thatλ2 =

∑Nc

k=1 λ
(Ck)
2 .
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4.1.2 Cost Function for such UEP

Under the Gaussian approximation, [6] gives the error probability associated to degreei bit
node at thelth iteration:

P
(l)
i = Q





√

2
σ2 + iJ−1(x

(l)
cv )

2



 (4.3)

Proof: Let X be the random variable that denotes the a posteriori probability of one bit. Let
us express the error probability of one bit:

Pe(bit) = P (X ≤ 0|bit = 0).
1

2
+ P (X ≥ 0|bit = 1).

1

2

= P (X ≤ 0|bit = 0).
1

2
+ P (−X ≤ 0|bit = 1).

1

2
(4.4)

Thanks to the symmetry of the channel:

Pe(bit) = P (X ≤ 0|bit = 0) (4.5)

Let Xu be the random variable whose distribution isN(0, 1). Under Gaussian approxima-
tion,X is Gaussian consistent for any iteration according to the symmetry of the channel and
the conservation of the consistence along the iterations:X|bit = 0 ∼ N(m, σ2 = 2m). Let
now X denote improperlyX|bit = 0, but this will make the expressions clearer. We then
have:

Xu =
X − m

σ

Xu =
X

σ
− σ

2

Which yields

X = σXu +
σ2

2

Inserted in Eq. (4.5), we finally have

Pe(bit) = P (σXu +
σ2

2
≤ 0)

= P (Xu ≤ −σ

2
)

= P (Xu ≥ σ

2
)

Finally

Pe(bit) = Q
(σ

2

)

Now we remember that
σ

2
=

√

σ2

4
=

√

m

2
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We conclude that

Pe(bit) = Q

(
√

m

2

)

(4.6)

By replacing the meanm of the sum of messages coming into that bit by the its expression
of Eq. (2.14), we obtain Eq. (4.3).

Beyond the asymptotic convergence threshold,J−1(x
(l)
cv ) is an increasing function ofl. Since

Q is a decreasing function, 4.3 shows that at a given number of iterations, the more a
bit is connected, the more it is protected, considering the associated error probability (the
convergence of this node is faster).

The protection of one class can then be expressed as

P
(Ck)
l =

1

αkR

tcmax
∑

i=2

λ̃
(Ck)
i Q





√

2
σ2 + iJ−1(x

(l)
cv )

2



 (4.7)

and then be bounded by

Q(

√

2
σ2 + λ̃(Ck)J−1(x

(l)
cv )

2
) ≤ P

(Ck)
l ≤ Q(

√

2
σ2 + t

(k)
cminJ

−1(x
(l)
cv )

2
) (4.8)

with

λ̃(Ck) =
1

αkR

tcmax
∑

i=2

λ̃
(Ck)
i i

which is the average degree of a bit node inCk. The minimum bound is directly obtained by
the convexity of theQ(.) function, and the maximum bound by the decreasing of theQ(.)

function.

The derived linear programming algorithm is meant to achieve a joint optimization of̃λ(Ck)

and t
(k)
cmin, under the constraints of proportion, code rate, convergence, stability, and hier-

archical constraints (since the optimization is sequential, the irregularity profile of already
optimized classes must not be modified by the current optimization).

4.2 Short LDPC: UEP linear block code optimization

We are now going to present some results regarding UEP optimization of LDPC code con-
sidering it as linear block code under maximum likelihood decoding. Our optimization
algorithm is based on computating of degree of independenceof columns of theH matrix.
This approach has a huge drawback: due to computation time, it can be applied only to very
short codes (N < 50), and thus excludes required practical approach. However this way still
serve as a first step towards understanding UEP created by irregularities over check nodes.
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4.2.1 Algebraic Properties and Unequal Error Protection

Masnick in [16] and then Boyarinov in [4] presented linear unequal error protection codes
under MLD.

Definition 4.1 Inside a codeword, the local minimum distancedi of theith bit is exactly the
minimum codeword weight with one in theith position.

Definition 4.2 The degree of independence of theith column of the parity-check matrix of
the code is the minimum number of columns that are included ina linear combination that
equals zero, with a coefficient one at theith column.

Lemma 4.1 The local minimum distancedi of theith bit of the codeword is the the degree
of independence of theith column of the parity-check matrix of the code.

Definition 4.3 The protection levelfi of theith bit of a codeword is the maximum number
of errors in the codeword that still allows the correction ofthis bit.

fi = bdi − 1

2
c

Thus, the local minimum distance associated to each bit of the codeword determines the
maximum number of errors in the whole codeword that still allows the correction of this bit.
The local minimum distance can be greater than the global one, which means that theith bit
can be corrected even if the whole codeword cannot be restored by MLD.
Those algebraic properties can be linked toMajority Logic Decodingpresented in [3] which
works on a poorer difinition of local minimal distance to simplify the decoding.

4.2.2 The Derived Algorithm

Classes are not defined by their proportions at the beginning, which is another drawback of
the linear coding approach. Actually, we do not intend to construct an arbitrary linear block
code, but a subcode of a mother code from which we choose the right columns to be removed
in the parity-check matrix in order the resulting parity-check matrix be the matrix defining a
code with the required properties.
Here are the parameters of the optimization:

• Let us denote the set of initial (i.e. mother code) local minimum distances byw1 =

[w1(1), ..., w1(N0)], which has to evolve tow2 along the optimization.

• Let ci be the number of different zero linear combinations ofwi columns (we have
ci ≥ wi), andCithe set of corresponding indices (card(Ci) = ci).
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In our example:

• We start from a regular mother code with parameters (N0 = 20, tc = 3, tr = 6),
the number of info bits of the subcodeK1 = 3. This defines a subcode length of
N1 = N0 − (K0 − K1) = 13.

• Let the required UEP profile bew2 = [w2(1), ..., w2(K1)], which are the required local
minimum distances on info bits of the subcode.

• U is the vector where indexes of columns ofH to be pruned away are stored (length
K0 − K1).

• w1init is the initial w1 vector, ordered in decreasing order, before optimization of a
selected column.

We sequentially choose the best column to be optimized by running in w1init from left to
right Fig. (4.1).

4.2.3 Results under Maximum likelihood and Belief Propagation De-
coding
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Figure 4.1: Sheme of the encoder of the subcode
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Figure 4.2: MLD on UEP and non UEP short codes
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Figure 4.3: BP on UEP and non UEP short codes

Figures (4.2) and (4.3) show that the code of length 20 seems better than the UEP length 13
one in any case, although biggest differences between classes can be seen in the last code.
This could have two possible reasons:

• The Gallager’s result: the densest code is the best under MLD(and even BP because
it is longer in our case)

• The rescaling due to the huge differencies between the two code rates (1/2 and3/13)

Moreover, considering the mother code as an LDPC code under BP decoding, we would
say that it is not UEP at all since it is completely regular (onbit and check nodes). On
the contrary, considering it as a linear block code under syndrome decoding, it has some
UEP properties, since local minimum distances are either 4 or 6. This specificity of unequal
error protection that depends on the code and on the means of decoding, has to be further
explained.
All the essential ingredients for the explanation are already available from [23], where we
extract some required definitions.

Definition 4.4 (Cycle) A cycle of length2d is a set of d variable nodes andd constraint
nodes connected by edges such that a path exists that travelsthrough every node in the set
and connects each node to itself without traversing an edge twice.
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Definition 4.5 (Cd Cycle set) A set of variable nodes in a bipartite graph is aCd set if(1) it
hasd elements, and(2) one or more cycles are formed between this set and its neighboring
constraint set. A set ofd variable nodes does not form aCd set only if no cycles exist between
these variables and their constraint neighbors.

Definition 4.6 (Sd Stopping set) A variable node set is called anSd set if it hasd elements
and all its neighbors are connected to it at least twice.

Definition 4.7 (Ld Linearly dependent set) A variable node set is called anLd set if it is
comprised of exactlyd elements whose columns are linearly dependent but any subset of
these columns is linearly independent.

According to Lemma1 and Theorem2 of [23], we can summarize the relationship between
Cd, Sd andLd in Fig (4.4).

Cd Sd

Ld

Figure 4.4: Venn diagramm showing relationship ofCd, Sd andLd.

