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Nonbinary Hybrid LDPC Codes
Lucile Sassatelli and David Declercq

Abstract—In this paper, a new class of low-density parity-check
(LDPC) codes, named hybrid LDPC codes, is introduced. Hybrid
LDPC codes are characterized by an irregular connectivity pro-
file and heterogeneous orders of the symbols in the codeword. It
is shown in particular that the class of hybrid LDPC codes can be
asymptotically characterized and optimized using density evolu-
tion (DE) framework, and a technique to maximize the minimum
distance of the code is presented. Numerical assessment of hybrid
LDPC code performances is provided, by comparing them to pro-
tograph-based and multiedge-type (MET) LDPC codes. Hybrid
LDPC codes are shown to allow to achieve an interesting tradeoff
between good error-floor performance and good waterfall region
with nonbinary coding techniques.

Index Terms—Channel coding, decoding, error-correction
coding, group codes, iterative methods, random codes.

I. INTRODUCTION

D URING the 1990s, remarkable progress was made to-
wards the Shannon limit, using codes that are defined in

terms of sparse random graphs, and which are decoded by a
simple probability-based message-passing algorithm. Two fam-
ilies of sparse-graph codes are excellent for error-correction:
low-density parity-check (LDPC) codes, and Turbo codes. The
class of LDPC codes was first proposed in [1] in 1963, and redis-
covered 30 years later [2]–[5], after the invention of Turbo codes
[6]. LDPC codes are decoded through the iterative local mes-
sage-passing algorithm based on the belief propagation (BP)
principle [7]. These codes have been shown to exhibit excellent
performance, under iterative BP decoding, over a wide range
of communication channels, approaching channel capacity with
moderate decoding complexity.

Asymptotically in the codeword length, LDPC codes exhibit
a threshold phenomenon. Indeed, if the noise level is smaller
than a certain decoding threshold (which depends on the bipar-
tite graph properties) then it is possible to achieve an arbitrarily
small bit error probability under iterative decoding, as the code-
word length and the number of decoding iterations tend to in-
finity. On the contrary, for noise level larger than the threshold,
the bit error probability is always larger than a positive con-
stant, for any codeword length [4], [5]. There are two main tools
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for asymptotic analysis of LDPC codes, i.e., for evaluating the
decoding threshold associated to a given degree distribution:
density evolution [4] and extrinsic information transfer (EXIT)
charts [8]. One of the features that makes LDPC codes very
attractive is the possibility to design, for several transmission
channels, the degree distribution of the bipartite graph which
provides a decoding threshold extremely close to the channel
capacity [9].

While the asymptotic analysis and design of LDPC codes is
mostly understood, the design of finite-length LDPC codes still
remains an open question. Indeed, the local message-passing al-
gorithm corresponds to the exact computation of a posteriori
probabilities of variable values only if the graph is cycle free,
i.e., the BP decoder is exactly the maximum-likelihood (ML)
decoder because it finds the global maximum of the ML crite-
rion. In the finite length case, cycles appear in the graph [10].
In that case, the BP decoder does not compute anymore the a
posteriori probabilities of variable values, thereby turning into
suboptimal in the sense it does not correspond anymore to ML
decoding. This leads to the loss of performance of BP decoding,
compared to ML decoding, and particularly in the error-floor
region. Moreover, finite-length LDPC codes with a degree dis-
tribution associated to a decoding threshold close to capacity,
though characterized by very good waterfall performance, usu-
ally exhibit bad error floor performance. This is due to a large
fraction of degree- variable nodes leading to a poor minimum
distance [11], [12].

The attempt to improve the tradeoff between waterfall per-
formance and error floor has recently inspired the study of
more powerful, and somewhat more complex, coding schemes.
This is the case of nonbinary LDPC codes, generalized LDPC
(GLDPC) codes [13], doubly-generalized LDPC (D-GLDPC)
codes [14], or Tail-biting LDPC (TLDPC) codes [15]. Nonbi-
nary LDPC codes have been introduced by Gallager [1], and
their finite-length assets have been underlined by Davey et al.
[16]. The main interest of nonbinary LDPC codes actually lies
in the decoder: good nonbinary LDPC codes have much sparser
factor graphs (or Tanner graphs) than binary LDPC codes [17],
and the BP decoder is closer to optimal decoding since the
small cycles can be avoided with a proper graph construction,
as proposed in [18].

In order to improve the tradeoff between waterfall perfor-
mance and error floor, we introduce and study a new class of
LDPC codes that we call hybrid LDPC codes. The class of hy-
brid LDPC codes is a generalization of existing classes of LDPC
codes, both binary and nonbinary. For hybrid LDPC codes, we
allow the connectivity profile to be irregular and the orders of
the symbols in the codeword to be heterogeneous. The rest of
the paper is organized as follows. In Section II, notation is given.
The structure and decoding of the class of hybrid LDPC codes
are given in Section III. The asymptotic analysis is presented
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in Section IV, and the distribution optimizations in Section V.
Section VI presents a finite-length optimization of hybrid LDPC
codes, and Section VII some numerical results. The proofs are
gathered in the Appendix.

II. NOTATION

Vectors are denoted by boldface notations, e.g., . Random
variables are denoted by uppercase letters, e.g., and their in-
stantiations in lowercase, e.g., . There are two possible rep-
resentations for the messages: plain-density probability vectors
or log-density-ratio (LDR) vectors. We denote the elements of
the finite group (or the finite field ), of order , by

, where . The probability that the random
variable takes the value is denoted by . A -di-
mensional probability vector is a vector
of real numbers such that for all , and

.

Definition 1: Given a probability vector , the components
of the corresponding LDR vector are defined as

The natural logarithm is used. We use the notation
. Note that for all , . We define the

LDR-vector representation of as the -dimensional
vector . The observation of the channel
under LDR form is a logarithmic likelihood ratio (LLR). For
convenience, in the derivation of the message properties and
the corresponding proofs, the value is not defined as
belonging to . Given an LDR-vector , the components of
the corresponding probability vector can be obtained by

(1)

We use the notation . A random probability
vector is defined to be a -dimensional random variable

. A random LDR-vector is a -dimen-
sional random variable . We give the
definition of the operation, as introduced in [19]. Given a
probability vector and an element , is defined
by

where addition is performed over .

is defined as the set

Moreover, is defined as the number of elements
satisfying .

The LDR vectors corresponding to and are denoted
by and , respectively. Owing to Definition 1 of the com-
ponents of an LDR vector, the th component of is ,
which is defined by

(2)

For the following, we simplify the notation as follows: for any
group , for all , the element is now
denoted by .

III. THE CLASS OF HYBRID LDPC CODES

A. General Hybrid Parity-Check Equations

Classically, nonbinary LDPC codes are described thanks to
the local constraints given by parity-check equations involving
some of the codeword symbols . If a code is linear over a finite
field , the parity-check equation corresponding to the th
row of the parity-check matrix , is

(3)

The field can be represented using the vector space
in a natural way. Multiplications in can be rep-

resented as matrix multiplications, after choosing a suitable rep-
resentation. The set of matrices representing field elements then
forms a field of invertible matrices. Thus, interpreting variables
as elements of and using matrix multiplication to form
linear constraints can be used to model LDPC over . In
all this work, does not need to be prime.

We aim at generalizing the definition of the parity-check
equation by allowing more general operations than multi-
plications by , and moreover, by considering
parity-checks where codeword symbols can belong to different
order finite sets: . is a finite set of order

with a group structure. Indeed, we will only consider

groups of the type with .
Such a group corresponds to an ensemble of -sized vectors
whose elements lie in .

