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Abstract—A class of two-bit message passing decoders fora generalization of their idea, since we consider a message
decoding column-weight-four LDPC codes over the binary sym alphabet with four possible values. We report the threshold
metric channel is proposed. The thresholds for various deaters of various decoders in this class. For the sake of simplicity

in this class are derived using density evolution. For a spéic id . L d d . the d d hich d
decoder, the sufficient conditions for correcting all error patterns we consiaer universal decoders, 1.€., the decoders which do

with up to three errors are derived. not depend on the transition probability of the BSC. Also, we
restrict our attention to static decoders, i.e., the deide
. INTRODUCTION which the update rules do not change with the iterations.

The performance of various hard decision algorithms for For a specific decoder in the class of two-bit decoders, we
decoding low-density parity-check (LDPC) codes over theerive the sufficient conditions on the Tanner graph of thaeco
binary symmetric channel (BSC), has been studied in greatguarantee the correction of all error patterns with ufnted
detail. The BSC is a simple yet useful channel model usedrors. The problem of correcting a fixed number of errors
extensively in areas where decoding speed is a major fac@ssumes significance in the error floor region, where theeslop
For this channel model, Gallager [1] proposed two binamyf the frame error rate (FER) curve is determined by the weigh
message passing algorithms, namely Gallager A and Gallagéthe smallest error pattern uncorrectable by the decdler [

B algorithms. The message passing algorithms operate ofr@ iterative decoding over the binary erasure channel (BEC
graphical representation of the code, known as the Tanrieis known that avoiding stopping sets [7] up to sizen the
graph [2]. Gallager [1] showed that there exigt,~,p), Tanner graph of the code guarantees recovery ftam less

p > v > 3 regular LDPC codes of length with column erasures. A similar result for decoding over the BSC is still
weight v and row weightp, for which the bit error proba- unknown for a large number of cases. For column-weightethre
bility approaches zero when we operate below the threshoddes, the necessary and sufficient conditions to guarémtee
Richardson and Urbanke [3] analyzed ensembles of codes oarrection of three errors have been derived by Chilappagar
der various message passing algorithms and descdéesity al. [8]. For column-weight-four LDPC codes of girth six, the
evolution a deterministic algorithm to compute the thresholdsufficient conditions to correct three errors under the gt
Bazzi et al. [4] determined exact thresholds for the GallageB algorithm have been derived by Chilappagegtral. [9]. The

A algorithm and outlined methods to analytically determineonditions that we derive in this paper are similar to thesone
thresholds of more complex decoders. Burshtein and Miier [in [9], but impose fewer constraints on the Tanner graph. We
considered expansion arguments to show that messagegassaie that the decoder that we consider while not necessarily
algorithms are capable of correcting a linear fraction ober the best possible two-bit decoder is easier to analyze and th
(in the code length) when the degree of each variable nodenigthodology in the paper can be extended to other decoders
at least six. to yield similar results.

In this paper, we consider two-bit decoders for decoding The rest of the paper is organized as follows. In Section Il,
column-weight-four LDPC codes over the BSC. Columnwe establish the notation and define a general class of tivo-bi
weight-four codes are of special importance as their desoddecoders. For a specific two-bit decoder, the sufficient cond
have low complexity and are interesting for a wide rang@ns for correction of three errors are derived in Sectibn |
of applications. The idea of using message alphabets withSection IV, we report the thresholds for various decoders
more than two values for the BSC was first proposed by
Richardson and Urbanke in [3]. They proposed a decoding
algorithm, known as the Gallager E algorithm, with erasuresThe Tanner graph of a code, whose parity-check matrix
in the message alphabet. The messages in such a dec&flehas sizem x n, is a bipartite graph with a set of
have hence three possible values. They showed that swehiable nodes and a set of check nodes. Each variable
decoders exhibit thresholds close to the belief propagatinode corresponds to a column of the parity-check matrix, and
algorithm. The class of two-bit decoders that we propose ésich check node corresponds to a row. An edge connects a

Il. THE CLASS OF TWGOBIT DECODERS



variable node to a check node if the corresponding elementAdditionally, let

the parity-check matrix is non-zero. A Tanner graph is said t . - .

be y-left-regular if all variable nodes have degreep-right- sign(@;(e;v) = [ sign(wi(u,e)),
regular if all check nodes have degreeand(n, v, p) regular _ ueN (v _
if there aren variable nodes, all variable nodes have degreeWheresign(a) =1, if a > 0 andsign(a) = —1, if a <0.

and all check nodes have degreeThe variable degree and 1he message passing update and decision rules can be
check degree are also referred to as column weight and r8%pressed as follows.

weight, respectively.

