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Abstract—A class of two-bit message passing decoders for
decoding column-weight-four LDPC codes over the binary sym-
metric channel is proposed. The thresholds for various decoders
in this class are derived using density evolution. For a specific
decoder, the sufficient conditions for correcting all error patterns
with up to three errors are derived.

I. I NTRODUCTION

The performance of various hard decision algorithms for
decoding low-density parity-check (LDPC) codes over the
binary symmetric channel (BSC), has been studied in great
detail. The BSC is a simple yet useful channel model used
extensively in areas where decoding speed is a major factor.
For this channel model, Gallager [1] proposed two binary
message passing algorithms, namely Gallager A and Gallager
B algorithms. The message passing algorithms operate on a
graphical representation of the code, known as the Tanner
graph [2]. Gallager [1] showed that there exist(n, γ, ρ),
ρ > γ ≥ 3 regular LDPC codes of lengthn with column
weight γ and row weightρ, for which the bit error proba-
bility approaches zero when we operate below the threshold.
Richardson and Urbanke [3] analyzed ensembles of codes un-
der various message passing algorithms and describeddensity
evolution, a deterministic algorithm to compute the thresholds.
Bazzi et al. [4] determined exact thresholds for the Gallager
A algorithm and outlined methods to analytically determine
thresholds of more complex decoders. Burshtein and Miller [5]
considered expansion arguments to show that message passing
algorithms are capable of correcting a linear fraction of errors
(in the code length) when the degree of each variable node is
at least six.

In this paper, we consider two-bit decoders for decoding
column-weight-four LDPC codes over the BSC. Column-
weight-four codes are of special importance as their decoders
have low complexity and are interesting for a wide range
of applications. The idea of using message alphabets with
more than two values for the BSC was first proposed by
Richardson and Urbanke in [3]. They proposed a decoding
algorithm, known as the Gallager E algorithm, with erasures
in the message alphabet. The messages in such a decoder
have hence three possible values. They showed that such
decoders exhibit thresholds close to the belief propagation
algorithm. The class of two-bit decoders that we propose is

a generalization of their idea, since we consider a message
alphabet with four possible values. We report the thresholds
of various decoders in this class. For the sake of simplicity,
we consider universal decoders, i.e., the decoders which do
not depend on the transition probability of the BSC. Also, we
restrict our attention to static decoders, i.e., the decoders in
which the update rules do not change with the iterations.

For a specific decoder in the class of two-bit decoders, we
derive the sufficient conditions on the Tanner graph of the code
to guarantee the correction of all error patterns with up to three
errors. The problem of correcting a fixed number of errors
assumes significance in the error floor region, where the slope
of the frame error rate (FER) curve is determined by the weight
of the smallest error pattern uncorrectable by the decoder [6].
For iterative decoding over the binary erasure channel (BEC),
it is known that avoiding stopping sets [7] up to sizet in the
Tanner graph of the code guarantees recovery fromt or less
erasures. A similar result for decoding over the BSC is still
unknown for a large number of cases. For column-weight-three
codes, the necessary and sufficient conditions to guaranteethe
correction of three errors have been derived by Chilappagari et
al. [8]. For column-weight-four LDPC codes of girth six, the
sufficient conditions to correct three errors under the Gallager
B algorithm have been derived by Chilappagariet al. [9]. The
conditions that we derive in this paper are similar to the ones
in [9], but impose fewer constraints on the Tanner graph. We
note that the decoder that we consider while not necessarily
the best possible two-bit decoder is easier to analyze and the
methodology in the paper can be extended to other decoders
to yield similar results.

The rest of the paper is organized as follows. In Section II,
we establish the notation and define a general class of two-bit
decoders. For a specific two-bit decoder, the sufficient condi-
tions for correction of three errors are derived in Section III.
In Section IV, we report the thresholds for various decoders.

