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Abstract—In this paper, we use the class of non-binary hybrid
LDPC codes to design very efficient low rate codes. To this end,
we consider both asymptotic and finite length designs. First, we
present an asymptotic analysis to design hybrid LDPC codes
distributions and we explicit the cases when it is usefull to
use it. Then, by optimizing the algebraic properties of some
topologies related to the Tanner graph, we design finite length
codes. These codes show significant performance improvements
both in the waterfall and in the error floor regions, in comparison
with existing state-of-the-art low rate coding schemes, like Turbo
Hadamard or parallel concatenated Zigzag Hadamard codes,
and with no increase of complexity. In particular, the minimum
distance of low rate hybrid LDPC codes is by far greater than
the ones of previously mentionned codes.

I. INTRODUCTION

The problem addressed in this paper is the design of

efficient low rate coding schemes. For communication systems

operating in the low signal-to-noise ratio (SNR) regime (e.g.,

code-spread communication systems and power-limited sensor

networks), low-rate coding schemes play a critical role. One

important application of low-rate codes is in wideband data

communications using code-division multiple-access (CDMA)

systems [1], where they are used to replace the spreading code

in traditionnal direct-sequence spread spectrum systems.

Although Low-Density Parity-Check (LDPC) codes

or Repeat-Accumulate (RA) codes can exhibit capacity-

approaching performance for various code rates when the

ensemble profiles are optimized [2], in the low-rate region,

both RA and LDPC codes suffer from performance loss

and extremely slow convergence using iterative decoding.

To our knowledge, the most competitive codes at this time

are Turbo-Hadamard (TH) [3] and various versions of

Zigzag-Hadamard (ZH) codes [4]. All references of various

low rate coding schemes can be found in [3][4][5].

In this paper, we address the profile optimization and finite

length design of low-rate hybrid LDPC codes. The hybrid

LDPC codes family is a class of non-binary LDPC codes,

generalizing existing binary or non-binary classes of LDPC

codes. This new class has been first presented in [6], and

then a deeper asymptotic analysis has been carried out in [7].

For hybrid LDPC codes, we allow the connectivity profile

of the factor graph to be irregular, but also the orders of

the symbols in a codeword can be irregular, that is to say,

the symbols can belong to finite sets with different orders.

We exploit the very rich parameterization of hybrid LDPC

codes to find good low-rates codes. The paper is organized as
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follows. In section II, we review the structure of hybrid LDPC

codes and briefly describe the decoding algorithm. We also

briefly present the asymptotic analysis of hybrid LDPC codes

under belief propagation (BP) decoding and we explain when

the optimization method is used for the design of efficient

hybrid LDPC codes distributions. Section III describes the

finite-length optimization of hybrid LDPC codes using their

binary images. Simulation results are presented in section IV.

Conclusions are finally given in the last section.

II. THE CLASS OF HYBRID LDPC CODES

A. Presentation and notations

A non-binary hybrid LDPC code is defined as an LDPC

code whose variable nodes belong to finite sets of different

orders [6].
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parity-check in G(q3)

hi1(c1) + hi2(c2) + hi3(c3) = 0, hij(cj) ∈ G(q3)

defines a component code in the group G = G(q1) × G(q2) × G(q3)

hi1(c1) hi2(c2) hi3(c3)

c1 ∈ G(q1) c2 ∈ G(q2) c3 ∈ G(q3)

Fig. 1. Factor graph of parity-check of an hybrid LDPC code.

As shown on figure 2, every symbols of a hybrid LDPC

code can belong to different order finite groups, and hence

the variable node outcoming messages are of different sizes.

Therefore, a non-binary hybrid LPDC code is defined on a

group which is the cartesian product of different finite groups

G = G(qmin)× . . .×G(qmax) with qmin and qmax the mini-

mum and maximum orders of codeword symbols, respectively.

The function nodes on each edge are general applications from

the group of the variable node to the group of the check node.

