
Foveated Streaming of Virtual Reality Videos
Miguel Fabián Romero Rondón, Lucile Sassatelli, Frédéric Precioso and Ramon Aparicio-Pardo

Université Côte d’Azur, CNRS, I3S
Sophia Antipolis, France

{romero,sassatelli,precioso,raparicio}@i3s.unice.fr

ABSTRACT
While Virtual Reality (VR) represents a revolution in the user ex-
perience, current VR systems are flawed on different aspects. The
difficulty to focus naturally in current headsets incurs visual dis-
comfort and cognitive overload, while high-end headsets require
tethered powerful hardware for scene synthesis. One of the major
solutions envisioned to address these problems is foveated render-
ing. We consider the problem of streaming stored 360◦ videos to
a VR headset equipped with eye-tracking and foveated rendering
capabilities. Our end research goal is to make high-performing
foveated streaming systems allowing the playback buffer to build
up to absorb the network variations, which is permitted in none of
the current proposals. We present our foveated streaming prototype
based on the FOVE, one of the first commercially available headsets
with an integrated eye-tracker. We build on the FOVE’s Unity API
to design a gaze-adaptive streaming system using one low- and one
high-resolution segment from which the foveal region is cropped
with per-frame filters. The low- and high-resolution frames are
then merged at the client to approach the natural focusing process.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Human-
centered computing → Virtual reality;

KEYWORDS
Virtual Reality, Foveated Rendering, Streaming

1 INTRODUCTION
Virtual Reality (VR) has taken off in the last years thanks to the de-
mocratization of affordable head-mounted displays (HMDs). Amain
challenge to the massive adoption of VR is the delivery through
streaming over the Internet. Several works have proposed to provi-
sion better qualities in the restricted area the user can watch from
the sphere, called the “viewport”, lowering the quality of areas out-
side the viewport [2]. Current VR systems are however flawed on
different aspects. First, it is hard for the Human Visual System (HVS)
to focus naturally in current headsets, in particular owing to the
vergence-accommodation conflict [1], incurring visual discomfort
and cognitive overload. One of the major solutions envisioned to
address this problem is foveated rendering. It exploits the radially-
decreasing human visual acuity between the fovea and the eye’s

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5192-8/18/06.

periphery [5]. Instead of adapting to the wider viewport, foveated
rendering adapts to the narrower user’s gaze position by blurring
away the regions not in the gaze’s target so as to reproduce and help
the natural focusing process. Second, high-end HMDs (e.g., HTC
Vive and Oculus Rift) currently require powerful hardware tethered
to the headset for scene synthesis. These hardware requirements
can be reduced by employing foveated rendering [4].

There was no affordable (less than $1000) VR foveated rendering
systems until recently (second-half of 2017), mainly because of the
high costs of integrating an eye-tracker into the VR hardware. This
has changedwith the release of the FOVE1. A number of works have
looked at foveated streaming to couple the visual and computational
gains with bandwidth gains, yet not for in-headset VR (e.g., see
[3] and references therein). We consider the problem of streaming
stored 360◦ videos to a VR headset equipped with eye-tracking and
foveated rendering capabilities (the FOVE). Our end research goal
is to make high-performing foveated streaming systems allowing
the playback buffer to build up to absorb the network variations,
which is permitted in none of the current proposals. To do so, we
intend to build on proper gaze prediction and foveal manipulation
to anticipate and drive the user’s gaze.

Towards this goal, and as a first step, we present our foveated
streaming prototype, based on the FOVE HMD. Our contributions
are:
• We build on the FOVE’s Unity API to design a gaze-adaptive
streaming system.
• The client is designed to inform the server of the current gaze
position, receives the video sphere in low-resolution and addition-
ally the foveal region in high-resolution, and is responsible for the
merging of textures.
• The server prepares the content upon reception of a request. It
computes the equirectangularly projected mask, crops the frame
of the segment and formats the resulting piece for transmission
without overhead.
• To enable full freedom in future design, we provide the ability
to apply different masks over each frame of a segment, and verify
that the whole system can work online.