II. T HE CLASS OF TWO-BIT DECODERS

The Tanner graph of a code, whose parity-check matrix
H has sizem × n, is a bipartite graph with a set ofn
variable nodes and a set ofm check nodes. Each variable
node corresponds to a column of the parity-check matrix, and
each check node corresponds to a row. An edge connects a



variable node to a check node if the corresponding element in
the parity-check matrix is non-zero. A Tanner graph is said to
be γ-left-regular if all variable nodes have degreeγ, ρ-right-
regular if all check nodes have degreeρ, and(n, γ, ρ) regular
if there aren variable nodes, all variable nodes have degreeγ

and all check nodes have degreeρ. The variable degree and
check degree are also referred to as column weight and row
weight, respectively.

Message passing algorithms for decoding LDPC codes run
iteratively. Every round of message passing (iteration) starts
with sending messages from variable nodes to check nodes
(first half of the iteration) and ends by sending messages from
check nodes to variable nodes (second half of the iteration).
Let r = (r1, . . . , rn), a binary n-tuple be the input to the
decoder. Letωj(v, c) denote the message passed by a variable
nodev to its neighboring check nodec in jth iteration and
̟j(c, v) denote the message passed by a check nodec to
its neighboring variable nodev. Additionally, let ωj(v, : )
denote the set of all messages fromv, ωj(v, : \c) denote
the set of messages fromv to all its neighbors except toc
and ωj( : , c) denote the set of all messages toc. The terms
ωj( : \v, c), ̟j(c, : ), ̟j(c, : \v), ̟j( : , v) and ̟j( : \c, v)
are defined similarly.

Before proceeding to give a formal description of a class of
two-bit decoders, we make the following observation. Since,
the message alphabet is finite, the message passing update
rules can be described using a lookup table and hence only
a finite number of two-bit decoders are possible. Also, the
Boolean function that represents any particular decoder must
be symmetric in the sense that swapping all inputs must imply
a swap of the output. In this paper, we focus on a class of two-
bit decoders that can be described using simple algebraic rules
and illustrate with an example how the lookup table can be
constructed from the algebraic description.

Let the message alphabet be denoted byM =
{−S,−W, W, S} where−S denotes a strong “1”,−W de-
notes a weak “1”,W denotes a weak “0” andS denotes a
strong “0” andS, W ∈ R

+. It should be noted that this repre-
sentation can be mapped onto the alphabet{11, 01, 00, 10}, but
we use the symbols throughout for the sake of convenience.
The received valuerv ∈ {0, 1} on the channel of a variable
node v is mapped toRv ∈ {C,−C}, C ∈ R

+ as follows:
1 → −C and 0 → C. It can be seen that each message is
associated with a value and strength (strength of a message is
an indication of its reliability).

Let N1(u) denote the set of nodes connected to nodeu by
an edge. Let the quantitiestj(v, :) andtj(v), j > 1 be defined
as follows:

tj(v, c) =
∑

u∈N1(v)\c

̟j−1(u, v) + Rv

and

tj(v) =
∑

u∈N1(v)

̟j(u, v) + Rv (1)

Additionally, let

sign(̟j(c, v)) =
∏

u∈N1(c)\v

sign(ωj(u, c)),

wheresign(a) = 1, if a ≥ 0 andsign(a) = −1, if a < 0.
The message passing update and decision rules can be

expressed as follows.

ω1(v, c) = W · sign(Rv)

̟j(c, v) =















S · sign(̟j(c, v)), if ∀u ∈ N1(c)\v,

|ωj(u, c)| = S

W · sign(̟j(c, v)), otherwise
For j > 1

ωj(v, c) =























W · sign(tj(v, c)), if 0 < |tj(v, c)| < S

S · sign(tj(v, c)), if |tj(v, c)| ≥ S

W · sign(Rv), if tj(v, c) = 0

Decision: At the end ofjth iteration, the estimaterj
v of a

variable nodev is given by

rj
v =























0, if tj(v) > 0

1, if tj(v) < 0

rv, if tj(v) = 0

The class of two-bit decoders described above can be
interpreted as a voting scheme in the following way: every
message has two components namely, the value (0 or 1) and
strength (weak or strong). The sign of the message determines
the value, whereas the values ofW andS denote the number
of votes. The received value is associated withC votes. To
compute the outgoing message on the variable node side, the
total number of votes corresponding to0 and1 are summed.
The value of the outgoing message is the bit with more number
of votes and the strength is determined by the number of votes.
In the case of a tie, the outgoing message is set to the received
value with a weak strength.