That says that the local minimum distance of each variable node is associated to a cycle
of length2dmin, but the converse is not true (the variable nodes that form a cycle are not
necessarily dependent). So an ML decoder can successfully decode an erased stopping set
because the associated local minimum distances of the nodesare not necessarily low, whereas
such a stopping set can never be overcome by an iterative decoder.

Thus, the local minimum distance of one bit, defined in Def. (4.1), is an upper bound on the
depth plus one of the biggest local tree that starts at the considered variable node. Let us then
analyse the case of a regular LDPC code:

• For a finite code lengthN :

• Under Maximun Likelihood Decoding, the code is decoded in anoptimal way,
in the sense of the minimum distance. The code can have UEP properties due
to its local minimum distances, associated to some cycles inthe graph, that
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can be different from each other. The UEP properties are thendependent on
the realization of theH matrix. The local properties of the code are taken into
account by the MLD.

• The Belief Propagation is sub-optimum decoding, and quite ”global” in the sense
that it does not take into account local properties randomlycreated with theH
matrix. Local differences will be created by the local sub-optimalities of BP
decoding at finite code length, and some of these sub-optimalities are associated
to small local minimum distances.

• For an infinite code length: Belief Propagation decoding is the Maximum Likelihood
Decoding. The minimum distance tends to infinity and the length of the smallest cycle,
called the girth, too. Therefore, all local minimum distances tend to infinity too and
UEP properties defined by the two means of decoding tend to be the same.

Thus, UEP properties depend on the code and also on the way that it is decoded: the
optimization must be done as a function of the chosen decoding method. This is, of course,
practically determined by the code length since at lowN (N < 500), MLD will be used,
otherwise BP.

4.3 Optimization of the Check-Node Profile

We first describe the specific parameterization of UEP LDPC codes, then the density evolu-
tion for thisdetailed representation, and finally our optimization algorithm. It is based on the
optimization of the check node irregularity profile, which still considers local performances,
but not only for a finite number of iterations anymore.

4.3.1 Parametrization of UEP LDPC codes

A very useful parameterization for our work is thedetailed representationof irregular LDPC
codes presented by Kasai in [11]. They constructed new families of LDPC codes which are
sub-ensembles of conventional irregular LDPC code ensembles. The detailed representation
they adopted allows to design optimal codes more accuratelyby restricting choices for the
interleaver.

Definition 4.8 Let B and D be two sets or irregularity degrees. A functionπ : B×D → [0, 1]

is said to be thejoint degree distributionof (B, D) if
∑

b∈B

∑

d∈D π(b, d) = 1. This function
describing the connections between the different degrees of the code is called thedetailed
representation of the code.
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Definition 4.9 We also definemarginal degree distributions of variable and check blocks
with respectto π by

λ̂(x) :=
∑

b∈B

λ̂bx
b−1

and
ρ̂(x) :=

∑

d∈D

ρ̂dx
d−1

with
λ̂b :=

∑

d∈D

π(b, d) , ρ̂d :=
∑

b∈B

π(b, d)

Definition 4.10 For π(b, d), we define two fractions

λ(b, d) :=
π(b, d)

ρ̂d
, ρ(b, d) :=

π(b, d)

λ̂b

It can be verified thatρ(b, d) equals the fraction of edges connecting nodes of degreeb andd

among all edges of degreeb.

This detailed representationcan be used to describe the methods for different Poisson con-
structions explored by MacKay et al. in [15]. They distinguish a Poisson, a super-Poisson
and a sub-Poisson construction, which differ from each other by the variance of the distribu-
tion of the high weight columns per row.
In this work, we focus only on the influence of the check node irregularities on the UEP
properties, i.e., on the distribution of rows weight. We consider codes with a regular bit
nodes profile (all of the same degree).

4.3.2 Density evolution for the detailed representation and UEP prop-
erties

Theorem 3 in [11] states that under local tree assumption of depth 2T and some other
constraints, for any1 ≤ l ≤ T , the distribution functionsQl(d) of messages originating
from check nodes of degreed andPl(b) of messages originating from bit nodes of degreeb

are equal to

Ql(d) = Γ−1(Γ(
∑

b∈B

λ(b, d)Pl(b))
⊗(d−1)) (4.9)

Pl(b) = P0(b) ⊗ (
∑

d∈D

ρ(b, d)Ql−1(d))⊗(b−1)) (4.10)
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Note thatPl(b) andQl(d) do not depend ond andb, respectively. These expressions are
directly derived from equations (2.8) and (2.6), respectively.
Let s still denote2/σ2. From Eq. (4.9), we can derive a Gaussian approximation for the
detailed representation:

m(l)
u (d) = φ−1(1 − [1 −

∑

b∈B

λ(b, d)φ(m(l)
v (b))]

d−1
) (4.11)

m(l)
v (b) = s + (b − 1)

∑

d∈D

ρ(b, d)m(l−1)
u (d) (4.12)

and

x(l)
cv (d) = 1 − J



(d − 1)J−1



1 −
∑

b∈B

λ(b, d)x(l)
vc (b)







 (4.13)

x(l)
vc (b) = J



s + (b − 1)
∑

d∈D

ρ(b, d)J−1
(

x(l−1)
cv (d)

)





We may mention the equality betweenmu(d) in (4.11) andfj in [6] in the case thatB
denotes the degrees of irregularity over the whole graph.d andj denote the same thing: the
connectivity degree of one check node. Lett be the mean over the whole graph of messages
coming out of check nodes.fj(s, t) is the mean of messages coming out of a check node of
degreej in terms ofs = 2/σ2 andt the mean at the previous iteration. In [6] we find

fj(s, t) = φ−1



1 −
(

1 −
tcmax
∑

i=2

λiφ(s + (i − 1)t)

)j−1




From this equation we observe that the lower isj (or equivalentlyd in our work, the higher
are the messages coming out of check node of degreej (d), i.e. the faster is the local
convergence of these. Figure (4.5) extracted from [6] showsthe gapsfj(s, t)−t that represent
this local convergence. The curves are parameterized byj. t increases as the number of
iterations increases, from left to right. We clearly see theprevious quoted effect of j on the
local convergence. We must also notice that the difference between messages coming from
check nodes of different degrees seems not to decrease when decoding.
b and i denote the same thing: the connectivity degree of one bit node. Let r denote the
functionφ(.) of the mean over the whole graph of messages coming out of bit nodes.hi(s, r)

is the functionφ(.) (see Def. (2.5)) of the mean of messages coming out of bit nodes of
degreei in terms ofs = 2/σ2 andr the mean at the previous iteration. In [6], we find

hi(s, r) = φ

(

s + (i − 1)

trmax
∑

j=2

ρjφ
−1(1 − (1 − r)j−1)

)

We see from this equation that the higher isi (or equivalentlyb in our work), the lower isφ(.)

of the messages coming out of bit node of degreei (b), i.e. the faster is the local convergence
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of these messages. Figure (4.6) extracted from [6] shows thegapshi(s, r)− r that represent
this local convergence. The curves are parameterized byi. r decreases as the number of
iterations increases, from right to left. We clearly see theprevious quoted effect ofi on the
local convergence and the flattening out of differences between messages coming from bit
nodes of different degrees at high enough number of iterations, in contrast to the behavior at
check nodes side.
This check nodes behavior is a very interesting, and we will elaborate on more.
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Figure 4.5: fj(s, t) − t for j = 2, .., 10 (top to bottom)

Figure 4.6: hi(s, r) − r for i = 2, .., 20 (top to bottom)

The behaviors of different degrees check nodes seem to remain different despite of the
increasing number of iterations. This behavior is directlylinked with the erasure-correction
capability of a check node. In the sequel, we do not provide rigorous argumentation, but we
try to give an intuition on what is happening at both kinds of nodes.

An erasure message corresponds to theLLR L = 0 since we have absolutely no information
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from the channel if the bit was0 or 1.

• At a bit nodeLLRs are summed up. Then it is sufficient to have at least one message
not erased to ensure that all the messages but one coming fromthis bit node are
different from 0. So the probability that at least one message is not erased grows with
the connectivity of the bit node, which explains that the more a bit node is connected,
the more it is protected.