Therefore, the check node messages are all in the group of

the check node, and hence they are all of same size. A hybrid

check node is hence a usual parity check on groups. An edge

of the factor graph carries two kinds of messages, messages
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of size q1 (or, e.g., q2) and q3 on figure 2. The function node

corresponding to the linear application makes the components

of the two types of messages correspond to each other. The

applications between different groups can be of any types.

In order to explain the decoding algorithm for hybrid LDPC

codes, it is useful to interpret a parity check of a hybrid code

as a special case of a parity check built on the highest order

group of the symbols of the row, denoted G(q3), and have a

look at the binary image of the equivalent code as it has been

done in [8] for finite fields. For codes defined over Galois

fields, the nonzero values of H correspond to the powers of the

companion matrix [9] of the finite field primitive element and

are typically rotation matrices (because of the cyclic property

of the Galois fields). In the case of hybrid LDPC codes, a

nonzero value is a function that connects a row in G(q3) and

a column in G(q1), i.e., that maps the q1 symbols of G(q1)
into a subset of q1 symbols that belongs to G(q3). In our

case, such an application is linear and hence its equivalent

binary representation is a matrix of dimension p3 × p1, with

pk = log2(qk).

We restrict ourselves in this work to hybrid LDPC codes

with applications which are linear, and whose check nodes

are in groups with orders higher than the variable nodes they

are connected to. The linear applications are hence full column

rank. A full rank component sub-matrix of size p3×p1 will be

denoted in the following a non-zero cluster, which is the direct

generalization of non-zero values for non-binary LDPC codes

defined in fields. The transformation of the vector message is

denoted extension from G(q1) to G(q3) when passing through

the function node from symbol node to check node, and

truncation from check node to symbol node.
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Fig. 2. A full column rank linear application.

Let A be an element of the set of linear applications from

G(q1) to G(q3) which are full-rank. Im(A) denotes the image

of A (that is injective since dim(Im(A))=rank(A)=p1). The

notations are the ones of figure 2.

A : G(q1) → G(q3)

αi → α
′
j = A(αi)

Definition 1: The extension y of the probability vector x

by A is denoted by y = x×A and defined by, for all j =
0, . . . , q3 − 1,

if α
′
j /∈ Im(A), yj = 0

if α
′
j ∈ Im(A), yj = xi with i such that α

′
j = A(αi)

Although A is not bijective, we define A−1 the pseudo-inverse

of A, by

A−1 : Im(A) → G(q3)

α
′
j → αi with i such that α

′
j = A(αi)

Definition 2: The truncation x of the probability vector y

by A−1 is denoted by x = y×A−1

and defined by, for all

i = 0, . . . , q1 − 1,

xi = yj with j such that α
′
j = A(αi)

In addition, we consider a particular subclass of hybrid LDPC

codes which has two constraints, as depicted on figure 3. We

Redundancy Information
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.

.

.
H =

. . .. . .c = G(qmax) G(qr+1) G(qr) G(qmin)

G(qmax)

G(qr+1)

Fig. 3. Hybrid codeword with the specific sorting of groups, and upper-
triangular parity-check matrix of a hybrid LDPC code.

hierarchically sort the different group orders in the rows of

the parity-check matrix and also in the codeword. It is not

difficult to extend the results and algorithms to more general

structures, as long as the hybrid LDPC code stays linear in

the product group. The second constraint is that we choose

to work only with upper-triangular parity-check matrices in

order to avoid use of generator matrix to encode. With this

specific structure, it is clear that encoding is feasible in linear

time by backward computation of the redundancy symbols.