Our work is mainly related to [3] and [6] addressing foveated
streaming formobile cloud gaming (not VR) and in-headset VRwith-
out foveation, respectively. In [3], Illahi et al. live-encode frames by
setting the quantization parameter of each macroblock depending
on the gaze location, consider a Gaussian-smoothed circular foveal
region and assert the processing latency to be order of 20 ms. To
prevent changing the encoder and keep the complexity very low for
the larger frames to be processed in 360◦, we use the MPEG-DASH
principle andmake the video available in 2 resolutions, cropping the

1http://getfove.com/

foveal region from the high resolution for streaming. This thresh-
olding is chosen for simplicity in our prototype owing to the non-
circularity of the foveal region in the equirectangular projection.
Generating one second-long segment made of 30 frames requires
about 700 ms in our CPU implementation (FFmpeg cannot access
the GPU through Virtualbox), amounting to about 23 ms per frame,
which the same order as in [3]. In [6] (akin to [7]), VR videos are
streamed with the viewport selected from high-resolution tiles, and
the client reassembles the different regions at the destination. We
leverage the same idea (with the same high-speed H.264 encoding
flags) but develop the whole system for Unity and the FOVE, and
specifically design the cropping filters to allow dynamic foveation
over one-second segments to preserve the feeling of immersion.

2 BUILDING BLOCKS
We first introduce our working material: the FOVE headset and
its Unity API with the components employed, then we define the
eye-tracking data and how they are used with our FFmpeg-based
cropping module.

2.1 FOVE headset and Unity API
FOVE is a VR headset including an eye-tracker that allows to follow
the user’s gaze. It provides two programming interfaces, one is the
Unity Plugin and the other is the C++ SDK. These APIs allow, among
other tasks, to connect to the FOVE compositor, to capture the HMD
orientation, to get the direction where the user is looking at, and
to know if the user is blinking. We decided to work with the Unity
API, because the Unity engine is a widely used industry standard
that offers different resources built from a large community.

Unity2 is a game engine used to develop three-dimensional sim-
ulations across several platforms. The basic components of a Unity
simulation are a scene, where the entire virtual world is designed,
and a camera that captures and displays the virtual world to the
viewer. To give the stereoscopic effect, our Unity scene contains
two cameras, mapped to the movements of the user’s head through
the FOVE SDK. To give the immersion illusion, the cameras are
fixed in the center of a sphere, where the 360° video is projected.

VR videos, which are spherical in nature, are mapped onto a pla-
nar texture, one of thesemappings is the commonly used equirectan-
gular projection. With this panoramic projection we can consider
that the 360° video has the same rectangular shape as a regular
video. In Unity, a video can be considered as a 2D-texture that
changes in time, to play the 360° video onto a texture, we used the
VideoPlayer component, since it supports the H.264 video codec
when playing a video from a URL. The VideoPlayer component
can be tuned to playback videos streamed from a server, using the
following event-handlers:
• prepareCompleted. Invoked when the VideoPlayer has down-
loaded some frames, and reserved resources so that the video can
be played.
• loopPointReached. Invoked after the VideoPlayer has finished
the playback of the video.
To provide adaptive streaming capabilities, the video needs to be
segmented in time: we chop the high-resolution video into segments
with constant duration of 1 second. The VideoPlayer component
2https://unity3d.com/

Figure 1: Deformation of the circular foveal area (and its re-
spective bounding box) when the video-sphere is mapped to
a plane using the equirectangular projection.

can be tuned to request each segment of the video from the server
by manipulating the requested URL, simply adding the id of the
segment, and in our case, the user’s gaze parameters.

2.2 User’s gaze parameters and foveal cropping
The fovea of the viewer is modeled as a circle in the spherical
coordinates system by the parameters described in Table 1. We
can communicate the current user’s gaze position to the server
by sending the tuple (θ ,ϕ), and set the size of the fovea with the
parameter α , thereby controlling the ‘feeling’ of natural vision of
the user and the bandwidth needed.

Table 1: Parameters of the user’s gaze in the spherical coor-
dinate system

Param. Range Description

r ∈ R+ Radius of the sphere.
θ ∈ [−π ,π] Inclination, also known as yaw axis.
ϕ ∈ [− π

2 ,
π
2] Azimuth, also known as pitch axis.

α ∈ R+ Controls the radius of the foveal area.

Since the video is projected with the equirectangular projection,
even though the fovea has a circular shape, it gets deformed de-
pending on its location, and the size of the rectangular bounding
box enclosing it varies as shown in Figure 1.

Each segment request includes the timestamp t , the spherical
angles (θt ,ϕt) and the size of the fovea αt . With this information,
the server can crop each of the high-resolution segments to fit only
the bounding box of the foveal area. As segments are 1 second-long,
we need to crop and prepare the frames of each segment as low
under a second as possible, for this purpose we used FFmpeg3.