• At a check nodeLLR are multiplied (improper but equivalent since(tanh L = 0) ⇔
(L = 0)). Then, it is sufficient that two messages are erased to have all the messages
coming from this check node equal to 0. So the probability that at least two messages
are erased decreases with the connectivity of the check node, which can explain the
less a check node is connected, the more it can correct incoming erasures.

Remember thatLLR∈R, and0 ≤ tanh(LLR) ≤ 1. At a high number of iterations, many
LLRs are high.

• At a bit node, the importantLLRs are the highest because they are summed up. At a
given high numberl of iterations, we decide that a message coming out of a bit node
is of bad quality if the correspondingLLR is below a fixed threshold that does not
depend on the considered bit node or on the number of iterations. At a high enough
numberl of iterations, a bit node produces bad message (i.e. a lowLLR) if the number
of incoming highLLRs is below a fixed number that we choose in terms of the number
of iterations, i.e. in terms of the order of the currentLLRs that can be added to reach
the fixed threshold, but not in terms of the degree of the bit since the quality criterion
for the messages is the same over the whole graph. Letfix(l) denote this maximum
number of highLLRs that produce bad messages at thelth iteration. Letpl denote the
probability that aLLR be considered as high (i.e. message of good quality) at thelth
iteration.
Then we can write

P
(l)
bad(i) = P(a message coming from a bit node of degreei be of bad quality|high numberl of iter)

=

min(fix(l),i)
∑

k=0

Ck
min(fix(l),i)p

k
l (1 − pl)

min(fix(l),i)−k

Since
lim
l→∞

LLR = ∞

we have
lim
l→∞

fix(l) = 0

whereas the connectivity degreei of a bitnode is, of course, fixed when decoding.
Therefore,

lim
l→∞

min(fix(l), i) = fix(l)
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Hence, at high enough number of iterations, we obtain

lim
l→∞

P
(l)
bad(i) =

fix(l)
∑

k=0

Ck
fix(l)p

k
l (1 − pl)

fix(l)−k

and then can state that the probabilityP
(l)
bad(i) that a bit node of degreei produces a

bad message tends to be independent of its degreei when the number of iterations
increases sufficiently.
We conclude that when the number of iterations tends to infinity, the probabilities
P

(l)
bad(i1) andP

(l)
bad(i2) of two bit nodes of different degreesi1 and i2 to generate bad

messages tend to be the same. This means that all the variablenodes of the graph of
any degree have the same behavior at a high number of iterations.
This explains that the UEP created by irregularities over bit nodes disappears at a high
number of iterations.

• Whereas at check node side, highLLR have no influence since they are translated by
ones by the hyperbolic tangent and then multiplied. The mostimportantLLRs, which
determine the quality of outgoing messages, are the smallest ones. A message coming
out of a check node is of bad quality if at least one of the incoming LLRs is small. Let
ql denote the probability that aLLR entering into a check node be considered as small
at a given high number of iterationsl. Then we can write:

P
(l)
bad(j) = P(a message coming from check node of degreej be of bad quality|high numberl of iter)

= P(at least one of incomingLLR be small|high numberl of iter)

=

j−1
∑

k=1

Ck
j−1q

k
l (1 − ql)

j−1−k

Since we are at a given high number of iterations, this can be approximated by

P
(l)
bad(j) = (j − 1) · ql

Let us now express the ratio between the probabilities of outgoingLLRs of a check
node to be small for two check nodes of different degreesj1 andj2:

P
(l)
bad(j1)

P
(l)
bad(j2)

=
(j1 − 1)ql

(j2 − 1)ql

P
(l)
bad(j1)

P
(l)
bad(j2)

=
j1 − 1

j2 − 1
(4.14)

This ratio is a constant. It does not depend onql, i.e., on the number of iterations,
for high enough number of iterations. The behaviors of different check nodes remains
different even at high number of iterations, i.e., at a low bit-error rate.
This explains that the UEP created by irregularities over check nodes remains at a high
number of iterations which we exploit in this work.
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We continue by switching from mean of messages to their mutual information, in order to be
able to plot EXIT charts (Extrinsic Information Transfer charts) for UEP codes and express
the error probability.

B andD can either be the degrees contained in the whole graph, and then Eq. (4.13) desbribe
the usual Gaussian approximation of density evolution or the degrees inside one class of
protection. We have seen at the very beginning of this chapter that a class is defined by the
bit nodes that belong to it. The check nodes belonging to a class will be the ones linked to
the bit nodes of this class.
The averaged mutual information of messages going from the check nodes of this class to
the bit nodes of this class can be expressed as

x(l)(Ck)

cv =
∑

b∈Ck

λ
(Ck)
b

∑

d∈Ck

ρ(Ck)(b, d)x(l)
cv (d)

with ρ(Ck)(b, d) := π(b,d)

λ
(Ck)

b

andλ
(Ck)
b :=

∑

d∈Ck
π(b, d), then

∑

d∈Ck
ρ(Ck)(b, d) = 1.

Together with Eq. (4.13), we obtain

x(l)(Ck)

cv = 1 −
∑

b∈Ck

λ
(Ck)
b

∑

d∈Ck

ρ(Ck)(b, d)J



(d − 1)J−1



1 −
∑

b∈graph

λ(b, d)x(l)
vc (b)









And so we can express the difference defining the convergenceof one classe, i.e., the medium
quality arriving to its bit nodes, compared to the medium quality of all messages of the graph
at the previous iteration.

x(l)(Ck)

cv −x(l−1)
cv = 1−

∑

b∈Ck

λ
(Ck)
b

∑

d∈Ck

ρ(Ck)(b, d)J



(d − 1)J−1



1 −
∑

b∈graph

λ(b, d)x(l)
vc (b)







−x(l−1)
cv

(4.15)
which is in our particular case of regularity over bit nodes (λ(i) = δ(i − 3)):

x(l)(Ck)

cv − x(l−1)
cv = 1 −

∑

d∈Ck

ρ(Ck)(d)J

(

(d − 1)J−1(1 − J(
2

σ2
+ (3 − 1)J−1(x(l−1)

cv )))

)

− x(l−1)
cv

We can rewrite this as

x(l)(Ck)

cv − x(l−1)
cv = 1 −

∑

d∈Ck

ρ(Ck)(d)J((d − 1)J−1(1 − x(l)
vc )) − x(l−1)

cv (4.16)

In the following we will keep the last expression of this gap since the relation betweenx(l)
vc

andx
(l−1)
cv does not depend on parameters included in the optimization.

According to Eq. (4.6), we can express the error probabilityassociated with a bit at thelth
iteration by

Pl(bit) = Q

(
√

mean of messages coming into bit
2

)

(4.17)
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In our particular case of aregular degree distribution overbit nodes, the difference between
bits is due anymore to their degreei of connection, but caused by the degree of connection of
the check nodes linked to this bit (called|d1(bit)| later) Equation (4.3) (extracted from [6])
is

P
(l+1)
graph =

Nc
∑

k=0

αkQ(

√

J−1(x
(l)(Ck)

vc )

2
)

And the error probability of bits inside classCk is:

P
(Ck)
l+1 = Q





√

J−1(x
(l)(Ck)

vc )

2





P
(Ck)
l+1 = Q





√

s + (3 − 1)J−1(
∑

d∈Ck
ρ(Ck)(d)(1 − J((d − 1)J−1(1 − x

(l)
vc (3)))))

2





Then we can then derive bounds on the error probability of classCk, whered
(Ck)
min is the

minimum degree of checks belonging to the classCk:

Q









√

√

√

√

s + (3 − 1)
∑

d∈Ck
J−1

(

ρ(Ck)(d)(1 − J((d − 1)J−1(1 − x
(l)
vc (3))))

)

2









≤ P
(Ck)
l+1 ≤

(4.18)

Q









√

√

√

√

s + (3 − 1)J−1
(

1 − J((d
(Ck)
max − 1)J−1(1 − x

(l)
vc (3)))

)

2









However more interesting bounds seem to be the ones directlyon the difference between
mutual informations, defining the convergence of one classe, expressed in our particular
case as:

1-J
(

(
∑

d∈Ck
ρ(Ck)(d)d − 1)J−1(1 − x

(l)
vc )
)

− x
(l−1)
cv ≤ x

(l)(Ck)

cv − x
(l−1)
cv ≤ 1 − J

(

(d
(Ck)
min − 1)J−1(1 − x

(l)
vc )
)

− x
(l−1)
cv (4.19)

We see a dependency on the average check connection degree ofthe classCk:

ρ(Ck) =
∑

d∈Ck

ρ(Ck)(d)d

Our algorithm is directly derived from the given bounds in Eq. (4.19). It is first meant to
speed up the convergence, but we will see that UEP propertiesalso remain at high number
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of iterations. At given al, then at givenx(l−1)
cv , we try to maximize the bounds of Eq. (4.19)

by optimizing jointly both parametersρ(Ck) andd
(Ck)
min .