Let be the codeword size. A hybrid LDPC code is defined
on the group , which is the Cartesian product of the groups to
which the codeword symbols belong

Let denote the group order of the th codeword symbol (ei-
ther information or redundancy as the considered codes are sys-
tematic as described later in Section III-E). Such a group order
is equivalently called the group order of the th variable node,
or of the th column of . Let denote the group order of the
th redundancy codeword symbol. Such a group order is equiv-

alently called the group order of the th check node, or of the
th row of . The nonzero elements of the parity-check matrix

are maps which project a value in the column group (variable
node group) onto a value in the row group (check node group,
see Fig. 1). This is achieved thanks to functions named such
that

Hence, a hybrid parity-check equation is given by

in (4)
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Fig. 1. Factor graph of parity check of a hybrid LDPC code.

We notice that, in (3) as well as in (4), the additive group
structure defines the local constraints of the code. Moreover, as
mentioned in [5] and deeply studied in [20], the additive group
structure has a Fourier transform, whose importance for the de-
coding is pointed out in Section III-F.

To sum up, the graph of a hybrid LDPC code is made of the
following components. Variable nodes belong to different order
groups; the messages going out of variable nodes are therefore
of different sizes. On each edge, there is a general application
from the group of the variable node to the group of the check
node. The messages going into a given check node are therefore
of the same size, and a hybrid check node is a usual nonbinary
parity-check node.

Let us notice that this type of LDPC codes built on product
groups has already been proposed in the literature [21], [22],
but no optimization of the code structure has been proposed and
its application was restricted to the mapping of the codeword
symbols to different modulation orders.

Since the mapping functions can be of any type, the class
of hybrid LDPC codes is very general and includes classical
nonbinary and binary codes.

B. Different Subclasses of Hybrid LDPC Codes

Among the huge set of hybrid LDPC codes, we can distin-
guish as many classes as different types of nonzero elements of
the parity-check matrix . As above mentioned, such a nonzero
element is a map , which projects the symbols of
onto a subset of symbols of . Let us consider the case
where these maps are linear, i.e., represented by a matrix, with
dimensions . In that way, actually connects the binary
map vector of a symbol in to the binary map vector of a
symbol in .

Remark: At this stage, it is quite straightforward to estab-
lish a connection between hybrid LDPC codes and D-GLDPC
codes, thoroughly studied in [14] and [23]. Indeed, the linear
map can be seen as part of the generalized check node and
generalized variable node. The code corresponding to the th
generalized variable node would have a number of informa-
tion bits and length , where the sum is done

over the groups of all the check nodes connected to . The code
of the th generalized check node would have a number of re-
dundancy bits and length , where the sum
is done over the groups of all the variable nodes connected to .
However, it is important to note that, if the idea is the same, hy-
brid LDPC codes are not exactly D-GLDPC codes owing to the
decoder. Indeed, with D-GLDPC codes, one considers that the
generalized codes are at variable and check node sides, whereas
with hybrid LDPC, we consider that the generalized codes for
each node are split on the edges going into the node. As detailed
in Section V on optimization, this difference allows us to affect
different connection degrees on the nodes depending on their
group order, i.e., depending on for variable nodes and on
for check nodes. In other words, we will be able to optimize the
length of the codes, given the dimension.

We distinguish different subclasses of hybrid LDPC codes
whose nonzero elements are linear maps.

1) Maps which are not of rank . This encompasses the
case where the group order of a column is higher than the
group order of the row. From a D-GLDPC perspective,
this allows to have generalized variable nodes whose
codes have , that is to say the number of in-
coming bits is projected to a smaller one. This could be
thought of as puncturing, and, as a consequence, we get
back the result that the rate of the graph can be lower
than the code rate. This case is out of the scope of this
paper.

2) Maps which are of rank . They are referred to as full-
rank transforms, and correspond to matrices of size

with necessarily . Such a map is depicted in
Fig. 2. We consider only these types of hybrid LDPC
codes in this work.

C. Hybrid LDPC Codes With Linear Maps

Let us consider all such that there is an edge between
the th variable node and the th check node. The corresponding
column is in and the corresponding row is in . In this
work, we consider only hybrid LDPC codes whose nonzero el-
ements are linear full-rank transforms of rank equal to ,
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Fig. 2. Message transform through linear map.

thus with . Linear maps always associate the null ele-
ment of one group to the null element of the other. When looking
at the factor graph of a hybrid LDPC code

(see Fig. 1), we note that an edge of the graph carries two kinds
of probability-vector messages: messages of size and mes-
sages of size . Let be an element of the set of linear maps
from to which are full rank. The transform of the
probability vector is denoted extension from to
when passing through from variable node to check node, and
the transform from to is denoted truncation from
check node to variable node. Let denote the image of
[ is injective since ]. The nota-
tions are the ones of Fig. 2

Definition 2: The extension of the probability vector by
is denoted by and defined by, for all

if
with such that , if .

Although is not bijective, we define by

with such that

Definition 3: The truncation of the probability vector by
is denoted by and defined by, for all

with such that

It is worth noting that a vector resulting from truncation of a
probability vector is not anymore a probability vector because

a normalization would be needed to be so. When the decoding
is performed using probability vectors instead of LDR vectors,
we assume that only one normalization is performed at the end
of the variable node update.

In what follows, we use a shortcut by calling extension a
linear map , and by truncation . Indeed, extension or trun-
cation is generated by a linear map and does not apply to
group elements, but to probability vectors. Additionally, we de-
note by the set of extensions from to , and by

the set of truncations from to .

D. Parametrization of Hybrid LDPC Code Ensembles

Classical LDPC codes are parametrized by two polynomials
, whose each coefficient (resp., ) describes the

fractions of edges connected to a variable node of degree (resp.,
to a check node of degree ) [4]. Kasai et al. [24] introduced a
detailed representation of LDPC codes, described by 2-D coef-
ficients , which are the fraction of edges connected to a
variable node of degree and also to a check node of degree
. Another detailed and more general representation of LDPC

codes is the multiedge type [25].
In our case, an edge of the Tanner graph has four parameters

. We extend the notation adopted by Kasai et al. [24],
and we denote by the fraction of edges connected to
a variable node of degree in and to a check node of
degree in .

Hence, is a joint probability which can be decom-
posed in several ways thanks to Bayes rule. For example, we
have

where corresponds exactly to the definition adopted by
Kasai, and describes the way the different group or-
ders are allocated to degree variable nodes and degree check
nodes.

An ensemble of hybrid LDPC codes is parametrized by and
made of all the possible parity-check matrices whose parameters
are those of the ensemble. The linear map of the parity-check
matrices is chosen uniformly at random.

In what follows, for more readable notations, we will write
to denote the marginal distribution over . The same

with any other combinations of , , , , we will always use the
same letters , , , to identify the parameters and the consid-
ered marginals.

Remark: Compared to D-GLDPC, the parametrization of hy-
brid LDPC codes allows to optimize the length of the gener-
alized codes, both at variable and check nodes, given their di-
mensions or , which are the group order characteristics.
However, this representation is not as general as the one of mul-
tiedge-type (MET) LDPC codes [25] because it cannot distin-
guish a check node connected to only one degree- variable
node, thereby preventing the use of degree- variable nodes in
such described hybrid LDPC code ensembles.

We also define node wise fractions: and are
the fractions of variable nodes of degree in and check
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nodes of degree in , respectively. The connections be-
tween edgewise and nodewise fractions are the following:

(5)

The design code rate, i.e., the code rate when the parity-check
matrix is full rank, is expressed by

We define the graph rate as the rate of the binary LDPC code
whose Tanner graph has parameters . It is interesting to
express the graph rate in terms of , to compare it to the
code rate of the hybrid code

For the linear maps we consider, variable nodes are always in
groups of order lower than or equal to the group orders of the
check nodes to which they are connected. Hence, the graph rate
will be always higher than the code rate.