Message passing algorithms for decoding LDPC codes ruw;(v,¢) = W - sign(Ry)
iteratively. Every round of message passing (iterationjtst
with sending messages from variable nodes to check nodes S - sign(wj(c,v)), if Yu e Ni(c)\v,
(first half of the iteration) and ends by sending messages fro |w;(u,c)| = 8
check nodes to variable nodes (second half of the iterationjﬂj(c’“) =
Letr = (ry,...,r,), @ binaryn-tuple be the input to the W - sign(w;(c,v)), otherwise
decoder. Letv;(v, ¢) denote the message pglssed by a variatpi%rj -1
nodew to its neighboring check nodein ;' iteration and o . ; .
w@j(c,v) denote the message passed by a check notte W sign(t;(v,c)), 1F 0 <[t;(v,c)] <
its neighboring variable node. Additionally, let w;(v, : ) . - i _ _—
denote the set of all messages framw; (v, : \c) 'denote wi(ve) = §-sign(ty(v,e)), i ft;(v,0)f 2 S
the set of messages fromto all its neighbors except te o . _
andw;(: ,c) denote the set of all messagesctoThe terms o W Szgn(R.v)’ _ it (U’C.) N 0.
wi(: \v, ), @j(c, : ), wile, : \v),w;(: ,v) and @;(: \¢,v) Decision: At the end ofj*" iteration, the estimate’ of a
are defined similarly. variable nodev is given by

Before proceeding to give a formal description of a class of 0, ift;j(v)>0
two-bit decoders, we make the following observation. Since ‘
the message alphabet is finite, the message passing update rl = 1, if t;(v) <0
rules can be described using a lookup table and hence only
a finite number of two-bit decoders are possible. Also, the Ty, iftj(v) =0

Boolean function that represents any particular decodestmu The class of two-bit decoders described above can be
be symmetric in the sense that swapping all inputs must imgiterpreted as a voting scheme in the following way: every
a swap of the output. In this paper, we focus on a class of tWeressage has two components namely, the value (0 or 1) and
bit decoders that can be described using simple algebr@is rustrength (weak or strong). The sign of the message detesmine
and illustrate with an example how the lookup table can Rge value, whereas the values1f and S denote the number
constructed from the algebraic description. of votes. The received value is associated withvotes. To
Let the message alphabet be denoted BY = compute the outgoing message on the variable node side, the
{=S,—W, W, S} where—S denotes a strong “1"-W de- total number of votes corresponding@cand 1 are summed.
notes a weak “1",W denotes a weak “0” and denotes a The value of the outgoing message is the bit with more number
strong “0” andS, W € R*. It should be noted that this repre-of votes and the strength is determined by the number of votes
sentation can be mapped onto the alphgbét01,00, 10}, but  In the case of a tie, the outgoing message is set to the receive
we use the symbols throughout for the sake of conveniengalue with a weak strength.
The received value, € {0,1} on the channel of a variable Different decoders in this class can be obtained by varying
nodewv is mapped toR, € {C,—C},C € R" as follows: the values ofS,W and C. Hence, we denote a particular
1 - —C and0 — C. It can be seen that each message decoder by the tripletC, S, 7). Since there are only a
associated with a value and strength (strength of a messaggnite number of two-bit decoders, different choices @rS
an indication of its reliability). and W might lead to the same decoder. The discussion of
Let V1 (u) denote the set of nodes connected to nodyy the number of unique decoders is beyond the scope of this
an edge. Let the quantitiés(v, :) andt;(v), j > 1 be defined paper. Table | shows the message passing update rules for

as follows: (C,S,W) = (2,2,1) for , = 0. The corresponding table for
r, = 1 can be similarly obtained. Table Il shows the decision
ti(v,c) = Z wj_1(u,v) + Ry, rules for (C, S, W) = (2,2,1).
ueN (v)\c IIl. CONDITIONS TO GUARANTEE THE CORRECTION OF