Therefore, the most protected classes, at a given number of iterations, are the ones linked
with check nodes of lowest degrees, and even at high number ofiterations according to
Eq. (4.14). We should highlight two results of the asymptotic approach that appear to be
contradictory to the first section of Chapter 3:

• The correction capability of a check node increases when itsconnection degree de-
creases, whereas

• The convergence threshold decreases when the connection degree of check nodes
increases (with variable nodes degree).

We may think that at low SNR (bad quality of messages), and lownumber of iteration
(increases the risk that poor|d1| bit receives only bad messages), the hierarchy of classes
is reversed. This is not the case when looking at simulations: at any SNR, at any number
of iterations, the class with the smallestρ has the lowest BER. We should rather think that
improving convergence of some classes, still acting on check nodes, implies worsening some
others (see Fig. (4.10)), and worsening the overall convergence threshold of the code. That’s
why we should define the set of possible good codes, considering practical code length and
expected performances.

4.3.3 Set of Possible Good Codes

Irregularity on the check profile leads to two problems:

• Concentration problem: influences the speed of convergence of the code. Indeed
Chung has shown in [6] that a concentratedρ(x) polynomialρ(x) = ρxd +(1−ρ)xd−1

defined in Def. (3.1) maximises the speed of convergence of the whole code. To
achieve UEP properties by irregularity on checks profile, little tolerance on concentra-
tion, and then on the global speed of convergence has to be defined. The global code
will converge slower, but its most protected class will converge faster that the ones of
concentrated code Fig. (4.9). However, the problem is not soextremely important,
since the complexity is not so much increased with the numberof iterations due to
intelligent scheduling algorithms [5].

• Density problem: according to Gallager’s result, densest codes have the lowest gap
to capacity. At given code rate, there is one optimum averageconnectivity of check
nodesρ that minimizes the gap to the capacity Fig. (3.1) (for infinite code length
and infinite number of iterations). This key parameter of thecode, linked withtcmax,
determines the density of the code. The denser is the graph, the higher have to be the
connectivity ratio. If the value ofρ is moved from the optimum, the value oftcmax
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must be changed too. Thus, at a giventcmax, the requiredρ can be achieved wether
with a concentrated degree distribution at check node side,or with an unconcentrated
one. But obtaining UEP by reducing the degree of some check nodes needs to adapt
tcmax. If one does not do so, the global convergence threshold of the code, expressed
by Eb/N0 will increase. That is the main problem in the chosen optimization scheme
hat we present later. Our optimization, by removing bit nodes, decreasesρ while tcmax

is kept. The UEP less dense code must have higher threshold. However if we consider
finite (quite short) code lengthN , a reducingρ approach could be relevant due to the
reversed hierarchy (chapter 3 first section). ForN = 1500, both codes have quite
same global threshold (at infinite number of iterations). Although thresholds of these
found UEP codes are the same, UEP properties are quite different Fig. (4.10). Possible
approach for long codes would be to first choose a tolerance offsetε on global threshold
Fig. (4.7) in order to fix a trade-off between differences of classes and degradation
of the threshold, but this work is not able to ensure that mostprotected classes of
unconcentrated code with degraded threshold will have lower error probability than
the global more concentrated code with lower gap to capacity, for long code length.
We should quantify, for high number of iterations, the gain of local thresholds of most
protected classes in function of the amplitude over check degrees. Somehow for short
enough code length, the chosen optimization seems to be relevant.

Convergence threshold

Average degree of connectivity

Set of potential good codes

δ + ε

δ

ρmin
ρmax

Figure 4.7: Set of potentially good codes.

Thus, at short enough code length, and low or high number of iterations, such approach that
reducesρ in our chosen optimization system is quite flexible:
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• If the transmission has to be achieved, even with poor quality, we allow big amplitude
on degrees of check nodes. For example if one wants to transmit a JPG picture even
with bad quality, putting headers and very low frequency DCTcoefficients in most
protected classes ensures the transmission, even if the resulting picture is quite fuzzy.

• If initial global threshold must be kept, this UEP method, allowing a ρ polynomial
almost concentrated (three consecutive degrees), can be seen as a kind of patch, or
second stage method after UEP optimization over bit nodes.

Remember that the spreading of degrees of check nodes shouldnot be a problem if the
maximum degree of connection of bit nodes is adapted, i.e. ina joint optimization. It could
raise a problem if the check optimization is proceeded afterthe bit nodes optimization, as a
second stage. If it is done before, a constraint ontcmax should be added in the optimization
of bit node profile if one wants to keep the best convergence threshold.

4.3.4 A particular choice to realize UEP over check nodes

The goal of this work was to focus on UEP properties led by pruning and puncturing meth-
ods. Actually by pruning some bits of the codeword, it means to fix (e.g. to 0) and then not
to transmit them, or equivalently, replace the corresponding columns in theH matrix by 0,
we directly modify the irregularity profile of the check nodes, and can achieve some UEP
configuration. The resulting code is a subcode derived from amother code. By doing so, we
intend to reach different UEP configurations, with different pruning schemes, with the same
mother code and the same decoder.
We assume the number of information components of the subcode to be given. Then the
code rate of the subcode is given too. We will see that the amount of redundancy is the same
in the mother code and in the subcode.

4.3.4.1 The chosen coding scheme

Figure (4.8) shows the coding scheme that we use as a startingpoint:

Let H andG be the parity-check (sizeM0 × N0) and generator (sizeK0 × N0) matrices of
the mother code and assume that they are in a systematic form (i.e. full rank). LetR0 be the
code rate of the mother code. The subcode has a given number ofinfo bits: K1. Then we are
able to prune awayK0 − K1 columns of theH matrix and the subcode would have a length
of N1 = N0 − (K0 − K1). We introduce a preprocessing generator matrix, calledP (size
K1 × K0), which is used to fix the desired bits of the codewords of the subcode.
Let u be the number of pruned bits, then the code rate of the subcodeis

R1 =
K0 − u

N0 − u

=
K1

N0 − (K0 − K1)
(4.20)
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Information CodewordP G

Mother code

Subcode

lengthK1 lengthN0 − K0 + K1
K1 × K0

K0 × N0

Figure 4.8: Scheme of the subcode encoder

Then we can writeR1 as a function ofv = u/N0:

R1(v) =
R0 − v

1 − v

which is a decreasing function ofv. Whatever the number of bits we prune away, pruning
decreases the code rate.

This preprocessing matrix is not needed if we prune away onlycolumns of information of
theH matrix, and choose theK1 best protected columns among the information columns of
theH matrix, which reduces a lot the possible UEP configurations.

LetG
′
of sizeK0×K0 be:G

′
= [protected columns ofG, columns ofG to be pruned away],

andB of sizeK1 × K0 be:B = [IK1, 0K1×(K0−K1)].
We are going to choose some columns ofH to be pruned away. This means that the corre-
sponding bits of the codeword of the subcode must equals zero, i.e. fixed deterministically.
Then the corresponding columns of the generator matrix of the subcode have to be made
of only zeros. Once we determined theK1 best protected columns of theH matrix of the
mother code, the corresponding columns in the generator matrix of the subcode have to be
columns of the identity matrix, since the UEP code must be systematic to be able to control
UEP over information bits.
Then the preprocessing matrixP, which is the tool to achieve the UEP we chose, is designed
such that

P · G′

= B (4.21)

We are going to verify that we can choose totally freely theK0 −K1 bits to prune away and
theK1 best protected among theN0 bits of the mother code by discussing different choices
of columns to prune away and to protect, and show thatP permits to reach the expected and
desired code rate.
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4.3.4.2 Case we don’t need P: only info columns of H are prunedand protected.