E. Encoding of Hybrid LDPC Codes

To encode hybrid LDPC codes whose nonzero elements are
aforementioned full-rank linear maps, we consider upper-trian-
gular parity-check matrices which are full rank, i.e., without
all-zero rows. The redundancy symbols are computed recur-
sively, starting from the redundancy symbol depending only on
information symbols. The images by the linear maps of the sym-
bols involved in the parity-check equation but the redundancy
symbol being computed, are summed up. The summation is per-
formed in the group of the redundancy symbol, i.e., the group
of the corresponding row. The redundancy symbol is set to the
inverse of this sum by the linear map connected to it. This linear
map is bijective from to , if is the group the re-
dundancy symbol belongs to. Hence, information symbols sat-
isfy that any assignment of values to them is valid, and the re-
dundancy symbols are computed from them.

F. Decoding Algorithm for Hybrid LDPC Codes

To describe the BP decoding, let denote the message
going into variable node from check at the th iteration, and

the probability-vector message going out of variable node
to check node at the th iteration. The connection degrees

of and are denoted by and , respectively. Let
denote the linear map on the edge connecting variable node

to check node . The th component of is denoted by
. The same holds for . Let be the sent codeword

and the number of codeword symbols. We recall that we
simplify the notation as follows: for any group , for all

, the element is now denoted by . Also,
since is a linear map, the matrix of the map is also denoted
by . Hence, for all linear maps from to ,

with and , is translated
into with and .

• Initialization: Let be the th sent symbol and
be the corresponding channel output, for .
For each check node connected to the th variable node

, and for any

• Check node update: Consider a check node and a vari-
able node . Let be the set of all vari-
able nodes connected to , except . Let be the Carte-
sian product group of the groups of the variable nodes in

. For all

(6)

where the operator highlights that the addition is per-
formed over , the group of the row corresponding to
, as defined in Section III-C.

• Variable node update: Consider a check node and a vari-
able node . Let be the set of all check
nodes connected to , except . For all

(7)

where is a normalization factor such that
.

• Stopping criterion: Consider a variable node . Let
be the set of all check nodes connected to .

Equation (8) corresponds to the decision rule on symbols
values, at iteration

(8)

Variable and check node updates are performed iteratively
until the decoder has converged to a codeword, or until the
maximum number of iterations is reached.

It is possible to have an efficient belief propagation decoder
for hybrid LDPC codes. As mentioned in [5] and [20], the ad-
ditive group structure has a Fourier transform, so that efficient
computation of the convolution can be done in the Fourier do-
main. One decoding iteration of BP algorithm for hybrid LDPC
codes, in the probability domain with a flooding schedule, is
composed of the following.
Step 1) Variable node update in : pointwise product of

incoming messages followed by a normalization.
Step 2) Message extension (see Definition

2).
Step 3) Parity-check update in in the Fourier domain:

— fast Fourier transform (FFT) of size ;
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— pointwise product of FFT vectors;
— inverse FFT (IFFT) of size .

Step 4) Message truncation from (see Defi-
nition 3).

We do not perform a detailed complexity analysis, but we
provide the following discussion. Let us consider (7) and (6).
In terms of number of operations per iteration, the complexity
of hybrid LDPC decoding is upperbounded by the complexity
of decoding a nonbinary LDPC code in the highest order field.
Although the decoding complexity of hybrid LDPC codes is
clearly higher than that of binary LDPC codes, it is worth
noting that hybrid LDPC codes are compliant with reduced
complexity nonbinary decoders which have been presented
recently in the literature [26], [27]. In particular, Voicila et al.
[26] introduce simplified decoding of LDPC codes and
show that they can compete with binary LDPC codes both in
terms of decoding complexity and performance. We can expect
similar results when this kind of decoders is applied to hybrid
LDPC codes.

IV. ASYMPTOTIC ANALYSIS OF HYBRID LDPC
CODE ENSEMBLES

This section describes the density evolution analysis for hy-
brid LDPC codes. Density evolution is a method for analyzing
iterative decoding of code ensembles. We first prove that, on
a discrete memoryless symmetric-output channel, the analysis
can be led assuming that the all-zero codeword is transmitted,
because the error probability of the hybrid LDPC decoding is
independent of the transmitted codeword.

We express the density evolution for hybrid LDPC codes, and
mention the existence of fixed points, which can be used to de-
termine whether the decoding of a given hybrid LDPC code
ensemble is successful for a given SNR, in the infinite code-
word length case. Thus, convergence thresholds of hybrid LDPC
codes are similarly defined as for binary LDPC codes [4]. How-
ever, as for LDPC codes, the implementation of density
evolution of hybrid LDPC codes is too computationally inten-
sive, and an approximation is needed.

Thus, we derive a stability condition, as well as the EXIT
functions of hybrid LDPC decoder under Gaussian approxima-
tion, with the goal of finding good parameters for having good
convergence threshold.

A. Channel Symmetry

Only memoryless symmetric channels are considered in this
work. Extension to arbitrary memoryless channels can be done
by a coset approach, as detailed in [19] for LDPC codes.
In this section, we introduce classical results leading to asymp-
totic analysis, but we prove them in the specific case of hy-
brid LDPC codes and of the definition of channel symmetry we
consider.

Definition 4: [28] A channel is symmetric when the density
of the observation in probability form fulfills

Lemma 1: Let denote the conditional error proba-
bility after the th BP decoding iteration of a hybrid LDPC code,

assuming that codeword was sent. If the channel is symmetric,
then is independent of .

The proof of this lemma is provided in the Appendix. This
property allows to assume that the all-zero codeword has been
transmitted, for the remaining of the asymptotic analysis of hy-
brid LDPC code ensemble performance.

B. Message Symmetry

The channel symmetry can entail a certain property of mes-
sages spreading over the graph during the decoding iterations.
This property is the symmetry of the messages. The definitions
of symmetric probability vectors and LDR vectors are given
hereafter.

Definition 5: [19] A random probability vector is sym-
metric if for any probability vector , the following expression
holds:

(9)

where and are as defined in Section II.

Definition 6 [19]: Let be a random LDR vector. The
random variable is symmetric when
satisfies

(10)

for all LDR vectors . The proof of the equivalence between
these two definitions is provided in [19].

Let us connect the channel symmetry property to the message
symmetry property.

Lemma 2: Let be the observation in probability form,
and let . If the channel is symmetric, then,
under the all-zero codeword assumption, the density of
is symmetric

The proof of this lemma is provided in the Appendix.

Lemma 3: If the bipartite graph of a hybrid LDPC code is
cycle free, then, under the all-zero codeword assumption, all
the messages on the graph at any iteration of BP decoding, are
symmetric.

Proof of Lemma 3 is given in the Appendix.

C. Density Evolution

Analogously to the binary or nonbinary cases, density evolu-
tion for hybrid LDPC codes tracks the distributions of messages
produced by the BP algorithm, averaged over all possible neigh-
borhood graphs on which they are based. The random space is
composed of random channel transitions, the random selection
of the code from a hybrid LDPC ensemble parametrized by ,
and the random selection of an edge from the graph. The random
space does not include the transmitted codeword, which is as-
sumed to be set to the all-zero codeword (following Lemma 1).
We denote by the initial message across an edge con-
nected to a variable in , by the message going
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out of a variable node of degree in at iteration . The
message going out of a check node of degree in at iter-
ation is denoted by . We denote by and any two
probability vectors of size and , respectively.

Let us denote by the set of all probability vectors of
size . Let denote the message map
of a variable node of degree in , as defined in (7):
the input arguments are probability vectors of size . Let

denote the message map of a check node
of degree in : the input arguments are probability
vectors of size

(11)

(12)

Richardson and Urbanke [5] proved a concentration theorem
that states that, as the block length tends to infinity, the bit
error rate at iteration , of any graph of a given code ensemble,
converges to the probability of error on a cycle-free graph in
the same ensemble. The convergence is in probability, exponen-
tially in . As explained in [19] for classical nonbinary LDPC
codes, this theorem carries over hybrid LDPC density-evolution
unchanged by replacing bit- with symbol-error rate.