Different decoders in this class can be obtained by varying
the values ofS, W and C. Hence, we denote a particular
decoder by the triplet(C, S, W ). Since there are only a
finite number of two-bit decoders, different choices forC, S

and W might lead to the same decoder. The discussion of
the number of unique decoders is beyond the scope of this
paper. Table I shows the message passing update rules for
(C, S, W ) = (2, 2, 1) for rv = 0. The corresponding table for
rv = 1 can be similarly obtained. Table II shows the decision
rules for (C, S, W ) = (2, 2, 1).

III. C ONDITIONS TO GUARANTEE THE CORRECTION OF

THREE ERRORS

In this section, we derive the sufficient conditions on the
Tanner graph of a column-weight-four LDPC code to guaran-
tee the correction of all error patterns with up to three errors.



TABLE I
UPDATE RULE: NUMBER OF MESSAGES−S ,−W , W AND S GOING INTO

THE VARIABLE NODE v LEADING TO DIFFERENT VALUES OF THE MESSAGE

ωj(v, c) GOING OUT OFv, WHEN THE RECEIVED VALUE ISrv . THE CODE
HAS COLUMN WEIGHT FOUR AND THE(C, S, W ) = (2, 2, 1) TWO-BIT

DECODER IS USED.

# −S # −W # W # S
mess. mess. mess. mess.

rv = 0 2 1 0 0
ωj(v, c) = −S 3 0 0 0

1 2 0 0
rv = 0 0 3 0 0

ωj(v, c) = −W 2 0 1 0
0 2 1 0

rv = 0 1 1 1 0
ωj(v, c) = W 1 1 0 1

2 0 0 1
0 0 0 3
0 0 1 2
0 0 2 1
0 0 3 0

rv = 0 0 1 0 2
ωj(v, c) = S 0 1 1 1

0 1 2 0
0 2 0 1
1 0 0 2
1 0 1 1
1 0 2 0

TABLE II
DECISION RULE: NUMBER OF MESSAGES−S ,−W , W AND S GOING

INTO A VARIABLE , WHEN THIS VARIABLE NODE IS DECODED AS0 (RESP.
1) WHEN THE CHANNEL OBSERVATION IS1 (RESP. 0). THE CODE HAS

COLUMN WEIGHT FOUR AND THE(C, S, W ) = (2, 2, 1) TWO-BIT

DECODER IS USED.
# −S # −W # W # S
mess. mess. mess. mess.

0 0 0 4
0 0 1 3
0 0 2 2

Received value 1 0 0 3 1
Decoded as 0 0 0 4 0

0 1 0 3
0 1 1 2
0 1 2 1
1 0 0 3
1 0 1 2
0 4 0 0
1 2 1 0
1 3 0 0

Received value 0 2 1 0 1
Decoded as 1 2 1 1 0

2 2 0 0
3 0 0 1
3 0 1 0
3 1 0 0
4 0 0 0

Since the code is linear and the channel and the decoder are
symmetric, we can assume, without loss of generality, that the
all-zero-codeword is transmitted over the BSC. We make this
assumption throughout the paper. Hence, the variable nodes
flipped by the channel are received as “1”.

The problem of guaranteed error correction capability as-
sumes significance in the error floor region. Roughly speaking,
error floor is the abrupt degradation in the FER performance
in the high SNR regime. The error floor phenomenon has been
attributed to the presence of a few harmful configurations in
the Tanner graph of the code, variously known as stopping

sets (for the BEC), near codewords, trapping sets (for iterative
decoding on the BSC and the AWGN) and pseudo-codewords
(for linear programming decoding). While girth optimized
codes have been known to perform well in general, the code
length and the degree distribution place a fundamental limit
on the best achievable girth. Hence, additional constraints on
the Tanner graph are required to ensure better error floor
performance.