B. Parameterization of Hybrid LDPC family

An edge of the Tanner graph of an hybrid LDPC code

has four parameters (i, qk, j, ql). A hybrid LDPC code is

then represented by π(i, j, k, l) which is the proportion of

edges connecting variable nodes of degree i in G(qk), to

check nodes of degree j in G(ql). With four parameters, the

parameterization of hybrid LDPC codes is hence very rich, and

highlights the generality of this class of codes, which includes
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Channel value

π(i, j, k, l) ∈ [0, 1]:

edge parameters:

(i, j, qk, ql)

proportion of edges that link a data node

Degree i symbol node in G(qk)

Degree j check node in G(ql)

of degree i in G(qk)

and a check node of degree j in G(ql)

Def:

Fig. 4. Parameterization of hybrid LDPC codes.

classical irregular binary and non-binary LPDC codes, and

which allows more degrees of freedom. Hence, looking for

good LDPC codes for a given channel in the huge class of

hybrid LDPC codes increases the chances to find such a good

code, since the search space is bigger than with classical

LDPC codes. The results presented in this paper show that

this framework is well fitted to low-rate coding schemes.

C. Decoding algorithm for hybrid LDPC codes

It is possible to generalize the Belief propagation decoder

to hybrid LDPC codes since parity equations are defined on

groups, and the function nodes corresponding to the non-zero

clusters of the matrix H consist in extension and truncation of

messages. Even for those very specific structures, it has been

shown that it is possible to derive a fast version of the decoder

using FFTs [10]. One decoding iteration in the probability

domain with a flooding schedule is composed of [6]:

• Step 1 Symbol node update in G(qk) : product of

incoming messages

• Step 2 Message extension G(qk) → G(ql)
• Step 3 Parity-Check update in G(ql) in the Fourier

domain

– FFT of size ql

– Term-by-term product of FFT vectors

– IFFT of size ql

• Step 4 Message truncation from G(ql) → G(qk)

Although we do not focus on simplified decoders, hybrid

LDPC codes are compliant with reduced complexity non-

binary decoders which have been presented recently in the

literature [11], [12].

D. Asymptotic optimization using a Gaussian approximation

In [7][13], it has been proved that, on a binary-input

symmetric channel (BISC), we can assume that the all-zero

codeword is transmitted because the hybrid decoder preserves

the symmetry of messages, which entails that the probability of

error is independent of the transmitted codeword. By exhibit-

ing a stability condition thanks to density evolution analysis,

we have also proved that the probability of error is able to drop

infinitely close to zero, i.e., that hybrid LDPC are codes with

threshold behavior. Due to the high complexity of tracking

all the parameters of multi-dimensionnal density evolution for

non-binary LDPC codes, we have approximated the densities

by using a Gaussian approximation, and hence reduced the

problem to one scalar parameter analysis. By doing so, the

analysis of hybrid LDPC codes has been carried out for

the binary-input additive white Gaussian noise (BIAWGN)

channel. An optimization procedure has been derived, which

gives the optimal code profile, either the connection profile,

or the group order profile. It depends on which parameters are

fixed. We refer the reader to [6][7][13] for the details on this

EXIT charts optimization of hybrid LDPC codes.

The example of low-rate code optimization is specific.

We look for the best group order profile of variable nodes,

while the connexion profile is fixed. We fix the check node

parameters (group order G(qred) and connection profile),

independently from the other parameters. All symbol nodes

belong to groups of order lower or equal than the group of

the check nodes they are connected to. For finite length code

optimization, we choose the Tanner graph to be ultra-sparse,

i.e. with a regular connection profile (dv = 2, dc). This choice

of strictly regular LDPC code with minimum symbol degree

dv = 2 will be argued in section III. With this a priori fixed

values for the mentioned parameters, the parametrization of

hybrid LDPC codes restricts to (as in [13]):

π(i, j, k, l) = δ(i, dv)δ(j, dc)π(k)δ(l, red)

where δ(., .) is the Kronecker symbol. Since the variable nodes

belong to different order groups, the rate of the graph is

different of the code rate. We denote by I the indices of

the group order of information symbols. In other words, any

information symbols is in G(qk) with k ∈ I. For a strictly

regular graph with rate Rgraph = 1 −
dv

dc
, the fact that the

codeword symbols belong to groups of different orders induces

an actual code rate R of:

R =

Rgraph

∑

k∈I

π(k) log2(qk)

Rgraph

∑

k∈I

π(k) log2(qk) + (1 − Rgraph) log2(qred)

(1)

It is worthy to note that, due to the fact that every check

node is in a group of order higher or equal to the groups of

variable nodes, the graph rate Rgraph is always greater than

or equal to the code rate. This means that iterative decoding

is performed on a higher rate graph, which is very interesting

for low rate applications. Indeed, the very slow convergence

of BP decoding on classical low rate LDPC codes is due to

the sparsity of the associated Tanner graph.