Moreover, one can prove that the error probability is a non-
increasing function of the decoding iterations, in a similar way
to the proof of Theorem 7 in [4]. This nonincreasing property
ensures that the sequence corresponding to density evolution,
by iterating between (11) and (12), converges to a fixed point.
Implementing the density evolution allows to check whether
this fixed point corresponds to the zero error probability, which
means that the decoding in the infinite codeword length case
has been successful. Furthermore, Richardson and Urbanke
proved [5] the monotonicity of error probability in terms of
the channel parameter for physically degraded channels. Thus,
hybrid LDPC codes, like binary or nonbinary LDPC codes,
exhibit a threshold phenomenon.

Like for LDPC codes, implementing the density evo-
lution for hybrid LDPC codes is too computationally intensive.

Thus, in what follows, we present a useful property of hybrid
LDPC code ensembles, which allows to derive both a stability
condition and an EXIT chart analysis for the purpose of ap-
proximating the exact density evolution for hybrid LDPC code
ensembles.

D. Invariance Induced by Linear Maps (LM Invariance)

Bennatan and Burshtein [19] used permutation invariance to
derive a stability condition for nonbinary LDPC codes, and to
approximate the densities of graph messages using a 1-D param-
eter. The difference between nonbinary and hybrid LDPC codes
lies in the nonzero elements of the parity-check matrix. Indeed,
the nonzero elements do not correspond anymore to cyclic per-
mutations, but to extensions or truncations (see Definitions 2
and 3). Our goal in this section is to prove that linear-map in-
variance (LM invariance) of messages is induced by choosing
uniformly the linear maps as nonzero elements.

Until the end of the current section, we work with probability
domain random vectors, but all the definitions and proofs also
apply to LDR random vectors. Let us recall that is the set of
extensions from to , and is the set of truncations
from to .

Definition 7: A random vector of size is said to be LM
invariant when for all and , the
random vectors and are identically distributed,
i.e., when for all .

Lemma 4: If a random vector of size is LM invariant,
then all its components are identically distributed.

Proof of Lemma 4 is given in the Appendix.

Definition 8: Let be a random vector of size . We define
the random extension of size of , denoted , as the random
vector , where is uniformly chosen in and indepen-
dently of .

Lemma 5: Consider a random vector of size . If there
exist and a random vector of size such that ,
then is LM invariant.

Proof of Lemma 5 is given in the Appendix.
Thanks to Lemma 7, the messages on the graph of a hybrid

LDPC code, in the code ensemble with uniformly chosen ex-
tensions, are LM invariant, except the messages going out of
variable nodes.

E. The Stability Condition for Hybrid LDPC Codes

The stability condition, introduced in [4], is a necessary and
sufficient condition for the error probability to converge to zero,
provided it has already dropped below some value. This con-
dition must be satisfied by the signal-to-noise ratio (SNR) cor-
responding to the threshold of the code ensemble. Therefore,
ensuring this condition, when implementing an approximation
of the exact density evolution, helps to have a more accurate ap-
proximation of the exact threshold.

In this paragraph, we generalize the stability condition to hy-
brid LDPC codes. Let be the transition probabilities of
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the memoryless output symmetric channel and be defined
by

Let be a positive real-valued vector of size the number of
different group orders. Let us define the function by

For more readable notations, we also define the vector output
function by

which means that the th component of is

. Let be the probability that
the message be erroneous, i.e., corresponds to an incorrect
decision. The average probability that any rightbound message
be erroneous is . Let us denote the convo-
lution by . Then, corresponds to the convolution of vector

by itself times.

Theorem 1: Consider a given hybrid LDPC code en-
semble parametrized by . If there exists a
vector with all positive components, such that, for all ,

, then there exist and such

that, if , then converges to zero as tends to infinity.

Proof of Theorem 1 is given in the Appendix. This condition
is sufficient for stability.

Let us note that, for a nonbinary LDPC codes, the sta-
bility condition for hybrid LDPC codes reduces to the stability
condition for LDPC codes, given by [19]. Indeed

is equivalent in this case to

When the transmission channel is binary-input additive white
Gaussian noise (BIAWGN), we have

Let be defined by

with , the number of ones in the binary map of .
Under this form, we can prove that tends to zero as goes to
infinity on BIAWGN channel. This means that any fixed point
of density evolution is stable as tends to infinity for nonbinary
LDPC codes. This shows, in particular, that nonbinary cycle
codes, i.e., with constant symbol degree , are stable at
any SNR provided that is large enough.

F. EXIT Charts for Hybrid LDPC Codes

The purpose is to approximate the decoding threshold of a hy-
brid LDPC code ensemble with parameters , in such a way that
it can be used in an optimization procedure, where the threshold
will be used as the cost function. To do so, the message densities
are projected on one-scalar parameter. The considered channel
is the BIAWGN channel with binary phase shift keying (BPSK)
modulation.

With binary LDPC codes, Chung et al. [29] observed that the
variable-to-check messages are well approximated by Gaussian
random variables, in particular when the variable node degree is
high enough. The approximation is much less accurate for mes-
sages going out of check nodes. Furthermore, the symmetry of
the messages in binary LDPC decoding implies that the mean

and variance of the random variable are related by
. Thus, a symmetric Gaussian random variable may be de-

scribed by a single parameter. This property was also observed
by ten Brink et al. [8] and is essential to their development of
EXIT charts for Turbo codes. In [14], Paolini et al. analyzed
D-GLDPC on the binary erasure channel (BEC), which allowed
to track only one parameter, the extrinsic information, instead of
complete message densities. In the context of nonbinary LDPC
codes, Li et al. [28] obtained a description of -dimen-
sional Gaussian distributed messages by parameters. Ben-
natan et al. [19] used symmetry and permutation invariance to
reduce the number of parameters from to one. This enabled
the generalization of EXIT charts to LDPC codes.

First, let us discuss the accuracy of the Gaussian approxima-
tion of the channel output in symbolwise LLR form for hybrid
LDPC code ensembles. The channel outputs are noisy observa-
tions of bits, from which we obtain bitwise LLR, all identically
distributed as [29]. Let be the vector gathering the
LLRs of bits of which a symbol in is made:

. Each component of an input LLR random
vector of size is then a linear combination of these
bitwise LLRs

(13)

where is the matrix of size in which the th
row is the binary map of the th element of . The distri-
bution of initial messages is hence a mixture of 1-D Gaussian
curves, but are not Gaussian distributed vectors. Indeed, it is
easy to see that the covariance matrix of vector is not invertible.

Second, let us introduce a slight extension of Theorem 6 in
[19].

Theorem 2: Let be an LDR random vector, Gaussian dis-
tributed with mean and covariance matrix . Assume that the
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probability density function of exists and that is non-
singular. Then, is both symmetric and LM invariant if and
only if there exits such that

...

The proof of Theorem 2 is the same as the proof of Theorem
6 in [19], because the permutation-invariance property [19] is
used only through the fact that the components of a vector sat-
isfying this property are identically distributed. This fact is en-
sured by an LM-invariant vector thanks to Lemma 4.

Third, Lemma 4 ensures that, if a vector is LM invariant, then
its components are identically distributed. Hence, if we assume
that a message is Gaussian distributed, symmetric, and LM in-
variant, its density depends on only one-scalar parameter. Let us
now discuss the relevance of approximating the message densi-
ties of a hybrid LDPC code ensemble by Gaussian random vec-
tors. Let be the density of an LDR message going out of
a variable node in after being extended by an extension
chosen uniformly at random in . Any component of such
vector has density . Messages going out of variable nodes
are extended when passing through the linear extension func-
tion nodes. As described in Section III-C, the extension turns,
e.g., a -sized probability vector into a -sized vector, with

. This means that of the resulting extended LDR
message components are infinite, because these components of
the corresponding probability vector are zero. Hence, the den-
sity of each component, of an extended message, is a mixture
including a Dirac . Since this LDR vector is the random ex-
tension of the variable node output message, it is LM invariant.
From Lemma 4, each component is identically distributed.