3 DESIGN AND IMPLEMENTATION OF THE
FOVEATED STREAMING SYSTEM

In this section we present how all the building blocks are composed
to make the proposed foveated streaming system. The full design
3https://ffmpeg.org/

2

Figure 2: Workflow of the Foveated Streaming System. The steps are in the following order: A. Determine the gaze position
with the FOVEheadset. B. Request a new segmentwith the parameters of the gaze (Section 3.1). C. Select the segment according
to the request. D. Crop the high-resolution segment (Section 3.2). E. Merge the high- and low-resolution frames (Section 3.3).
F. Render the resulting frame.

of the system is shown in Figure 2. The client runs under Windows
10, where the Unity engine is in charge of the following tasks:
• Read user’s gaze position from the FOVE HMD.
• Control the buffer to know when to request a new segment.
• Receive, decode and merge the high- and low-resolution frames.
• Project the result in the sphere.
• Use the Unity cameras to capture the viewport of the user in the
sphere and render it in the HMD.
The server side is simulated using a Virtual Machine with Ubuntu
16.04 where the videos are stored in two resolutions: low-resolution
(1024x512) and high-resolution (4096x2048). A regular systemwould
stream both the high-resolution and low-resolution segments over
time, but for the sake of simplicity, we have chosen to have the
client fetching the complete low-resolution video at the beginning,
and then stream only the cropped high-resolution segments.

3.1 Unity VideoPlayer Module for Streaming
Using Unity in the client side, we assign one distinct VideoPlayer
to each requested segment to be able to load, prepare and play
the segments independently. As described in Algorithm 1, the data
structure that holds the VideoPlayers also acts as the buffer of the
system. The event-handler Prepared is used to start the playback
of the video and to play possible subsequent unprepared segments,
it also synchronizes the high-resolution and low-resolution frames.
Once the playback of the current segment is finished, the event-
handler EndReached allows to play the next segment if it is already
prepared in the buffer, otherwise it pauses the playback of the
low-resolution video, that would be played again in the Prepared
event-handler. The function RequestNextSegments() requests the
next video segments, passing the parameters (θt ,ϕt ,αt , t) to the
request url, starting from segment t until filling the buffer.

3.2 Cropping the High-Resolution Segment
The server side is implemented in Python. When the user requests
a high-resolution segment, a smooth transcoder using FFmpeg cuts
on the fly the frames to contain only the fovea of the user, the
bounding box of the fovea is a rectangle (x ,y,w,h) with origin
(top-left vertex) in the point (x ,y), width w and height h. Since
segment duration is 1 second-long, we need to crop and prepare
each segment as low under a second as possible. Importantly, we
design the FFmpeg filter not to simply crop a whole segment at once
using the same mask, but instead we want to provide the ability
to apply different masks over each frame of a segment. Indeed,
we want to guarantee such full freedom to enable in our future
work attention driving with refined foveal region manipulations.
For this purpose we implemented our own custom FFmpeg filter
called “gazecrop”, and it is executed using the following command:

ffmpeg -i input_t.mp4 -vf gazecrop=“bbox_expr=‘ θ0,
ϕ0,α0,θ1,ϕ1,α1,. . .,θn−1,ϕn−1,αn−1’ ” -vcodec ‘libx264’ -preset
veryfast -tune zerolatency -movflags ‘frag_keyframe +
empty_moov’ -an -f mp4 pipe:1

In the gazecrop filter, the string after bbox_expr expresses the
triplets (θi ,ϕi ,αi) of the user’s gaze for each frame i , and n is the
number of frames in each video segment. This filter crops each
frame i , after computing the foveal bounding box (x ,y,w,h) using
equations (1-4) from [6]. This command is executed in Python, the
output video is piped out to a Python variable and then it can be
simply written out as the response of the HTTP request.

As mentioned in Sec. 1, the total server delay is about 700 ms per
segment, that is ca. 23 ms per frame (with the filters running on the
CPU only, owing to the virtualized server implementation in the
prototype). Pipelining the emission of frames before the completion
of the segment is part of future work.

3

Data: minBuffSize, maxBuffSize, serverUrl, θt , ϕt , αt
t = 0; currSegId = 0; currBuffSize = 0;
buffHighRes = new Array(maxBuffSize);
RequestNextSegments();
lowResVP = new VideoPlayer();
lowResVP.url = serverUrl + ’lr’;