By limiting the choice of the hybrid LDPC codes to graphs

which are regular of type (dv = 2, dc), the minimum reachable

code rate is limited by the maximum group order. The curves

plotted on figure 5 depict the maximum reachable graph rate

for a given code rate when the maximum group order varies

between G(16) and G(1024). We see on this figure that with

(2, dc) regular hybrid LDPC codes, we cannot reach code rates

lower than 0.047 for G(1024).
Due to the constraint of the grah rate, we do not have many

degrees of freedom for choosing the group order profile when
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Fig. 5. Maximum graph rate Rgraph reachable in terms of the code rate R.

the target code rate is small. That is why, except for code

rate R = 1/6, we do not use the optimization of group order

profile by EXIT chart techniques. Moreover, in this work, we

focus on designing codes with good performance at small to

moderate codeword lengths, and we have therefore conducted

a deep optimization procedure on the topological properties

of the non-binary hybrid Tanner graph, which is explained in

next section.

III. FINITE-LENGTH OPTIMIZATION

This section presents an extension of optimization methods

that has been described in [8] for finite length non-binary

LDPC codes. We address the problem of the selection and

the matching of the parity check matrix H nonzero clusters.

In this section, we assume that the connectivity profile and

group order profile of the graph have been optimized. With

the knowledge of the graph connectivity, we run a progressive-

edge-growth (PEG) algorithm [14] in order to build a graph

with a high girth.

The method is based on the binary image representation

of H and of its components, i.e. the non-zero clusters of

the hybrid code in our case (cf. section II-A). First, the

optimization of the rows of H is addressed to ensure good

waterfall properties. Then, by taking into account the algebraic

properties of closed topologies in the Tanner graph, such as

cycles or their combinations, an iterative method is used to

increase the minimum distance of the binary image of the

code by avoiding low weight codewords.

A. Row optimization

Based on the matrix representation of each nonzero entry,

we give thereafter the equivalent vector representation of the

parity check equations associated with the rows of H .

Let x = [x0 . . . xN−1] be a codeword in G = G(qmin) ×
. . . × G(qmax), and let pj be the number of bits representing

the binary map of symbol xj ∈ G(2pj ), j = 0, . . . N − 1. For

the i−th parity equation of H in the group G(2pi), we have

the following vector equation:
∑

j:Hij �=0

Hijxj = 0 (2)

where Hij is the pi × pj binary matrix representation of the

non-zero cluster, xj is the vector representation (binary map)

of the symbol xj . The all zero component vector is noted 0.

Considering the i-th parity check equation as a single

component code, we define Hi = [Hij0 . . . Hijm
. . . Hijdc−1

]
as its equivalent binary parity check matrix, with {jm : m =
0 . . . dc − 1} the indices of the nonzero elements of the i-
th parity-check equation. The size of Hi is pi × (pij0 +
. . . + pijdc−1

), with pi and pijk
the extension orders of the

groups of the check node and the k-th connected variable

node, respectively. Let Xi = [xj0 . . .xjdc−1
]t be the binary

representation of the symbols of the codeword x involved

in the i−th parity check equation. When using the binary

representation, the i-th parity check equation of H (2), can

be written equivalently as HiXi
t = 0t.