ThenHs andGs are the parity-check and generator matrices of the subcode,are obtained
by removing columns to prune away inH, and the corresponding ones, which are columns
of the identity, inG where we remove also corresponding rows (i.e. the row where there
was the one). Since the best protected columns are chosen as being information columns,
they are already made of the identity. ThenHs andGs are of sizeM0 × N0 − (K0 − K1)

andK1 × N0 − (K0 − K1), respectively. They are both of full rank (becauseGs is made
of the identityIK1 andHs of IM0 since pruned columns are not identity columns which are
associated to the redundancy). Then the code rate of the subcode would be:

R1 = 1 − rank(Hs)

N − (K0 − K1)
=

K1

N0 − (K0 − K1)

The obtained rate is the desired one.

4.3.4.3 Case we prune away redundancy in H or choose protected column among it,
and then need P

We prune non identity columns ofG, and then may have rank(G
′
) < K0, which can raise

a problem on the existence of aP matrix that fulfills Eq. (4.21) because(G
′

can be not
invertible anymore. We first prove that we can find a full rankP matrix, and then will see
that the code rate of the subcode is the one desired.

Existence ofP

Definition 4.11 A matrix is in areduced row echelon form if it is made of a triangular
upper part of size the rank of the matrix, after linear combinations of its rows, and then
permutation of the columns.

Definition 4.12 A matrix will be said in areduced row form if the previous manipulations
on its rows have been made, but without permutting its columns at the end.

So we may have rank(G
′
) < K0. We want to find a condition onG

′
such that we can

computeP that fulfills Eq. (4.21).

Theorem 4.1 A necessary and sufficient condition onG
′

that allows to computeP that
fulfills Eq. (4.21) is:

rank(G
′

) ≥ K1 (4.22)
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Proof: Let G2 beG
′
in a reduced row form (i.e. without any manipulation on the columns

of G
′
). We prove that such linear combinations on the rows ofG

′
still allow to find aP2

matrix such that
P2 ·G2 = B (4.23)

Let g2k denote thekth row of theG2 matrix. Then we have the linear combinationg2k =
∑K0

l=1 α
(k)
l gl. Let A be the matrix where at any columnl and rowk its element is equal to

α
(k)
l .

Remember that for any matrices

rank(A · B) ≤ min(rank(A), rank(B)) (4.24)

• Necessity
Using Eq. (4.24) in Eq. (4.23) we obtain

rank(B) = K1 ≤ min(rank(P2), rank(G2))

A necessary condition is then
rank(G2) ≥ K1

since rank(G2) = rank(G
′
) by construction ofG2, this condition is equivalent to

rank(G
′

) ≥ K1

• Sufficient
Assuming that rank(G2) ≥ K1, the computedP2 matrix from Eq. (4.23) will be of
rank greater or equal toK1 by construction. Since

G2 = A.G
′

we translate Eq. (4.23) by
P2 · A · G′

= B (4.25)

which means that
P = P2.A (4.26)

and from which we can infer

rank(P2 · A = P) ≥ K1

TheP matrix will be computed by using Eq. (4.26).

The condition
rank(G

′

) ≥ K1

is then necessary and sufficient to ensure the existence of a matrix P that fulfills Eq. (4.21),
and sinceP is of sizeK1 × K0, P will be of full rank according to Eq. (4.25).
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Let rg denote rank(G
′
). Equation (4.23) can be represented by

P2.











non zero part of reduc row form
G

′

rg×K0

− − − − − − −
0(K0−rg)×K0











=







1
. . . 0K1×(K0−K1)

1







(4.27)

ProvidedG
′
fulfills Condition (4.22), a solution forP2 exists, and if rank(G

′
) ≤ K0, then

we have degrees of freedom forP2, and then also forP.

Code rate of the subcode Let us now compute the rate of the subcode. For this, we
consider the decoding. We have two possibility for the decoding:

• Either we use the decoder of the mother code without adding anything, the parity-
check matrix of the subcode will exactlyHmother with pruned columns removed.
This allows to save memory and complexity, but does not exploit all the available
parity-check equations since the ones of the preprocessingcodeP are not used, which
limits the performances.
Then we have

R1 = 1 − rank(Hmotherpruned)

N0 − (K0 − K1)

A constraint, calledCode rate constraintin the optimization algorithm, ensures that
the parity-check matrix of the subcode, i.e. the matrix of the mother code with-
out the pruned columns, will have a code rate of K1

N0−(K0−K1)
, or that equivalently

rank(Hmotherpruned).

• Or we use all the available parity-check equations to have better performances. Let us
study this case in what follows.

So in this last case, let usforget pruning and consider the subcode as an usual serial
concatenation(without any interleaver, discussed later) of the two codesP andG (i.e. the
mother code).

Hpruned is not anymore the parity matrix of the subcode since anotherparity equations are
added. The subcode is defined by:

Gs = P.G : K1 × N0

Hs : (N0 − K1) × N0

Hs is made ofHmothercode and theHp parity matrix of the generator preprocessing matrixP.
Hp is of size(K0 − K1) × K0:

Hp =
[

IK0−K1) R(K0−K1)×K1

]

(4.28)
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IK0−K1) is the identity associated to redundancy columns of the precodeP, andR(K0−K1)×K1

are associated to information bits of the subcode.
The same form forH of the mother code:

H =
[

IN0−K0) T(N0−K0)×K0

]

(4.29)

TheK0 bits of the codeword of the precodeP are directly copied into theK0 information
bits of the mother code. The haveHs in this form:

Hs =







Hmother

− − −
0(K0−K1)×(N0−K0) Hp(K0−K1)×K0






(4.30)

That can be rewritten as

Hs =

[

IN0−K0 T(N0−K0)×K0

0(K0−K1)×(N0−K0) Hp(K0−K1)×K0

]

(4.31)

G is in a systematic form butP is not, i.e. Hmother is in a systematic form butHp is not.
We are only sure that the bits of the whole codeword that fulfill parity-check equations of
the precodeP are the information bits of the mother code. The parity-check matrix Hs

of the subcodeis not in a systematic form in Eq. (4.31), and then we cannot distinguish
columns of redundancy and columns of information of the subcode in this form. To putHs

in a systematic form, i.e. in a reduced row echelon form, the permutations on its columns
that we would have to do will show that the information of the subcode can correspond to
redundancy of the mother code (be careful to not confuse subcode and precode).
We now want to show that after having pruned anyK0 −K1 columns of theHs matrix in the
given non systematic form, we have

rank(Hs) = N0 − K0

in order the code rate to be

R1 = 1 − rank(Hs)

N0 − (K0 − K1)
=

K1

N0 − (K0 − K1)

Proof: By doing linear combinations on the rows of the matrixHp, only theK0 − K1 last
rows of the matrixHs are manipulated. Then to putHp in a systematic form, only theK0

last columns of the matrixHs are permuted. We then obtain the following form ofHs (Eq.
(4.32)) calledHssys, where the lastK1 columns are associated to theK1 information bits of
the subcode, and theK0−K1 pruned columns are taken among theN0−K1 columns, which
are the columns of a squarred upper triangular matrix.

Hssys =

[

IN0−K0 T(N0−K0)×K0

0(K0−K1)×(N0−K0) IK0−K1 R(K0−K1)×K1

]

(4.32)
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Equation (4.32) shows that at least theN0 − K1 first columns are independent from each
other, then if we pruneK0 − K1 of these columns we have

rank(Hs) = rank(Hssys) ≥ N0 − K0

But what we prune is redundancy of the subcode (be aware to notconfuse with redundancy
of the precode or the mother code), by construction ofHssys. Therefore, since the number of
rows of the parity-check matrix is exactly the number of redundancy bits, we must remove
the row corresponding to the pruned column (of same indice asthe column, where there is
the one on the main diagonal). Then at the end of pruning,Hssys is of sizeN0 −K1 − (K0 −
K1) × N0 − (K0 − K1) i.e. N0 − K0 × N0 − (K0 − K1), then we have

rank(Hs) = rank(Hssys) ≤ N0 − K0

We conclude
rank(Hs) = N0 − K0

What ensures that whatever the columns we choose to prune away, the code rate of the

subcode will beR1 = 1 − rank(Hs)
N0−(K0−K1)

= K1

N0−(K0−K1)
. Note that The resultingHssysprun

after pruning will be equal toHsmotherprun if we chose to prune only information bits of the
mother code, otherwise different.