Function RequestNextSegments() do
while minBuffSize < currBuffSize < maxBuffSize do

i = t mod maxBuffSize;
buffHighRes[i] = new VideoPlayer();
buffHighRes[i].loopPointReached = EndReached;
buffHighRes[i].prepareCompleted = Prepared;
buffHighRes[i].url = serverUrl+(θt ,ϕt ,αt , t); t = t+1;
currBuffSize = currBuffSize + 1;

end
end

Function Prepared(VideoPlayer highResVP) do
if highResVP.id == buffHighRes[currSegId].id then

highResVP.play(); lowResVP.play();
end

end

Function EndReached(VideoPlayer highResVP) do
currSegId = currSegId+1; currBuffSize = currBuffSize-1;
RequestNextSegments();
nextHighResVP = buffHighRes[t mod maxBuffSize];
if nextHighResVP.isPrepared() then

nextHighResVP.play();
else

lowResVP.pause();
end

end
Algorithm 1: Basic Foveated Streaming Client

x =

θi − cos−1
√

cos2 αi−sin2 ϕi
cosϕi if cos2 αi ≥ sin2 ϕi

0 otherwise
(1)

w =

2θi − cos−1
√

cos2 αi−sin2 ϕi
cosϕi if cos2 αi ≥ sin2 ϕi

2π otherwise
(2)

y = ϕi − αi (3)
h = 2αi (4)

3.3 Merging High-Resolution and
Low-Resolution Frames

When the client receives back the response from the server with
the high-resolution and low-resolution frames, before projecting
it onto the sphere, it fuses both frames using a fragment shader
that assigns the value of the pixel in the high-resolution texture if
it belongs to the foveal area, otherwise it sets the value of the pixel
in the low-resolution texture. An illustration of the result is shown
in Figure 3.

Figure 3: On the left: Resulting foveated rendering effect.
On the right: Comparison between total size of the frame
against viewport size in red, and size of the cropped section
of the foveated rendering system in blue.

4 DEMONSTRATION
For this demo we will use a virtual machine to simulate the server.
The host machine is a laptop with Intel Core i7 processor, 64GB
of RAM powered by a Geforce GTX 1070 GPU. The server (guest
OS) contains the videos to be streamed. The users can select the
video from a list containing the description, the duration and a
thumbnail. The first step before starting the playback of the video
is to calibrate the eye-tracker. To do this we will run the calibration
process provided with the FOVE SDK that consists in following,
with the gaze, a green dot in a gray background. Once the calibration
is finished, the video starts, the user will interact with the HMD by
moving his head and eyes to explore the 360° video.

5 CONCLUSION
In this demo, we present and run our VR foveated streaming sys-
tem for the FOVE with Unity. To our best knowledge, there exists
no similar system in the literature. This is the first step to make
high-performing foveated streaming systems, with proper gaze pre-
diction and foveal manipulation to anticipate and drive the user’s
gaze. We will run the client and the virtual server in the same laptop
(Intel Core i7 processor, 64 GB of RAM powered by a Geforce GTX
1070 GPU) and welcome the MMSys conference attendees to try
different videos in the FOVE headset.

ACKNOWLEDGMENTS
This work has been partly supported by the French government,
through the UCAJEDI Investments in the Future project managed
by the National Research Agency (ANR) with the reference number
ANR-15-IDEX-01.

REFERENCES
[1] K. Carnegie and T. Rhee. 2015. Reducing visual discomfort with HMDs using

dynamic depth of field. IEEE Computer Graphics and Appl. 35, 5 (2015), p. 34–41.
[2] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. 2017. Viewport-adaptive

navigable 360-degree video delivery. In IEEE ICC.
[3] G. Illahi, M. Siekkinen, and E. Masala. 2017. Foveated video streaming for cloud

gaming. In IEEE Int. Workshop on Multimedia Signal Proc. (MMSP).
[4] A. Patney, J. Kim,M. Salvi, A. Kaplanyan, C.Wyman, et al. 2016. Perceptually-based

foveated virtual reality. In ACM SIGGRAPH Emerging Technologies.
[5] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, et al. 2016. Towards foveated

rendering for gaze-tracked virtual reality. ACM Trans. on Graphics 35, 6 (2016), p.
179.

[6] P. Rondao Alface, M. Aerts, D. Tytgat, S. Lievens, C. Stevens, et al. 2017. 16K
Cinematic VR Streaming. In ACM Multimedia Conf. (MM).

[7] J. Ryoo, K. Yun, D. Samaras, S. R. Das, and G. Zelinsky. 2016. Design and Evaluation
of a Foveated Video Streaming Service for Commodity Client Devices. In ACM Int.
Conf. on Multimedia Sys. (MMSys).

4

	Abstract
	1 Introduction
	2 Building Blocks
	2.1 FOVE headset and Unity API
	2.2 User's gaze parameters and foveal cropping

	3 Design and Implementation of the Foveated Streaming System
	3.1 Unity VideoPlayer Module for Streaming
	3.2 Cropping the High-Resolution Segment
	3.3 Merging High-Resolution and Low-Resolution Frames

	4 Demonstration
	5 Conclusion
	Acknowledgments
	References