We define dmin(i) as the minimum distance of the binary

code associated with Hi. As described in [8], a dc-tuple of

dc linear applications is chosen in order to maximize the

minimum distance dmin(i) of the code corresponding to the

ith row of H, i = 0, . . . ,M − 1. As shown in [8] for strictly

regular non-binary LDPC codes, picking up the nonzero values

in the selected dc-tuple lowers the threshold of the optimized

code ensemble, suggesting that the waterfall region of the error

performance curve can be improved by selecting carefully the

rows of the parity check matrix. For non-binary hybrid LDPC

codes, we adopt the same strategy, and choose for Hi a binary

linear component code with the highest minimum distance

achievable with the dimensions of Hi. For example, let Hi

be obtained from a dc = 3 check node with the three symbols

belonging to G(28) × G(28) × G(22), Hi has size (8 × 18)
and the highest possible minimum distance is dmin(i) = 5
[15]. For hybrid LDPC codes, even if the connection degree is

constant for all check nodes, the dimensions of the component

code Hi could differ and depend on the symbols orders which

appear in Xi.

B. Avoiding low weight codewords

We now address the problem of designing codes with good

minimum distance. It has been shown in [8] that the error floor

of non-binary LDPC codes based on ultra-sparse (dv = 2)

graph is not uniquely due to pseudo-codewords, but also to

low weight codewords. We adopt for hybrid LDPC codes the

same strategy that has been introduced in [8], which aims at

avoiding the low weight codewords which are contained in

the smallest cycles. In order to do so, we first extract and

store the cycles of the Tanner graph with length belonging

to {g, . . . , g + gap}, where g is the girth and gap is a small

integer such that the number of cycles with size g + gap is

manageable.

As in the previous section, we consider the binary images

of cycles as component codes. Let Hck be the binary image

of the k-th stored cycle. Since we consider (2, dc) codes,
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if some columns of Hck are linearly dependent, so will be

the columns of H (see [8] for more details). This means

that a codeword of a cycle is also a codeword of the whole

code. The proposed approach is hence to avoid low weight

codewords by properly choosing the nonzero clusters implied

in the cycles, so that no codeword of low-weight is contained

in the cycles. This is achieved by ensuring that the binary

matrices Hck corresponding to the cycles have full column

rank. The iterative procedure that we use in this optimization

step is essentially the same as the one depicted in [8]. Briefly

speaking, in each step of the iterative procedure, we change

the values of a limited number of non-zero clusters in order to

maximize the number of cycle component codes Hck which

have full rank. Thus, the matrix of a cycle should be full rank

to cancel the cycle. Contrarily to classical non-binary LDPC

codes for which the matrix of a cycle is squared, the matrix of

a cycle of a hybrid LDPC code is rectangular, with more rows

than columns. This means that we will have more degrees of

freedom to cancel the cycles in hybrid LDPC codes. Hybrid

LDPC codes are therefore well-suited to this kind of finite-

length optimization procedure.

IV. SIMULATION RESULTS

The considered channel is the BPSK-AWGN channel. We

compare the performance of our proposed hybrid LDPC codes

with existing good codes [3][4]. The performance curves

of hybrid LDPC codes have been obtained for a maximum

number of BP decoding iterations fixed to 500. Kbit is the

number of information bits.

For a code rate R = 1
6 , a regular graph (dv = 2, dc = 3)

is considered, and the proportion of group orders has been

optimized with EXIT charts techniques. With the order of

the check nodes being fixed to G(qmax) = G(256), the code

resulting from the optimization has three different group orders

G(256) − G(16) − G(8).
For a code rate R = 1

12 , a regular graph (dv = 2, dc = 3)
is also considered, and the code group order profile has three

different group orders G(256) − G(4) − G(2). For this case,

none EXIT chart technique was used for the optimization

of the profile, but the finite length optimization technique is

applied.

On figure 6, for Kbit ≃ 200, the hybrid LDPC code of

code rate 1/6 outperforms with 0.3 dB gain the ZH code of

code rate 1/6. Additionnaly, our hybrid code has no observed

error floor up to a BER=10−7. When comparing the computer

simulation of the hybrid code with the union bound of ZH

code, we observe that the BER of the hybrid LDPC code

has gain of about one decade at Eb/N0 = 2dB. Since union

bounds are tight upper bounds on BER performances [3] for

Turbo-Hadamard codes, we can predict from the figure that

the error floors of our two simulated codes will be lower

than the error floors of Turbo-Hadamard codes with random

interleaver. Indeed, the minimum distance of our hybrid LDPC

code has been estimated thanks to the impulse method [16]

and is upper bounded by dmin = 80, which is by far superior
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Fig. 6. Comparison of hybrid LDPC code with Tubo Hadamard codes (TH)
taken from [3] and Zigzag Hadamard (ZH) codes taken from [4], for an
information blocklength of Kbit ≃ 200.

of the minimum distance that can be achieved with TH or ZH

codes.