THREE ERRORS
In this section, we derive the sufficient conditions on the
tj(v) = Z w;(u,v) + R, (1) Tanner graph of a column-weight-four LDPC code to guaran-
wEN (v) tee the correction of all error patterns with up to three mstro

and



TABLE |
UPDATE RULE: NUMBER OF MESSAGES—S, —TW, W AND S GOING INTO
THE VARIABLE NODE v LEADING TO DIFFERENT VALUES OF THE MESSAGE
w;j(v, c) GOING OUT OFv, WHEN THE RECEIVED VALUE ISr,,. THE CODE
HAS COLUMN WEIGHT FOUR AND THE(C, S, W) = (2,2,1) TWO-BIT
DECODER IS USED

H-S|#-W][|H#W ]| #S
mess. mess. mess. | mess.
ry =0 2 1 0 0
wj(v,c) = =8 3 0 0 0
1 2 0 0
Ty =0 0 3 0 0
wj(v,c) = =W 2 0 1 0
0 2 1 0
Ty = 1 1 1 0
wj(v,e) =W 1 1 0 1
2 0 0 1
0 0 0 3
0 0 1 2
0 0 2 1
0 0 3 0
ry =0 0 1 0 2
wj(v,c) =8 0 1 1 1
0 1 2 0
0 2 0 1
1 0 0 2
1 0 1 1
1 0 2 0
TABLE Il

DECISION RULE NUMBER OF MESSAGES-S, —W, W AND S GOING
INTO A VARIABLE , WHEN THIS VARIABLE NODE IS DECODED ASO (RESP
1) WHEN THE CHANNEL OBSERVATION IS1 (RESR 0). THE CODE HAS
COLUMN WEIGHT FOUR AND THE(C, S, W) = (2,2,1) TWO-BIT
DECODER IS USED

# -S| #-W | H#W | #S
mess. mess. | mess.| mess.

0 0 0 4

0 0 1 3

0 0 2 2

Received value 1 0 0 3 1
Decoded as 0 0 0 4 0
0 1 0 3

0 1 1 2

0 1 2 1

1 0 0 3

1 0 1 2

0 4 0 0

1 2 1 0

1 3 0 0

Received value 0 2 1 0 1
Decoded as 1 2 1 1 0
2 2 0 0

3 0 0 1

3 0 1 0

3 1 0 0

4 0 0 0

sets (for the BEC), near codewords, trapping sets (fortitera
decoding on the BSC and the AWGN) and pseudo-codewords
(for linear programming decoding). While girth optimized
codes have been known to perform well in general, the code
length and the degree distribution place a fundamentat limi
on the best achievable girth. Hence, additional conssaint

the Tanner graph are required to ensure better error floor
performance.

The guaranteed error correction capability of column-
weight-three LDPC codes under the Gallager A algorithm
is now completely understood (see [10], [11] for details).
For column-weight-four LDPC codes under the Gallager B
algorithm, sufficient conditions to guarantee all errortgats
with up to three errors have been derived by Chilappagfari
al.[9]. The conditions derived in [9] impose constraints on the
least number of neighboring check nodes for a given set of
variable nodes. The conditions that we derive are similatr, b
impose fewer constraints on the Tanner graph. Due to the clos
relationship of the conditions to the notion of graph exjpams
we refer to such conditions as expansion conditions. Ifyever
subset ofr variable nodes in the Tanner graph have at lgast
neighboring check nodes, we say that the conditior y is
satisfied.

Before proceeding to the main theorem, we provide some
additional definitions and establish the necessary notatio

Definition 1: The neighborhood of depth one of a node
is denoted byV; (u) and is composed of all the nodes such
that there exists an edge between these nodes.aBihilarly,

N (u) denotes the neighborhood of depttof nodew and is
composed of all the nodes such that there exists a path of
lengthd between these nodes and
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(e) Case 5

Since the code is linear and the channel and the decoder are
symmetric, we can assume, without loss of generality, that trig. 1. Al possible subgraphs subtended by three erroneaiable nodes.
all-zero-codeword is transmitted over the BSC. We make this

assumption throughout the paper. Hence, the variable nodeget £ be a set of nodes, sa§y = U,u;, then the depthi

flipped by the channel are received as “1”.

neighborhood off is Ny(E) = U;Ng(u;).