Then, it is sufficient that the condition (4.22) be fulfilled to be able to compute theP matrix
and have a code rate of the subcode equal to the one desired, even if we choose columns to
be pruned away and best protected columns among redundancy of the mother code.

Computation of the preprocessing matrix After having verified that we can choose the
K0 − K1 bits to be pruned away and theK1 best protected among theN0 bits of the mother
code, we are going to explain how theP matrix is computed.

Let us describe the solution of the system:

Asys.Csys = Bsys

whereAsys (sizeK0 × K0)is G2 after permutting its columns to transfer it into an echelon
form, and then transposing.Bsys (sizeK0 × K1) is B after permutting columns in the same
way asG2, and then transpose, andCsys (sizeK0 ×K1) is P2 transpose. Letrg still denote
the rank ofG

′
.

















1
...

...
. . .

1

− − − − −
0(K0−rg)×K0

















.Csys = Bsys (4.33)
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We can note that providedrg ≤ K0, we have(K0 − rg) degrees of freedom for the
coefficients ofCsys.

∀j∈[1, K1]

csys(1, j) =

K0
∑

l=rg+1

asys(1, l).csys(l, j) + bsys(1, j)

...

csys(rg, j) =

K0
∑

l=rg+1

asys(rg, l).csys(l, j) + bsys(rg, j)

These(K1 × rg) equations determine the elements ofP that can be chosen arbitrarily, and
the way to compute the remaining elements from the chosen ones.

We are now proposing a method to fix these degrees of freedom. The fact to fix them adds
information that we could use by considering the preprocessing matrix simply as a precoder.
A first possibility would be to think of it in terms of a serial concatenation of two codes (the
outer code of generator matrixP, and the inner one the mother code), and could decode this
in an iterative way, for example, if we findP to be an LDPC code (due to its size), and adding
an interleaver. However the serial concatenation of two LDPC codes does not improve too
much the decoding, even if the girth is improved. Another possibility is to consider theP
matrix as some additional parity-check equations, as showed in expression ofHs. Let us
choose an arbitraryHp, for example such that it improves the UEP properties of interesting
bits by choosing its irregularity accordingly, or as a part of Hmother to decrease the required
memory. Note that the user will have to choose the constraints on the optimization and so
the strength of UEP, according to his available memory and processing power.

OnceHp is chosen, we are now describing how to computeCsys(rg + 1 : K0, 1 : K1).
Hp : (K0 −K1)×K0 whose elements are h(i,j) andPT : K0 ×K1 whose elements are d(i,j)

Hp ·PT = 0(K0−K1)×K1

is rephrased as

∀(i, j)∈[1, K0 − K1] × [1, K1]

K0
∑

l=1

h(i, l)csys(l, j) = 0

⇔
rg
∑

l=1

h(i, l)[

K0
∑

m=rg+1

asys(l, m)csys(m, j) + bsys(l, j)] +

K0
∑

l=rg+1

h(i, l)csys(l, j) = 0
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Finally,

K0
∑

m=rg+1

csys(m, j)[h(i, m) +

rg
∑

l=1

h(i, l)asys(l, m)] =

rg
∑

l=1

h(i, l)bsys(l, j)

Rewritten in matrix form, this reads:

Hp·
[

Asys(1 : rg, rg + 1 : K0)

I(K0−rg)

]

.
[

Csys(rg + 1 : K0, 1 : K1)
]

=

[

Bsys(1 : rg, 1 : K1)

0(K0−rg)×K1

]

(4.34)

Let E denote the matrix resulting from the multiplication ofthe two first terms. In order to
ensure the existence of a solution, it is sufficient that rank(E) ≤ K0 − rg. However Eq.
(4.22) yields rank(E) ≤ min(K0 − K1, K0 − rg), assuming thatHp is chosen to be of full
rank. Thus, we are sure to have a unique solution onCsys(rg +1 : K0, 1 : K1), provided the
previous condition rank(G

′
) ≥ K1 holds.

4.3.4.4 Hierarchical optimization algorithm

Let us remember the bounds of Eq. (4.19) on which our optization is based:

1−J
(

(ρ(Ck) − 1)J−1(1 − x(l)
vc )
)

−x(l−1)
cv ≤ x(l)(Ck)

cv −x(l−1)
cv ≤ 1−J

(

(d
(Ck)
min − 1)J−1(1 − x(l)

vc )
)

−x(l−1)
cv

with
ρ(Ck) =

∑

d∈Ck

ρ(Ck)(d)d

Due to the chosen coding scheme,K1 and the mother code are fixed at the beginning of the
optimization, therefore the code rate is fixed toR = K1

N0−K0+K1
, and the optimization does

not consider it at all. Let us denote the minimum degree of check nodes of the whole graph
by jmin (j andd are used to denote the same thing), and their average byρ. The optimization
focuses on the two important quantities of bounds (4.19) :ρ(Ck) andd

(Ck)
min , and is composed

of two main stages, for given class:

• We choose the(αkK1) most protected bitnodes.

• At given dmin, we try to put a maximum number of check nodes linked to these bit
nodes todmin in order to decreaseρCk .

• We check, if the following constraints are fulfilled. If yes:

• We decreasedmin by one if the tolerance that we fixed regarding the concentration is
not yet reached, and start over again.

Note that we work withdmin and notd(Ck)
min because the composition of theCk class is

updayed at the beginning of each iteration of the optimization algorithm, which allows to
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take advantage of all the possibilities of pruning of every check nodes. We determine the
composition of the clesses only at the very end of our algorithm.
In a more detailed way:

Definition 4.13 N0(bit) denotes the set of check nodes linked to variable nodebit.
N1(bit) is the set of bit nodes linked to each check node belonging toN0(bit).

Definition 4.14 d̄1(bit) denotes the average of degrees of checks linked to that certain vari-
able nodebit, and|set| be the cardinal of the setset. Then we have:

d̄1(bit) =
|N1(bit)|
|N0(bit)|

Then, the adopted algorithm can be described as it follows:

For each classCk.

• while (the constraints are fulfilled and the tolerance over the break of concentration is
not reached)

• d̄1 over the whole graph are arranged in an increasing order

• for each check node inCk, we search for a bit to pruned away, such that
bitpruned = arg maxbit(d̄1(bit)) under:

• hierarchical constraints:

• bpruned /∈ Ci, ∀i ≤ k

• bpruned must not be linked with a check node of degree greater or equal
to the concentration constraint

• avoid unvoluntary pruning (a column ofH can become independent
from all the others and then does not define a code anymore)

• usual constraints (described in Chapter 2)

• proportion constraint

Nc
∑

k=1

αk

trmax
∑

j=2

ρ̃
(Ck)
j = 1

Whereρ̃
(Ck)
j is the proportion of check nodes of degreej belonging to

theCk class.

• code rate constraint
Let us denote the number of pruned columns at the current iteration of
the optimization procedure byu, then the code rate at this iteration has
to beR = K0−u

N0−u
. We then must have

(1 − R)
tcmax
∑

i=2

λi

i
=

trmax
∑

j=2

ρj

j
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• convergence constraint (see Eq. (2.22))

x(l)
vc = F (λ, ρ, x(l−1)

vc , σ2)

• stability constraint (see Eq. (2.24))

λ2 ≤ λ?
2 =

e1/2σ2

∑trmax

j=2 ρj(j − 1)

This condition is automatically fulfilled in the case of a regular mother
code.

At the end of the optimization. Constraint that ensures the existence of aP matrix (see
Condition (4.22)):

rank(G
′

) ≥ K1

4.3.4.5 Results

Curves correspond to a regular LDPC mother code of lengthN0 = 2000 and code rate
R0 = 1/2. The subcode has a length ofN1 = 1000 and code rateR1 = 1/3. The Nc

classes to be optimized are defined by the proportionsα(k) for k ≤ Nc − 1 (the number
of info bits in the classCk is α(k) · R1 · N1 if k ≤ Nc − 1, and

∑Nc−1
k=1 α(k) = 1, and

(1−R1).N1 = (1−R0).N0 in the last one which then contains the whole redundancy). The
optimization is done forNc = 3 classes withα(1) = 0.1, α(2) = 0.9. The mother code has
parameters (2000,3,6).
Optimizations to obtain unconcentrated (degrees for checks between 2 and 6) and almost
concentrated (degrees for checks between 4 and 6) degrees codes are done to compare the
performances.
The decoding is done bu using only the pruned parity-check matrix of the mother code.