The hybrid LDPC code of code rate R = 1/12 = 0.083
has poorer performance in the waterfall region than TH and

ZH codes with comparable rates, but has much lower error

floor when comparing the computer simulations to the union

bound of the code rate 0.077 TH code. Indeed, its minimum

distance is upper bounded by dmin = 125. Hence, although

this R = 0.083 code suffers from 0.1 to 0.2 dB loss compared

with the rate 0.077 TH code, the good error floor properties

highlight the interest of hybrid LDPC codes for lower rates.
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Fig. 7. Comparison of hybrid LDPC code with Tubo Hadamard codes and
punctured Turbo Hadamard (PTH) are taken from [17], for an information
blocklength of Kbit ≃ 1000.

On figure 7, the hybrid LDPC code for code rate 1/6 is the

same as previously described, but optimized with the method
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presented in section III for Kbit ≃ 1000. The hybrid LDPC

code outperforms all the other plotted codes, both in the error

floor and in the waterfall regions. All Hadamard like codes

have high error floors, but it is especially worthy to note

that, in the two SNR regions our code is also better than a

quasi-cyclic code in GF(2) designed to achieve low error-floor

[18]. This is promising for working on very low code rate

frameworks using hybrid LDPC codes. Following the ideas of

Turbo-Hadamard codes, it would be interesting to combine a

very small repetition code with a hybrid LDPC code in order

to reach lower code rates. We plan to address this issue in a

future work.

It is worthy to note that the better performance of hybrid

LDPC codes over codes based on Hadamard codes are ob-

tained with no complexity increase. Indeed, the complexity

of these codes is dominated by the complexity of the fast

Hadamard transform, which is O(2r), where r is the order of

the Hadamard code. The complexity of hybrid LDPC codes

is dominated by the fast Fourier transform at check nodes

O(2q), where q is the maximum group order. The complexity

of Hadamard type codes and hybrid LDPC codes is hence

equivalent. However, contrary to TH codes, one should note

that hybrid LDPC codes are suitable for decoding with reduced

complexity and no loss, as described in [12].

V. CONCLUSIONS

We have shown that hybrid LDPC codes can be very good

candidates for efficient low rate coding schemes. We have

used two methods to optimize them: the code profile can be

optimized thanks to EXIT charts techniques whereas the alge-

braic properties are optimized for finite length performances.

The finite length performance of low rate hybrid LDPC codes

compare very well to existing Turbo Hadamard or Zigzag

Hadamard codes. Especially, hybrid LDPC codes exhibit very

good minimum distances and error floor properties. To reach

lower code rates, the interest of hybrid LDPC codes in

concatenated systems will be investigated.

REFERENCES

[1] A. Viterbi, “Very low rate convolutional codes for maximum theoretical
performance of spread-spectrum multiple-access channels,” IEEE Jour-

nal on Selected Areas on Communications, vol. 8, pp. 641–649, May
1990.

[2] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular LDPC codes,” IEEE Transactions on Information

Theory, vol. 47, pp. 619–637, February 2001.

[3] L. Ping, W. Leung, and K. Wu, “Low-rate Turbo-Hadamard codes,”
IEEE Transactions on Information Theory, vol. 49, pp. 3213–3224,
December 2003.

[4] G. Yue, W. Leung, L. Ping, and X. Wang, “Low rate concatenated
Zigzag-Hadamard codes,” in Proceedings of International Conference

on Communications, (Istanbul, Turkey), June 2006.
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