The guaranteed error correction capability of column-
weight-three LDPC codes under the Gallager A algorithm
is now completely understood (see [10], [11] for details).
For column-weight-four LDPC codes under the Gallager B
algorithm, sufficient conditions to guarantee all error patterns
with up to three errors have been derived by Chilappagariet
al.[9]. The conditions derived in [9] impose constraints on the
least number of neighboring check nodes for a given set of
variable nodes. The conditions that we derive are similar, but
impose fewer constraints on the Tanner graph. Due to the close
relationship of the conditions to the notion of graph expansion,
we refer to such conditions as expansion conditions. If every
subset ofx variable nodes in the Tanner graph have at leasty

neighboring check nodes, we say that the conditionx → y is
satisfied.

Before proceeding to the main theorem, we provide some
additional definitions and establish the necessary notation.

Definition 1: The neighborhood of depth one of a nodeu

is denoted byN1(u) and is composed of all the nodes such
that there exists an edge between these nodes andu. Similarly,
Nd(u) denotes the neighborhood of depthd of nodeu and is
composed of all the nodes such that there exists a path of
lengthd between these nodes andu.
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Fig. 1. All possible subgraphs subtended by three erroneousvariable nodes.

Let E be a set of nodes, sayE = ∪iui, then the depthd
neighborhood ofE is Nd(E) = ∪iNd(ui).

Now we state the main theorem1.
Theorem 1:[Irregular expansion theorem] LetG be the

Tanner graph of a column-weight-four LDPC code with no
4-cycles, satisfying the following expansion conditions:each

1The results have been updated after the submission.



variable subset of size 4 has at least 11 neighbors, each one
of size 5 at least 12 neighbors, each one of size 6 at least 14
neighbors, each one of size 8 at least 16 neighbors and each
one of size 9 at least 18 neighbors. The two-bit decoder, with
C = 2, S = 2 andW = 1, can correct up to three errors in
the codeword within three iterations, if and only if the above
conditions are satisfied.

For ease in notation, each expansion condition will be denoted
by “4→11 expansion condition”, “5→12 expansion condition”
and so on.
Proof of sufficiency:
Remark: The proof can be followed more easily by looking
at Tables II and I. LetV 1 = {v1

1 , v
1
2 , v1

3} andC1 = N1(V
1).

For more easily readable notation, letN2(V
1)\V 1 be denoted

by V 2 andN1(V
2)\C1 by C2. Also, we say that a variable

node is of typeT q
p when it hasp connections toC1 and q

connection toC2. The union of orderd neighborhoods of all
the T q

p variable nodes is denoted byNd(T
q
p ).

We consider all the subgraphs induced by three erroneous
variable nodes in a graph and prove that, in each case, the
errors are corrected. The possible subgraphs are shown in
Figure 1. As shown, five cases arise. In the reminder, we
assume that the all-zero codeword has been sent. For lack
of space, we provide the proof for Case 2. The proofs for
necessity and other cases can be found in the longer version
of the paper [12].

Case 2: Consider the error configuration shown in Figure
1(b).
In the second half of the first iteration, we have:

̟1(c
1

4, v) = −W, v ∈ {v1

1 , v
1

2}

̟1(c, v) = −W, v ∈ V
2
, c ∈ C

1\c1

4

̟1(c, v) = W, otherwise

In the first half of the second iteration, according to Table
I no −S messages can be sent by variables neither inV \V 1

because no−S message propagate in the first iteration, nor
variables inV 1 because they all receive at least threeW
messages:

ω2(v, c) = −W, v ∈ {v1

1 , v
1

2}, c ∈ C
1\c1

4

ω2(v, c
1

4) = W, v ∈ {v1

1 , v
1

2}

ω2(v
1

3 , c) = W, c ∈ C
1

ω2(v, c) = −W, v ∈ N0(T
1

3 ), c ∈ C
2

ω2(v, c) = W, v ∈ N0(T
2

2 ), c ∈ C
2

ω2(v, c) = W, v ∈ N0(T
1

3 ), c ∈ C
1

ω2(v, c) = S, otherwise

In the second half of the second iteration, the messages going
out of certain check nodes depend on the connection degree
of these check nodes. However, we do not want that the proof
be dependent on the degree of connection of check nodes.
Hence, we consider in the following the “worst” case, that is
the configuration where each message has the smallest possible
value. In that case, the messages along the edges in the second

half of the second iteration are such that:

̟2(c, v) = −W, v ∈ V
2 ∩N2({v

1

1 , v
1

2}), c ∈ C
1\c1

4

̟2(c
1

4, :) = W

̟2(c, : \v) = −W, v ∈ N0(T
1

3 ), c ∈ C
2 ∩ N1(T

1

3 )

̟2(c, v) = W, v ∈ V
2
, c ∈ {c1

8, c
1

9, c
1

10, c
1

11}

̟2(c, :) = W, c ∈ C
1 ∩N1(T

1

3 )

̟2(c, :) = W, c ∈ C
2 ∩N1(T

2

2 )

̟2(c, v) = S, otherwise

At the end of the second iteration, allv ∈ V 1 receive all
correct messagesW or S. According to Table II, all variables
in V 1 are hence corrected at the end of the second iteration.
For variables inV 2, since no−S messages propagate in the
second half of the second iteration, we see on Table II that
variables inV 2, which are not received in error, are decoded as
1 if and only if they receive four−W messages. The following
lemma prove that this is not possible.

Lemma 1:No variable node receives four incorrect−W

messages at the end of second iteration.
Proof: Let v be such a variable. Then the four neigh-
boring checks ofv must belong to{c1

1, c
1
2, c

1
3, c

1
5, c

1
6, c

1
7} ∪

(

C2 ∩ N1(T
1
3 )

)

. Note that only two neighbors ofv can belong
to {c1

1, c
1
2, c

1
3, c

1
5, c

1
6, c

1
7} without introducing a 4-cycle. This

implies that there are only three cases:

• v has two neighboring checks, sayc2
1 and c2

2, in C2 ∩
N1(T

1
3 ), and two checks in{c1

1, c
1
2, c

1
3, c

1
5, c

1
6, c

1
7}. Let

v2
1 and v2

2 be theT 1
3 variables connected toc2

1 and c2
2.

It results that the set of variables{v1
1 , v

1
2 , v

2
1 , v

2
2 , v} is

connected to only11 checks, which contradicts the 5→12
expansion condition. This case is hence not possible.

• v has one neighbor in{c1
1, c

1
2, c

1
3, c

1
5, c

1
6, c

1
7} and three

neighbors inC2 ∩N1(T
1
3 ), sayc2

1, c2
2 andc2

3. Let v2
1 , v2

2

and v2
3 be theT 1

3 variables connected toc2
1, c2

2 and c1
3.

It results that the set of variables{v1
1 , v

1
2 , v

2
1 , v2

2 , v
2
3 , v} is

connected to only13 checks, which contradicts the 6→14
expansion condition. This case is hence not possible.

• v has four neighbors inC2 ∩ N1(T
1
3 ), say c2

1, c2
2, c2

3

and c2
4. Let v2

1 , v2
2 , v2

3 and v2
4 be the T 1

3 variables
connected toc2

1, c2
2, c1

3 and c1
4. It results that the set

of variables{v1
1 , v

1
2 , v

1
3 , v2

1 , v
2
2 , v2

3 , v
2
4 , v} is connected to

only 15 checks, which contradicts the 8→16 expansion
condition. This case is hence not possible.

�

Hence, the decoder converges at the end of the second itera-
tion.