Property 1: The probability density function of any compo-
nent of an LDR message after extension at iteration is ex-
pressed as

where the weight is independent of .
Proof: At any decoding iteration, cannot have a
component because there exists no set of linear maps con-

nected to the neighboring check nodes of , such that there ex-
ists forbidden elements in to which the symbol value as-
sociated to cannot be equal. This is due to the fact that each
check node (or the associated redundancy symbol) is in a group
of order higher or equal to the group orders of its neighboring
variable nodes. Hence, is independent of the decoding itera-
tions (it depends only on the groups of the codeword symbols).

It is therefore easy to show that any normalized moment, of
order greater than , of the vector density (expectation of the
product of a different number of its components) is equal to the
same moment of the vector density . Thus, if we assume

that the vector density , i.e., at variable node output, is
dependent on only one scalar parameter, so is the whole den-
sity of the extended vector message. In other words, the density
of vector message of a hybrid LDPC code cannot be approxi-
mated by a Gaussian density, owing to the component in
the density, but is dependent on only one parameter if we as-
sume that the density is Gaussian. The same property
holds for messages before truncation, if we assume that mes-
sages going into variable nodes are Gaussian distributed. Since
the messages going into variable nodes are symmetric and LM
invariant, their sum done during the variable node update is sym-
metric and LM invariant by Lemma 18 in [19] and Lemma 9
(see the Appendix). Hence, the one-scalar parameter approx-
imation for hybrid LDPC codes is not less accurate than for

LDPC codes [19].
The parameter, defining the message densities, we choose to

track is the mutual information between a message and the code-
word sent.

Definition 9 [19]: The mutual information between a sym-
metric LDR-vector message of size and the codeword
sent, under the all-zero codeword assumption, is defined by

The equivalent definition for the probability vector
of size is

(14)

In the following, the shortcut “mutual information of an LDR
vector” is used instead of “mutual information between an LDR
vector and the codeword sent.”

Since the connection between mutual information and the ex-
pectation of a symmetric Gaussian distributed variable is easily
obtained by interpolating simulation points, we consider expec-
tations of Gaussian distributed vectors with the same mutual in-
formation as the message vectors. That is we consider a projec-
tion of the message densities on Gaussian densities, based on
Property 1, which ensures that densities of messages going out
of or into check nodes are dependent on the same parameters
as densities of messages going into or out of variable nodes.
There are two models of messages handled by the hybrid de-
coder, and hence we define two functions to express the mutual
information.

• Messages going out of variable nodes are not LM invariant,
and their mutual information is expressed thanks to a func-
tion called in terms of the BIAWGN channel
variance , a mean vector and , the group order of
the variable node. The mean is the mean of a Gaussian
distributed vector.

• For a hybrid LDPC code ensemble with uniformly chosen
linear maps, messages going into and out of check nodes
are LM invariant. If denotes the group of the check
node, the mutual information of messages is expressed by
a function . is the mean of a Gaussian random
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variable (any component of a Gaussian distributed vector
with same mutual information as the graph message).

Let us now detail the evolution of mutual information of mes-
sages through BP decoding.

• The mutual information of a variable node output is ex-
pressed thanks to the function applied to sum
of means, since variable node update is the summation of
LDRs. Here, is the mutual information of truncation
operator output, and is the all-one vector of size .
The mutual information of the output of a variable
node in with connection degree , is given by

• The mutual information of extended message from
to does not depend on which linear extension is used,
but only on the group orders. Let and denote the
mutual information of extension input and output, respec-
tively. It follows from Definition 9

• To express the mutual information of truncated message
from to , we use the LM-invariance property
of input and output of the truncation operator. Let and

denote the mutual information of truncation input and
output, respectively

• Let denote a probability vector, and the corre-
sponding Fourier transform (FT) vector. Let be the mu-
tual information of a probability vector , and denote
the function given in (14) applied to the vector .

Lemma 6: The connection between and is

The proof is provided in the Appendix. Through a check node in
with connection degree , the mutual information trans-

form from the FT perspective is equivalent to the one given by
the reciprocal channel approximation [30]

The reciprocal channel approximation used for hybrid LDPC
codes is not looser than when it is used with nonbinary LDPC
codes, since the message densities are considered as, or pro-
jected on, Gaussian densities in both cases. However, by com-
puter experiment, the approximation is looser than for binary
LDPC codes in the first decoding iterations when the check node
degree is very low ( or ).

We obtain the whole extrinsic transfer function of one itera-
tion of the hybrid LDPC decoder (17). The mutual information
of a message going out of a check node of degree in

at the th iteration and before truncation is denoted by .

The same after truncation to become sized is denoted .

Analogously, the mutual information of a message going out of
a variable node of degree in at the th iteration and be-

fore extension is denoted by . The same after extension

to become -sized is denoted

(15)

(16)

(17)

We also define the a posteriori (or cumulative) mutual infor-
mation for each kind of variable node at the th iteration by

(18)

For any , is the quantity that must tend to when
tends to infinity, for successful decoding. In the remainder, we

refer to this mutual information evolution equation by using the
notation such that

V. DISTRIBUTIONS OPTIMIZATION

A. Context of the Optimization

Let us denote the code rate , and the target code rate
. The optimization procedure consists in finding

which fulfills the following constraints at the lowest
SNR:

Code rate constraint:

Sum constraint:

Sorting constraint:

such that (19)

Successful decoding condition:

(20)

with .
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B. Optimization With Multidimensional EXIT Charts

The successful decoding condition , for all

, is verified by multidimensional EXIT charts. This tech-
nique, for hybrid LDPC codes, is a modification of the technique
introduced in [31], and can be presented as follows.

1) Initialization: . Set for all .

2) Compute for all with (17).

3) Compute for all with (16).
4) Compute for all with (18).
5) If up to the desired precision for all then

stop; otherwise and go to step 2).
Optimizing the detailed representation , without

any restriction on the parameters, requires to use multidimen-
sional EXIT charts with a hill-climbing optimization method,
like differential evolution. However, owing to the huge param-
eter space and multidimensional interpolations leading to a too
high computational complexity, we restrict the parameter space
to get a linear programming optimization problem.

C. Optimization With Monodimensional EXIT Charts

In this part, we consider the optimization of hybrid LDPC
codes families with all check nodes in the same group
and with connection degrees independent of the variable nodes
to which they are connected. We present how general (17) turns
into monodimensional EXIT charts, and how this allows the use
of linear programming for optimization. Let denote the av-
eraged mutual information of extended messages. It is expressed

in terms of the mutual information of messages going
out of variable nodes of degree in , by simplification of
(15)

From (15), we can see that, for any

and then the successful decoding condition (20) reduces to

By simplifying (17), can be expressed by a recursion in
terms of as (21), shown at the bottom of the page. Thus, the
condition for successful decoding of hybrid LDPC codes in that
specific case is

(22)

In that case, the optimization procedure aims at finding distri-
bution for given . We see in (21) that
depends linearly on , turning the optimization problem
into a linear programming problem.

VI. FINITE-LENGTH OPTIMIZATION

This section presents an extension of optimization methods
that has been described in [32] for finite-length nonbinary LDPC
codes with constant variable degree . We address the
problem of the selection and the matching of the parity-check
matrix nonzero elements. In this section, we assume that the
connectivity profile and group order profile of the graph have
been optimized, with constant variable degree . With the
knowledge of the graph connectivity, we run a progressive edge
growth (PEG) algorithm [33] in order to build a graph with a
high girth.