Check profile of the almost concentrated code

j 2 3 4 5 6
Class1 0.000000e+00 0.000000e+00 9.038095e-01 9.619048e-02 0.000000e+00
Class2 0.000000e+00 0.000000e+00 6.666667e-01 3.333333e-01 0.000000e+00
Class3 0.000000e+00 0.000000e+00 3.556667e-01 4.863333e-01 1.580000e-01

Check profile of the unconcentrated code

j 2 3 4 5 6
Class1 1.590476e-01 1.971429e-01 3.314286e-01 2.695238e-01 4.285714e-02
Class2 1.111111e-02 4.888889e-02 4.066667e-01 4.600000e-01 7.333333e-02
Class3 1.333333e-03 8.666667e-03 1.603333e-01 4.816667e-01 3.480000e-01
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Figure 4.9: EXIT curves of classes of almost concentrated and unconcentrated check irregularity
codes.

Fig. (4.9) shows EXIT curves defined in Eq. (4.16) for each class of almost concentrated
and unconcentrated check irregularity codes. The more the first class is protected, the more
the less protected ones are degraded: the best protected class has a faster convergence in the
unconcentrated code than the corresponding one in the concentrated code. The intermediate
classes are quite equivalent whereas the last class of the unconcentrated code has a slower
convergence than the corresponding one in the concentratedone.

Figure (4.10) shows the behavior at low bit-error rates, which cannot be seen from an EXIT
curve. This would be near the(1, 1) point in the EXIT chart, i.e. at a high number of
iterations. Here for 30 iterations. We clearly see that UEP properties remain also at a high
number of iterations, which constitutes a huge difference from UEP properties generated
by irregularities over bit nodes, which induces convergence speed differences. The check
optimization would be a means to achieve UEP at low number of iterations (accelerating
the convergence), and at a high number. This behavior can be explained by Fig. (4.5) and
the comments following it in the first section. As well we still have better performance at
30 iterations for the first class of the unconcentrated code than for the concentrated one,
equivalent performance for the middle class, and poorer performances for the last one.
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Figure 4.10: BER of almost concentrated and uncocentrated check irregularity codes

These created UEP properties that remain even at a high number of iterations might be very
interesting since techniques to improve a lot the number of iterations without increasing too
much complexity exists [5].

4.4 Puncturing

The puncturing could be a method to realize UEP by increasingthe code rate and worsening
certain bits, but without the possibility to improve some others. In a punctured code, the
quality of the messages coming to interesting checks (i.e. belonging to one class) would
be more important than the degrees of these checks. At a checknode we add up erasure
messages (i.e. withLLR, defined in Def. (2.2), that equals zero) instead of making them de-
terministic by pruning (i.e.LLR equals infinity that makes the bitnode and the linked edges
disappear from the graph). Then instead of achieving UEP only by puncturing the code, we
can be more interested in puncturing the code whose UEP is created by irregularities over
check nodes and bit nodes. The puncturing must then be compatible with the UEP properties.
In order to match the definitions of [9], we have to define and redefine some variables.



4.4. PUNCTURING 57

The oldπ of the Def. (4.8) that defines the detailed representation ofLDPC codes turns toPi.

Definition 4.15 Gi,j is the set of bit nodes of degreei linked to check nodes of degreej.

Definition 4.16 π
(0)
i,j is the proportion of puntured symbols inGi,j before decoding.

Remember the useful following definition (4.10)

Definition 4.17 λ(i, j) and ρ(i, j) are the proportion of bit nodes of degreei among bit
nodes linked to check nodes of degreej, and the proportion of check nodes of degreej

among check nodes linked to bit nodes of degreei, respectively.

Thus we define

Definition 4.18 The total puncturing fractionp(0) is the proportion of punctured variable
nodes over the whole graph:

p(0) =
∑

i

∑

j

Pi(i, j)π
(0)
i,j

Proof:

p(0) =
∑

i

Proba(bitnode be of degreei and be punctured)

p(0) =
∑

i

∑

j

Proba(bitnode be of degreei and linked to check of degreej and be punctured)

p(0) =
∑

i

∑

j

Proba(bitnode be punctured|bitnode is of degreei and linked to check of degreej)

p(0) =
∑

i

∑

j

Pi(i, j)π
(0)
i,j

With an analysis with Gaussian approximation, we can followthe evolution of the proportion
of punctured symbols when decoding. To do so, we need some other definitions.

Definition 4.19 ε
(k)
j is the probability for the message coming from a check node ofdegree

j to be zero at thekth iteration.
e
(k)
i is the probability that the message of a variable node of degreei is zero.
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These quantities are easily computed as

ε
(k)
j = 1 −

∑

i

λ(i, j)(1 − e
(k)
i )j−1

and

e
(k)
i =

∑

j

ρ(i, j)π
(0)
i,j

(

ε
(k−1)
j

)i−1

Proof:

1 − ε
(k)
j = Proba(u coming from a check node of degreej be non zero)

=
∑

i

Proba((j − 1) v coming from bit of degreei be non zero|bit is linked to check of degreej)

=
∑

i

Proba(v comes from bit of degreei|bit is linked to check of degreej)

Proba(v be non zero|bit of degreei)j−1

=
∑

i

λ(i, j)(1 − e
(k)
i )j−1 (4.35)

e
(k)
i = Proba(v coming from a bit node of degreei be zero)

=
∑

j

Proba((i − 1) u coming from check of degreej be zero|check is linked to bit of degreei)

P(u0 be zero)

=
∑

j

Proba(u comes from check of degreej|check is linked to bit of degreei)P(u0 be zero|bit ∈Gi,j)

Proba(u be zero|check of degreej)i−1

=
∑

j

ρ(i, j)π
(0)
i,j

(

ε
(k−1)
j

)i−1

These quantities are used to compute the residual puncturing proportionπ(k)
i,j and the propor-

tion p(k) of punctured symbols at thekth iteration:

π
(k)
i,j = π

(0)
i,j (

trmax
∑

j=2

ρ(i, j)ε
(k−1)
j )i

p(k) =
∑

i

∑

j

Pi(i, j)π
(k)
i,j (4.36)

Since we are interested in UEP and our criterion is the difference between the evolution of
messages, let us express the mean of messages coming from check nodes in terms of the
puncturing pattern. To do so, we need some other definitions.



4.4. PUNCTURING 59

First in order to shorten the notations, let us define

λπ
i,j = λ(i, j)π

(0)
i,j

λ1−π
i,j = λ(i, j)(1 − π

(0)
i,j )

λπ
i =

∑

j

Pi(i, j)π
(0)
i,j

which are the initial proportion of punctured bits of degreei among all the bits linked to
check nodes of degreej, the initial proportion of unpunctured bits of degreei among all the
bits linked to check nodes of degreej and the initial proportion of punctured bits of degree
i, respectively.