The problem of guaranteed error correction capability as-Now we state the main theorém
sumes significance in the error floor region. Roughly spegkin Theorem 1:[Irregular expansion theorem] Lef be the
error floor is the abrupt degradation in the FER performanganner graph of a column-weight-four LDPC code with no
in the high SNR regime. The error floor phenomenon has begeycles, satisfying the following expansion conditiogach
attributed to the presence of a few harmful configurations in
the Tanner graph of the code, variously known as stoppingThe results have been updated after the submission.



variable subset of size 4 has at least 11 neighbors, each ba# of the second iteration are such that:
of size 5 at least 12 neighbors, each one of size 6 at least 14

2 1 1 1 1
neighbors, each one of size 8 at least 16 neighbors and eachm(cl’ v o= —WoveVinAa(fun ), e€ e
one of size 9 at least 18 neighbors. The two-bit decoder, with =2(¢) = W . , )
C=28=2andW = 1, can correct up to three errors in @2(¢::\v) = =W, v eNo(Ts), ceC NN(T)
the codeword within three iterations, if and only if the abov ~ @2(¢,;v) = W, weV?® ¢ {c co ci0,c1}
conditions are satisfied. wa(e,r) = W, ceC nNi(Ty)
For ease in notation, each expansion condition will be dmhot ~ @2(c,:)) = W, ce C* NN(T3)
by “4—11 expansion condition”, “5:12 expansion condition” wa(c,v) = S, otherwise
and so on.

At the end of the second iteration, all € V! receive all
correct messaged” or S. According to Table I, all variables
qn V1 are hence corrected at the end of the second iteration.
For variables inV/2, since no—S messages propagate in the
second half of the second iteration, we see on Table Il that
variables inl’2, which are not received in error, are decoded as
1if and only if they receive four- W messages. The following

Proof of sufficiency

Remark The proof can be followed more easily by lookin
at Tables Il and I. LeV! = {v{, v}, vi} andC! = N (VD).
For more easily readable notation, J&§(V*)\V! be denoted
by V2 and N1 (V?)\C' by C?. Also, we say that a variable
node is of typel! when it hasp connections toaC! and g
connection toC?2. The union of order neighborhoods of all lemma prove that this is not possible

the )1 va_rlable nodes is denoted_wd(Tg). Lemma 1:No variable node receives four incorreetiV’
We consider all the subgraphs induced by three erroneQus  1es at the end of second iteration
variable nodes in a graph and prove that, in each case, Ee g '

; roof: Let v be such a variable. Then the four neigh-
errors are corrected. The possible subgraphs are Shownoc'{}in checks ofv must belong tofcl, cl, ek, ek, et ¢} U
Figure 1. As shown, five cases arise. In the reminder, 9 v g foyey, 63, €3, G5, ¢, C7

2 1 i
assume that the all-zero codeword has been sent. For lac qul(j}))l' Nlotel that_ only two nelghbors afcan belong
. 0 {cq,c3, 3, Cs, cg, ¢z Without introducing a 4-cycle. This
of space, we provide the proof for Case 2. The proofs for ' i
|mI[:]JI|es that there are only three cases:

necessity and other cases can be found in the longer versio ) ) )
« v has two neighboring checks, say and ¢3, in C* N