�

Note that similar conditions for a column-weight-four LDPC
code of girth six to correct any weight-three error pattern
within four iterations, when it is decoded with Gallager B
algorithm, has been found by Chilappagariet al. [9]. The
conditions are that each variable subset of size 4 has at least
11 neighbors, each one of size 5 at least 12 neighbors, each
one of size 6 at least 14 neighbors, each one of size 7 at least



TABLE III
THRESHOLDS(GIVEN IN PROBABILITY OF CROSSOVER ON THEBSC)OF

COLUMN-WEIGHT-FOUR CODES WITH ROW DEGREEρ. ALGORITHM E IS

PRESENTED IN[3]. FOR THE TWO-BIT DECODERS, THE SET (C,S,W)IS
GIVEN.

ρ Rate Gallager A Gallager B Algorithm E
8 0.5 0.0474 0.0516 0.0583

16 0.75 0.0175 0.0175 0.0240

32 0.875 0.00585 0.00585 0.00935

ρ Rate (1,1,1) (1,2,1) (1,3,1)
8 0.5 0.0467 0.0509 0.0552

16 0.75 0.0175 0.0165 0.0175

32 0.875 0.00585 0.00562 0.00486

ρ Rate (2,2,1) (2,3,1) (3,3,1)
8 0.5 0.0567 0.0532 0.0655

16 0.75 0.0177 0.0168 0.0222

32 0.875 0.00587 0.00568 0.00754

ρ Rate Dynamic two-bit
decoder with

S = 2 andW = 1

8 0.5 0.0638

16 0.75 0.0249

32 0.875 0.00953

16 neighbors and each one of size 8 at least 18 neighbors.
These conditions are stronger than the ones of Theorem 1.
The higher the rate of the code, the more difficult for the
Tanner graph of the code to satisfy the expansion conditions,
since the variable nodes tend to be less and less connected
when the code rate increases. Hence, it is likely that weaker
expansion conditions, obtained for the two-bit decoder, make
possible the construction of higher rate codes, with weight-
three error correction capability, than expansion conditions
required by the one-bit Gallager B decoder do. However,
determining analytically the highest achievable rate for agiven
set of expansion conditions is a problem which may be very
hard to solve, and which is out of the scope of this paper.

IV. T HRESHOLDS OFTWO-BIT DECODERS

In this section, we report the thresholds of two-bit decoders
for column-weight-four codes for different values of(C, S, W )
as well as for different code rates. The details of the density
evolution equations are given in [12]. Table III provides the
thresholds for the various two-bit decoders as well as for the
Gallager A, B and E algorithms.

From the table it is clear that there exist two-bit decoders
that have better thresholds than one-bit decoders GallagerA
and B algorithms. However, it should be noted that the class of
two-bit decoders considered in this paper need not necessarily
contain the best possible two-bit decoder. Nevertheless, our
approach can be applied to any decoder to obtain similar
results.

We have also derived the threshold for a dynamic two-bit
decoder i.e., a decoder in which the values ofC, S and W

can vary with iterations. This decoder has the best thresholds
among all the decoders presented. In the dynamic decoder we
consider, the value ofC is optimized for every iteration to
achieve a very good threshold. The underlying idea is similar
to the optimization performed in the threshold calculation
of the Gallager E algorithm (see [3] for details). The better
thresholds of the presented dynamic two-bit decoder over
Algorithm E indicates that the potential of using multiple
bits in the message passing alphabet even if the channel
observation is still one bit.

V. D ISCUSSION

We have considered a class of two-bit decoders for decoding
column-weight-four LDPC codes over the BSC. Codes satisfy-
ing the conditions derived in this paper can be constructed by
a modified version of the progressive edge growth (PEG) [13]
algorithm (see [9] for illustration). The question whetherall
the valid two-bit decoders can be expressed using the simple
algebraic rules presented in this paper remains open. It is also
of interest to derive bounds on the achievable rate at a given
code length. Future work includes investigation of the above
problems as well as extending the analysis to derive sufficient
conditions to guarantee correction of higher number of errors.
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