Definition 4.20 Letχ(k)
n,m be the probability that exactlym messages coming into a bit node

of degreem are not erased at thekth iteration. If Cm
n denotes the binomial coefficient, we

have
χ(k)

n,m = Cm
n (1 − ε(k−1))mε(k−1)n−m

Thus, we can express the updated mean of a check node of degreej as

m
(k)
u (j) = φ−1

0

@1 −
1

(1 − e(k))j−1

"

1 −
X

i

[λπ
i,j

X

l

χ
(k)
i−1,l

φ(lm
(k−1)
u ) + λ1−π

i,j

X

l

χ
(k)
i−1,l

φ(lm
(k−1)
u + mu0 )]

#j−1
1

A

(4.37)

The term in the squared brackets is composed of mean of messages coming from bit nodes
punctured (there is no observation from the channel sou0 = 0) at thekth iteration and the
mean of messages coming from bit nodes unpunctured at thekth iteration.
We have

m(k)
u =

∑

j

ρjm
(k)
u (j)

=
∑

i

∑

j

Pi(i, j)m(k)
u (j)

The evolution of the puncturing fraction in Eq. (4.36) indicates that the residual puncturing
fraction while decoding does not depend on SNR but only on thedetailed distribution pair
(Pi(x, y) =

∑

i

∑

j Pi(i, j)xi−1yj−1, π(0)(x, y) =
∑

i

∑

j π(i, j)xi−1yj−1). Thus, as long
as the degree distribution satisfiese(k+1) < e(k) for anyk ≥ 0, we can reduce the residual
puncturing fraction to any small value, regardless of the SNR. After enough iterations,e(k)

andε(k) converge to zero andχi,l becomesδil, which simplifies Eq. (4.37).

m(k)
u (j) = φ−1



1 −
[

1 −
∑

i

[λπ
i,jφ((i − 1)m(k−1)

u ) + λ1−π
i,j φ((i − 1)m(k−1)

u + mu0)]

]j−1




(4.38)
We abbreviate the sum byr(k−1)

j and define a functionH such that

r
(k−1)
j =

∑

i

[

λπ
i,jφ((i − 1)m(k−1)

u ) + λ1−π
i,j φ((i − 1)m(k−1)

u + mu0)
]

r
(k)
j = H(mu0 , λ

π
i,j, r

(k−1))
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and

m(k)
u =

∑

j

ρjm
(k)
u (j)

m(k)
u =

∑

j

ρjφ
−1
(

1 −
[

1 − r(k−1)
]j−1

)

=
∑

j

ρjφ
−1



1 −
[

1 −
∑

i

[λπ
i φ((i − 1)m(k−1)

u ) + λ1−π
i φ((i − 1)m(k−1)

u + mu0)]

]j−1




where
r(k−1) =

∑

i

[λπ
i φ((i − 1)m(k−1)

u ) + λ1−π
i φ((i − 1)m(k−1)

u + mu0)]

with

Definition 4.21 λπ
i denotes the proportion of punctured bits of degreei that equals, accord-

ing to Bayes rule,
λπ

i = λiπi =
∑

j

Pi(i, j)πi,j

Let us now show the following relation betweenr
(k)
j andr(k).

r(k) =
∑

j

ρjr
(k)
j (4.39)

Proof:
∑

j

ρjr
(k)
j =

∑

j

∑

i

ρj [λ
π
i φ((i − 1)m(k−1)

u ) + λ1−π
i φ((i − 1)m(k−1)

u + mu0)]

By definition
ρjλi,j = Pi(i, j)

Then
∑

j

ρjr
(k)
j =

∑

i

∑

j

[Pi(i, j)π
(0)
i,j φ((i − 1)m(k−1)

u ) + Pi(i, j)π
(0)
i,j φ((i − 1)m(k−1)

u + mu0)]

According to Def. (4.21)
∑

j

ρjr
(k)
j =

∑

i

[λπ
i φ((i − 1)m(k−1)

u ) + λ1−π
i φ((i − 1)m(k−1)

u + mu0)]

Which is exactly
r(k) =

∑

j

ρjr
(k)
j
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Then we have

m(k)
u =

∑

j

ρjm
(k)
u (j)

m(k)
u =

∑

j

ρjφ
−1
(

1 −
[

1 − r(k−1)
]j−1

)

For error-free decoding, this last recursive equation mustgrow to infinity, which ism(k+1)
u >

m
(k)
u for anyk > 0, or equivalently, with

r(k) =
∑

j

ρjr
(k)
j

which leads to another form for the condition of the convergence of the decoding

r(k) > r(k−1) (4.40)

The design goal optimal puncturing defined in [9] is to maximize the puncturing fractionp(0)

for a givenEb/N0, such that Eq. (4.40) is fulfilled.
In our case of UEP code, the UEP using checks irregularity is ”defined” by the comparison
between the gaps

r
(k)
j − r(k−1) = H(mu0 , λ

π
i,j, r

(k−1)
j ) (4.41)

r(k) − r(k−1) = H(mu0, λ
π, r(k−1)) − r(k−1)

Finally, puncturing such a UEP code requires to define a tolerance limiting how much the gap
(4.41) can be decreased (it can not be increased) in order to not destroy the UEP properties
more than we are allowed. These constraints on local gaps defining UEP must be included in
the design of the detailed puncturing distributionπ

(0)
i,j . The design of the detailed puncturing

distributionπ
(0)
i,j could be done with the same means as used in [9], i.e.discretized density

evolution, but this has not been studied further in this work.
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Chapter 5

Conclusions

In this work we have proposed a method to optimize the unequalerror protection properties
of LDPC Codes. We have shown that it is possible to adapt the two kinds of irregularities
in order to speed up the local convergence. We first discussedthe definition of UEP prop-
erties, and highlighted the fact that an LDPC code can have UEP properties if decoded by
maximum-likelihood, but none if decoded by belief propagation. UEP properties must then
be defined depending on the used decoding.
We have adopted a detailed representation of LDPC codes allowing to describe subsets of
possible interleavers that fit the UEP requirements, to define local convergence and to find
a cost function. Since the irregularities of the bit node profile have already been studied,
we especially focused on the check node profile optimization, keeping the bit node profile
set regular. We found that the irregularities over check nodes does not only influence the
speed of a local convergence, but also generates different behaviors at different parts of
the codeword at high number of iterations, in contrast to irregularities over bit nodes; we
tried to explain these two behaviors formally. This fact that UEP properties remain at high
number of iterations is very interesting if we consider recent work in [5] which reduces
the complexity of decoding, and then allows a higher number of iterations with the same
resources. However, acting on check irregularities implied sub-optimality of the overall code
in the case when the maximum degree of bit nodes is not adapted, and we then had to define
a validity domain for our optimization, that then can be considered and achieved whether as
a second stage in the optimization of the whole code, i.e. after bit nodes optimization, or as
a first stage that would add a constraint on the following optimization. We would then have
to keep all the parameters in the cost function, and optimizethe check node profile in terms
of the fixed bit nodes profile.
On a practical point of view, we tried to optimize a so-calledmother code by pruning, i.e. by
making some bits deterministic, in order to construct a subcode, with lower code rate, that
fulfils the UEP requirements, and that can be decoded by the same decoder as the mother
code, or a better one according to the available memory of thereceiver. Finally we tried
to briefly analyze what the optimal puncturing of such UEP codes should be, still using the
detailed representation of LDPC codes, in order to compensate the code rate loss due to
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pruning.
Such an optimization provides flexibility in selecting the appropriate scheme from perfor-
mance, computational-complexity and memory-requirements perspectives.

As further tasks, testing the robustness to variations of proportions of classes should be useful
considering practical applications of such codes. Anotherwork would be to optimize both
kinds of irregularities in a joint way, and not sequentiallyanymore, by properly describing the
cost function, and still considering the required performance and the constraints of the target
system. The difficulty of such an approach would lie in the non-linearity of the optimization.
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Appendix A

A.1 Transition from proportions of edges to proportions of
nodes

λ̃i = proportion of bit nodes of degreei

=
number of bit nodes of degreei

number of bit nodes in the whole graph

=

number of edges linked to bit nodes of degreei

i
∑

k
number of edges linked to bit nodes of degreek

k

=

total number of edgesλi

i
∑

k
total number of edgesλk

k

Which is translated by

λ̃i =
λi

i
∑

k
λk

k

The same arguing is carried out to obtain the similar expression for ρ̃j .
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A.2 Transition from proportions of nodes to proportions of
edges

λi = proportion edges linked to bit nodes of degreei

=
number edges linked to bit nodes of degreei

number of edges in the whole graph

=
number of bit nodes of degreei.i

∑

k number of to bit nodes of degreek.k

=
total number of bit nodesλi.i

∑

k total number of bit nodesλk.k

Which is translated by

λi =
λi.i

∑

k λk.k

The same arguing is carried out to obtain the similar expression for ρj .

A.3 Expression of the code rate in terms of proportions

R = 1 − total number of check nodes
total number of bitnodes

According to the previous proofs, we easily obtain :

R = 1 −
∑

j
total number of edgesρj

j

∑

i
total number of edgesλi

i

Finally

R = 1 −
∑

j
ρj

j
∑

i
λi

i
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