The method is based on the binary image representation of
and of its components. First, the optimization of the rows of
is addressed to ensure good waterfall properties. Then, by taking
into account the algebraic properties of closed topologies in the
Tanner graph, such as cycles or their combinations, an iterative
method is used to increase the minimum distance of the binary
image of the code by avoiding low-weight codewords.

A. Row Optimization

Based on the matrix representation of each nonzero element,
we give hereafter the equivalent vector representation of the
parity-check equations associated with the rows of .

Let be a codeword, and let be the
number of bits representing the binary map of symbol

, . For the th parity-check equation of
in the group , we have the following vector equation:

(23)

where is the binary matrix representation of the
nonzero element and is the vector representation (binary
map) of the symbol . The all-zero component vector is de-
noted by .

Considering the th parity-check equation as a single com-
ponent code, we define
as its equivalent binary parity-check matrix, with

the indexes of the nonzero ele-
ments of the th parity-check equation. The size of is

, with and the extension
orders of the groups of the check node and the th connected
variable node, respectively. Let be

(21)
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the binary representation of the symbols of the codeword
involved in the th parity-check equation. When using the
binary representation, the th parity-check equation (23) can be
written equivalently as .

We define as the minimum distance of the binary
code associated with . As described in [32], a -tuple of
linear maps is chosen in order to maximize the minimum dis-
tance of the code corresponding to the th row of ,

. For hybrid LDPC codes, we adopt the same
strategy, and choose for a binary linear component code with
the highest minimum distance achievable with the dimensions
of [34].

B. Avoiding Low-Weight Codewords

We now address the problem of designing codes with good
minimum distance. It has been shown in [32] that the error floor
of nonbinary LDPC codes based on ultrasparse graph
is not uniquely due to pseudocodewords, but also to low-weight
codewords. Here we consider hybrid LDPC codes with constant
variable degree . We adopt for hybrid LDPC codes the
same strategy that has been introduced in [32], which aims at
avoiding the low-weight codewords which are contained in the
smallest cycles.

In order to do so, we first extract and store the cycles of the
Tanner graph with length belonging to , where

is the girth and is a small integer such that the number
of cycles with size is manageable. As in the previous
section, we consider the binary images of cycles as component
codes. Let be the binary image of the th stored cycle.
Since we consider codes, if some columns of are
linearly dependent, so will be the columns of . This means
that a codeword of a cycle is also a codeword of the whole code.
The proposed approach is hence to avoid low-weight codewords
by properly choosing the linear maps implied in the cycles, so
that no codeword of low weight is contained in the cycles. This
is achieved by ensuring that the binary matrices corresponding
to the cycles have full column rank. Hybrid LDPC codes are
therefore well suited to this kind of finite-length optimization
procedure owing to the rectangular structure of the injective
linear maps we consider as nonzero elements of the parity-check
matrix.

VII. NUMERICAL RESULTS

A. Rate One-Half Codes

In what follows, code rates are expressed in bits per channel
use. We first give in Table I two code distributions and the cor-
responding thresholds for code rate one-half. Thresholds, de-

noted by , are approximated by Monte Carlo simula-
tions in the following manner. To mimic decoding of an infi-
nite-length code, we consider a finite-length hybrid LDPC code
corresponding to the given distribution. The length we used is
20 000 coded bits. We send the all-zero codeword, and at each
decoding iteration, the noise added to the codeword is changed,
as well as the linear maps of the code, chosen uniformly at
random. If the code is not structured, we also change the in-
terleaver of the graph at each iteration. The distribution is pre-
served because connection degrees and groups are not changed.

TABLE I
NODEWISE DISTRIBUTIONS OF THE HYBRID LDPC CODES USED

FOR THE FINITE-LENGTH SIMULATIONS

An approximation of the threshold is the lowest SNR value for
which the number of errors of the decoder reaches zero after
500 iterations. We then check that several approximations have
small variance with respect to (w.r.t.) the average, and define the
threshold as the average of the obtained approximations.

Thresholds are given only for the codes we are interested
in for small codeword length applications. The channel is the
BIAWGN channel with BPSK modulation. The hybrid LDPC
code is obtained by setting the different group orders, and
then optimizing the connection profile of variable nodes for
each group. We set the check node parameters (group order
and connection profile), independently of the variable nodes pa-
rameters. Starting from , the assumptions we con-
sider on the parametrization, are translated into the following
decomposition:

where is the connection profile of variable nodes in
, which is optimized for all . We fix , , and

. Check nodes have degree or , independently of other
parameters, and are in as well as all redundancy vari-
able nodes, while the information variable nodes are in .
(Hence, .) The connection profiles for these two
groups are then optimized with maximum variable node degree
equal to .

Remark: From a D-GLDPC codes perspective, variable
nodes in the highest order group correspond to poor general-
ized component codes. It can be observed that the optimization
procedure affects these nodes with as many high connection
degrees as possible, given the constraints (i.e., when the code
dimension , equal to the log of the group order, is high, the
length is increased).

The hybrid LDPC code is obtained by fixing the connection
profile and optimizing the group orders of variable nodes. We set
the check node parameters (group order and connection profile),
independently of the variable nodes parameters. Starting from

, the assumptions we consider on the parametrization
are translated into the following decomposition:
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Fig. 3. FER versus (in decibels): code rate one-half. � � 2048 coded bits except for the MET LDPC code for which � � 2560 coded bits. � �

500 decoding iterations are performed.

We aim at optimizing as many group order profiles ,
, as the number of different variable node connection de-

grees . We fix , , and . The graph connections are
set regular with constant variable degree and constant
check degree . All check nodes are fixed to be in .
Therefore, . Hybrid LDPC code and en-
sembles are hence unstructured code ensembles.

From Table I, we can say that hybrid LDPC codes do not out-
perform nonbinary LDPC codes in terms of decoding thresh-
olds. Moreover, both kinds of codes can have better thresholds
than those in Table I by allowing higher connection degrees. In-
deed, the capacity-approaching sequences of LDPC codes have
a large fraction of degree two variable nodes [4], [35], which is
permitted by balancing high connection degrees. Nevertheless,
this large fraction of degree two variable nodes gives rise to low-
weight codewords which correspond to cycles in the subgraph
of the Tanner graph which contains only degree two variable
nodes, thereby entailing poor error-floor performance. However,
our purpose is to point out the good finite-length performance
of hybrid LDPC codes, that can be evaluated by the error-floor
behavior, as explained in Section I. Hence, we consider only
low maximum connection degrees so as to limit the harmful
topologies in the underlying Tanner graph of the hybrid LDPC
code. For such low degrees, hybrid LDPC codes do not approach
the capacity as close as MET LDPC codes do, but their thresh-
olds are in the range of protograph-based LDPC code thresh-
olds [31], [36]. This is due to the adopted detailed representation

which cannot handle degree one variable nodes. However, it
would be an interesting perspective to switch from the detailed
representation to a MET representation for hybrid LDPC codes.
This will certainly enable to get capacity-approaching distribu-
tions with low connection degrees. Indeed, it has been shown
in [15] that introducing degree- variable nodes in nonbinary
LDPC codes makes the decoding threshold getting closer to the
theoretical limit.

In what follows, for all simulated hybrid LDPC codes except
hybrid LDPC code in Fig. 3, the linear maps are chosen ac-
cording to the technique presented in Section VI. Detailed simu-
lation results (numbers of frames in error and simulated) are pre-
sented in the Appendix. Fig. 3 represents frame error rate (FER)
curves for different codes with code rate one-half. The perfor-
mance curves of hybrid LDPC codes and are compared with
a protograph-based LDPC code from [36], and a MET LDPC
code from [25]. This code has been specifically designed for
low error floor. All codes have 2048 coded bits, except
the MET LDPC code which has 2560 coded bits.