of the paper [12]. A (T - hecks (el ol ol ol oy Let
Case 2 Consider the error configuration shown in Figure 21( 5 ), and two checks in{cy, ¢3, ¢35, ¢5, ¢, cr - N
1(b). v? andvs be theTy variables connected te; and c3.
In the second half of the first iteration, we have: It results that the set of variable@},vi, v}, v3, v} is
connected to only 1 checks, which contradicts the-512
1 11 expansion condition. This case is hence not possible.
W1(64,1}) = —W7 v e {1)1,1)2} h H hb H 1.1 1,1 .1 .1 d th
L ) o\l « v has one neighbor ifcy,c3,c3,05,¢5,c3 1 an ree
wilev) = W, veVs ce 4 neighbors inC? N N1 (Ty), sayc?, ¢3 andc3. Let v, v?
wi(e,v) = W, otherwise andv? be theT] variables connected te;, c3 and c}.
It results that the set of variablds], v, v?, v3,v3, v} is
In the first half of the second iteration, according to Table connected to only3 checks, which contradicts the-614
| no —S messages can be sent by variables nejthéﬂﬁ}’l expansion condition. This case is hence not possible.
because no-S message propagate in the first iteration, nor , 4 has four neighbors irC2 N Ni(T3), say ¢2, 2, ¢

" e : 3
variables inV* because they all receive at least thridé and 2. Let v2, v2, v2 and v? be the T} variables

messages. connected toc?, c3, ¢i and cl. It results that the set
of variables{vi, vi, v}, v} v3, v3,v% v} is connected to

wa(v,e) = —W, wve{vl,vm}, ceC\e only 15 checks, which contradicts the-8L6 expansion
wa(v,ey) = W, wve{v,vs} condition. This case is hence not possible.
wa(vs,c) = W, ceC' [ ]
wa(v,e) = —W, veNy(T3), ceC? ]
wa(v,e) = W, veNo(TZ), ceC? Hence, the decoder converges at the end of the second itera-
wa(v,e) = W, veN(Ts), ceC' tion.
wa(v,¢) = S, otherwise u

Note that similar conditions for a column-weight-four LDPC
In the second half of the second iteration, the messageg gotode of girth six to correct any weight-three error pattern
out of certain check nodes depend on the connection degy@hin four iterations, when it is decoded with Gallager B
of these check nodes. However, we do not want that the prd%q orithm, has been found by Chilappagati al. [9]. The

A , . [9].

Eeendceepwg%%tngirégpien (tjﬁgr%?lo(\)/\];ir?g(]) ?r?g %w)orls(t)"f CCahS%thhr;? igor'lditions are that each variable subset of size 4 has 4t leas

the configuration where each message has the smallestjpossib neighbors, each one of size 5 at least 12 neighbors, each
value. In that case, the messages along the edges in thedsecme of size 6 at least 14 neighbors, each one of size 7 at least



TABLE Il
THRESHOLDS(GIVEN IN PROBABILITY OF CROSSOVER ON THEBSC)OF
COLUMN-WEIGHT-FOUR CODES WITH ROW DEGRERP. ALGORITHM E IS
PRESENTED IN[3]. FOR THE TWO-BIT DECODERS THE SET(C,S,W)Is

GIVEN.
P Rate Gallager A Gallager B Algorithm E
8 0.5 0.0474 0.0516 0.0583
16 0.75 0.0175 0.0175 0.0240
32 0.875 0.00585 0.00585 0.00935
P Rate T11) T.2.0) 13.1)
8 0.5 0.0467 0.0509 0.0552
16 0.75 0.0175 0.0165 0.0175
32 0.875 0.00585 0.00562 0.00486
I3 Rate (2,2,1) (2,3.1) (3,3.1)
8 0.5 0.0567 0.0532 0.0655
16 0.75 0.0177 0.0168 0.0222
32 0.875 0.00587 0.00568 0.00754
P Rate Dynamic two-bit
decoder with

S=2andW =1
8 0.5 0.0638
16 0.75 0.0249
32 0.875 0.00953

V. DISCUSSION

We have considered a class of two-bit decoders for decoding
column-weight-four LDPC codes over the BSC. Codes satisfy-
ing the conditions derived in this paper can be construcied b
a modified version of the progressive edge growth (PEG) [13]
algorithm (see [9] for illustration). The question whetladr
the valid two-bit decoders can be expressed using the simple
algebraic rules presented in this paper remains open. Isds a
of interest to derive bounds on the achievable rate at a given
code length. Future work includes investigation of the a&bov
problems as well as extending the analysis to derive sufticie
conditions to guarantee correction of higher number ofrsrro
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