The graphs of hybrid LDPC codes have been built with the
random PEG algorithm described in [37]. To create systematic
hybrid LDPC codes with the method of [37], the modification
of the technique in [37] is the same as what is described in
[33] (Section V) to create upper-triangular encoding matrices
for LDPC codes. It is worth noting that the input of the graph
construction method is only the connection profile of the code
without the group order profile.

We see that the hybrid LDPC code has performance very
close to the protograph-based LDPC code in the simulated
range of SNR. The hybrid LDPC code has slightly better
waterfall and slightly higher error floor than the MET LDPC
code which is about 500 bits longer. Hybrid LDPC codes are
therefore capable of exhibiting performance equivalent to MET
LDPC codes, which are, to the best of our knowledge, among
the most interesting structured codes. It is worth noting that,
unlike MET and protograph-based LDPC codes, the presented
hybrid LDPC codes are nonstructured codes.

Furthermore, for sake of clarity in the figures, we did not
plot irregular LDPC codes performance. However,
we can mention that such codes cannot outperform regular

and hybrid LDPC codes, even not optimized
for finite length (Section VI), in terms of error floor. Thus,
even though they can provide better waterfall performance
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Fig. 4. Comparison of hybrid LDPC code with TH code taken from [39] and ZH code taken from [40], for� � 200 information bits. The number of decoding
iterations is � � 30 for TH codes, and � � 200 for the hybrid LDPC code.

TABLE II
NODEWISE DISTRIBUTION OF THE RATE ONE-SIXTH HYBRID LDPC CODE

than regular or hybrid LDPC codes which
have lower connection degrees can, irregular LDPC
codes do not allow to lower the error floor as much as with
connection-regular codes. Hence, irregular LDPC
codes do not allow to get the same amplitude in the choice of
the tradeoff between waterfall and error-floor performance, as
hybrid LDPC codes do.

B. Rate One-Sixth Codes

For communication systems operating in the low SNR regime
(e.g., code-spread communication systems and power-limited
sensor networks), low-rate coding schemes play a critical role.
Although LDPC codes can exhibit capacity-approaching per-
formance for various code rates when the ensemble profiles are
optimized [4], in the low-rate region, it is difficult to obtain good
low-rate LDPC codes. The analytical reason for that is given in
[38, Sec. II.D]: “lower rate LDPC codes require larger SNR in-
crease from the decoding threshold to obtain similar conditions
regarding decoding tunnels in EXIT charts than their higher
rate counterparts.” We intend to illustrate the interest of hy-
brid LDPC codes for low-rate applications requiring short block
length (from 200 to 1000 information bits).

In Fig. 4, bit error rates (BERs) of a rate one-sixth hybrid
LDPC code, whose distribution is given in Table II, are com-

pared with Turbo Hadamard (TH) code taken from [39] and
zigzag Hadamard (ZH) code taken from [40], for 200
information bits. The number of decoding iterations is
30 for TH codes, and 200 for the hybrid LDPC code.
However, the comparison is not necessarily unfair because the
number of iterations for Turbo-like codes and that for LDPC
codes does not scale identically with performance as, e.g.,
pointed out in [41]. This can be interpreted by the fact that
the complexity per iteration of Turbo-like codes is higher than
that of LDPC codes, owing to the Bahl–Cocke–Jelinek–Raviv
(BCJR) algorithm run at each iteration. The hybrid LDPC code
outperforms the ZH code with 0.3-dB gain. Additionally, the
hybrid code has no observed error floor up to a BER .
When comparing the computer simulation of the hybrid LDPC
code with the union bound of ZH code, we observe that the
BER of the hybrid LDPC code has gain of about one decade at

2 dB. This gives a hint to predict that the error floor of the
hybrid LDPC code is lower than the error floor of the ZH code.

In Fig. 5, the FER comparison is drawn for code rate one-sixth
and 1000 information bits. The quasi-cyclic LDPC code
is designed to have low error floor [43]. The hybrid LDPC code
is better than the quasi-cyclic LDPC in the waterfall region.
However, the error floor of the quasi-cyclic LDPC code is not
provided in [43], where only an estimation of the minimum dis-
tance is available and we were not able to eval-
uate the minimum distance of the hybrid LDPC code.1 The hy-
brid LDPC code is better than the punctured Turbo Hadamard
(PTH (PTH) codes both in the waterfall and in the error-floor re-
gions. The hybrid LDPC code has poorer waterfall region than

1Indeed, unlike quasi-cyclic LDPC codes, the proposed hybrid LDPC code
is not structured. For unstructured LDPC codes, the minimum distance can be
evaluated by the method presented in [44]. In Fig. 5, the codeword length is
6144 bits, which results in a too high complexity to implement the technique of
[44]. That is why we were unable to approximate the minimum distance of the
hybrid LDPC code for this codeword length.
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Fig. 5. Comparison of hybrid LDPC code with PTH taken from [42] and other powerful codes, for code rate one-sixth. The PTH code has� � 999 information
bits, and the other codes have� � 1024 information bits. � � 50 for the PTH code, and � � 200 for the other codes.

the MET LDPC code [45], but better error floor. Hence, for rate
one-sixth too, the performance of hybrid LDPC codes is equiva-
lent to the one of MET LDPC codes, by allowing to reach com-
parable tradeoff between waterfall and error-floor performance.

Remark: Let us mention that hybrid LDPC codes, with in-
jective linear maps as nonzero elements, are well fitted to low
code rates thanks to their structure. Indeed, like all other kinds of
codes with generalized constraint nodes (TH code [39], LDPC
Hadamard codes [46], GLDPC [13], D-GLDPC [14], or tail-
biting LDPC [15]), they are well fitted to low code rates be-
cause the graph rate is higher than the code rate. This can help
the iterative decoding: when the code rate is very low, decoding
on a higher rate graph can lead to better performance.

VIII. CONCLUSION

A new class of LDPC codes, named hybrid LDPC codes, has
been introduced. Asymptotic analysis of this class of codes has
been carried out for distribution optimization, as well as finite-
length optimization. Numerical simulations, for code rates one-
half and one-sixth, illustrate that hybrid LDPC codes can be
good competitors for the best known codes, like protograph-
based or MET LDPC codes, by allowing to reach interesting
tradeoff between waterfall and error-floor performances.

APPENDIX

Proof of Lemma 1: The proof has the same structure as the
proof of Lemma 1 in [5]. The notations are the same as in [5]
and Section III-F.

Let denote the message map of
any variable node at iteration , according to (7). The size of ar-
gument messages is implicitly the one of the group of the vari-
able node. Let be the message map of

any check node. The sizes of argument messages are implic-
itly the one of the group of each variable node connected to the
check node, according to (6).

• Check node symmetry: Let be the Cartesian product
group defined in Section III-F. For any sequence

in such that ,
we have [see (6)]

• Variable node symmetry: We also have, for any

Let denote the random variable being the channel output in
probability form, conditionally to the transmission of the zero
symbol. Each for any has the same size as the
group of the corresponding codeword symbol. Any memoryless
symmetric channel can be modeled as

where is the th component of which is a vector of size ,
denoting an arbitrary codeword of the hybrid LDPC code. The
channel output in probability form results from the transmis-
sion of .

Let denote an arbitrary variable node and let denote one
of its neighboring check nodes. For any observation in prob-
ability form , let denote the message sent from
to in iteration assuming was received. The quantity is
hence a set of channel output vectors in probability form ,
for all . The same definition holds for from
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to . From the variable node symmetry at , we have
. We assume now that in iteration we

have . Since is a codeword, we have
, and hence . From

the check node symmetry condition, we conclude that

Moreover, from the variable node symmetry condition, it fol-
lows that in iteration the message sent from to is

Thus, all messages to and from variable node when is
received are permutations by of the corresponding message
when is received. Hence, both decoders commit exactly the
same number of errors, which proves the lemma.

Proof of Lemma 2: Let be the noisy observation of
the sent symbol . Let be the surjective map which relates
the noisy observation to a LDR vector: . The
set of observations resulting in LDR vector is denoted by

. Thus, we have, for all ,
.

Furthermore, let be and be
. By definition of , for all ,

, therefore we also have
and . Owing

to the channel symmetry, we have
.

Let us prove that satisfies (10)

Proof of Lemma 3: When hybrid LDPC codes are decoded
with BP, both data pass and check pass steps are the same as
classical nonbinary codes decoding steps. Since these steps pre-
serve symmetry [4] if the graph is cycle free, Lemma 7 ensures
that the hybrid decoder preserves the symmetry property if the
input messages from the channel are symmetric.

Lemma 7: If and are a symmetric LDR random vec-
tors, then the extension of , by any full-rank linear ex-
tension , remains symmetric. The same is for the truncation

of by the inverse of .

Proof: We first prove that any -sized extension of a
-sized symmetric random vector remains symmetric. We

want to show that

(24)
Case :

• In the case where , we have to show that

If , then . If , then
. Thus, we have to show that

(25)

To prove (25), it is sufficient to show that such
that . We have . It is sufficient
to choose , then . Since
by hypothesis, .

• In the case , to prove (24), we have to prove
that , which is straightforward because

, and hence . By
taking the contraposition, we end up with the sought result.

Hence, we have proven (24) in the case of .
Case : Let be the Kronecker delta function

whose value is if , otherwise. We have

Since belongs to , we denote by the element in
such that . The input message is

symmetric, hence we have

Recall that, for any extension , we have

Thus

(26)
We note that

(27)

In this case, for all ,

. For all ,



5330 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 10, OCTOBER 2010

if , then : . There-
fore

. We finally obtain

The above equality allows to insert (27) into (26). We can now
conclude that, when is in , (24) is satisfied.

This completes the proof of the first part of Lemma 7.
We now prove that any truncation of a symmetric random

LDR vector remains symmetric. We have to prove that

(28)

Let be the image of by :

We note that

where the last step is inferred thanks to (2). Thus

(29)

We have obtained (28). This completes the proof of Lemma 3.

Lemma 8: denotes the set of extensions from to
. For given and ,

Proof: and denote and , respec-
tively.

Without any constraint to build a linear extension from
to , except the one of full rank, we have

choices for the th row, .
For given and , with the constraint that , we have

choices for the th row, ,

where is the number of bits equal to in the binary map of
. Thus, the number of such that is dependent only

on . Let us say that

then we have

Therefore,

Proof of Lemma 4: For any , , denotes
the set of all truncations from to . We assume LM
invariant. and denote two truncations independently
arbitrary chosen in . For any and in ,
we can choose extension such that and
is denoted by . Also, we choose such that . LM
invariant implies

This is equivalent to

and hence

Proof of Lemma 5: We want to prove that, for all , for
any , and are identically
distributed.

By hypothesis , with of size and uniformly
chosen at random in . Let be and

be , where stands for the composition of
functions. Then, and .
Let be a random vector of size defined by

if
otherwise.

We can define the random vector in a similar way. With
such definitions, when is a probability vector, we have

if

otherwise.
(30)

(The same holds when is an LDR vector by replacing by
.) We end up with the sought result by showing that and

are identically distributed (we recall that and are fixed
while is chosen uniformly at random). For all of size in

, we define the events and .
• The event that for all such that , is such that

.
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• The event that for all such that , is such that:
there is no such that .

Thus, we have

In the proof of Lemma 8, we have proven that, for all given
and , ' ' is dependent

only on . Thus, it is easy to see that does not
depend on . and are therefore identically distributed,
so are and owing to (30). This completes the
proof.

Lemma 9: The product of two LM-invariant random vec-
tors is LM invariant.

Proof: Let and be two LM-invariant random vec-
tors of size . For any , let and be any two
linear maps from to . Since is LM invariant,

and are identically distributed, by definition
of LM invariance. The same holds for . and

are therefore identically distributed. Moreover,
it is clear that , for any . Hence,

and is LM invariant. This completes
the proof.

Proof of Theorem 1: denotes a random probability
vector of size . The th component of the random truncation
of is denoted by . The th component of the random

extension of is denoted by . The th component of the

random extension followed by a random truncation of is
denoted by .

We define the operator by

The following equalities are hence deduced from the previous
definitions:

To shorten the notations we can omit the index of iteration .
Moreover, in the remainder of this proof, we choose to use sim-
pler notations although not fully rigorous: denotes a mes-
sage going into a check node of degree in while
denotes a message going out of a variable of degree in .
However, there is not ambiguity in what follows thanks to the

unique use of indexes , , , , and we always precise the nature
of a message.

The th component of a message coming from a variable of
degree in is denoted by . The th component of
the initial message going into a variable in is denoted by

. The th component of a message going into a degree
variable in is denoted by . The data pass, through a
variable node of degree in , is translated by

where is a normalization factor, which has no impact in what
follows as only rates of vector components are involved. Let

denote the average message going out of a variable node
in . By noting that the messages are independent
identically distributed (i.i.d.) when is set, we have

The last step is obtained thanks to the LM invariance of .
Finally, we get

(31)

Moreover, if we consider two LM-invariant vectors and
, where is the random truncation of , it is clear that

. Hence

(32)

where is the message going out of a check node of degree
in .
Let us recall the result of [19, eq. (68)]

We can apply this result, since our definition of corresponds
to the definition the authors gave to . We obtain

(33)
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where is a message going into a check node of degree
in . It is straightforward from definition of to get

(34)

By gathering (31)–(34), we obtain:

(35)

which is also

(36)

where . By power series in the
neighborhood of zero, we finally get

(37)

Let and be the transition proba-
bilities of the memoryless output symmetric channel. We recall
that we assume that the all-zero codeword has been sent. Then

We introduce hereafter some notations, for ease of reading. Let
be a positive real-valued vector of size the number of different

group orders. Let us define the function by

For more readable notations, we also define the vector output
function by

which means that the th component of is
. Let us denote the convolution by . Then,

corresponds to the convolution of vector by itself times.
With these notations, we can write, for all

Let be the probability that the message
be erroneous, i.e., corresponds to an incorrect decision. The av-
erage probability that any rightbound message be erroneous is

. Let us recall lemma (34) in [19]

(38)

Let us consider a given . If there exists a vector such that
, then there exist and

such that if , then

(39)

where, for all , is a positive constant smaller than . If
we consider such that , then (38)

ensures that .
As previously explained, in this case, there exits such

that inequality (39) is fulfilled. By induction, for all , there
exists such that

We have , therefore the sequence
converges to zero for all . Finally, (38)

ensures that, for all , converges to zero as tends to
infinity. Thus, , the global error probability, averaged over
all symbol sizes, converges to zero as tends to infinity.

This proves the sufficiency of the stability condition.

Proof of Lemma 6: Let be a probability vector of size
, associated to a symbol in , and its discrete Fourier

transform of size as well. and are the th and the th
components of and , respectively. is defined by
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is the scalar product between the binary representations of
both elements and .

The mutual information of a symmetric probability vector
, under the all-zero codeword assumption, is defined by

As in the binary case, we want to prove that

where is defined by .
The equation is equivalent to

implies

(40)

Since , it finally remains to
prove that

(41)

which is ensured by

We are going to demonstrate this last expression. Let us say that
has bits equal to in its binary representation.
• is even: is

even times (42)

odd times (43)

• is odd: is

even times (44)

odd times (45)

We complete the proof by showing that (42) and (43) are
equal, as well as (44) and (45)

where and when is even, and
when is odd. This completes the proof.

Detailed Simulation Results for Rate One-Half:
• SNR points: ;
• number of frames in error for hybrid LDPC code 1:

;
• number of sent frames for hybrid LDPC code 1:

;
• number of frames in error for hybrid LDPC code 2:

;
• number of sent frames for hybrid LDPC code 1:

.
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