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Abstract—In Delay Tolerant Networks (DTN), contempora-
neous end-to-end paths are rarely available. Routing in such
networks is therefore one of the challenging issues. When the
DTN is made of humans, human mobility characterizes the for-
warding opportunities. To leverage the diversity of the strengths
of social ties, a number of utility-based routing policies have
been proposed. In this paper we first address theoretically the
optimization problem of the routing policy in such a social DTN,
under a multi-community network model, and we prove that
the optimal policies have a per-community threshold structure,
thereby generalizing the existing works for homogeneous mobility
DTN. We then provide analysis of this result on a numerical
example, and discuss the comparison of such optimal policies
with the online utility-based policies of the literature.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) are sparse Mobile Ad-hoc
NETworks (MANETS) where there is no guarantee that a path
exists between source and destination at any instant of time.
The reasons for sparsity can be short radio range so as to avoid
interference, obstruction or intermittent sleeping mode. Owing
to the intermittent connectivity, the nodes must rely on the
Store-Carry-and-Forward paradigm which inherently entails
delay for communication. That is the reason why such sparse
MANET are referred to as Delay Tolerant Networks (DTN).
Examples of such networks include Pocket Switched Networks
(PSNs) based on human mobility [1] or vehicular networks
(VANETSs) based on public bases or taxicabs. To lower the
delivery delay, multiple copies of the same packet can be
spread. How to spread multiple copies has been investigated
in several proposals. Epidemic routing [2] has been proposed
to flood data packets to all nodes in the network, sparing
the maximum of energy to minimize the delay. However,
most mobile nodes in DTNs have limited energy and may
prefer fewer transmissions to prolong network lifetime. For
these reasons, probabilistic routing [3] and Spray-and-Wait [4]
are proposed to achieve trade-offs between network resource
consumption and protocol performance. The DTN of interest
in this paper are social DTN made of people carrying portable
devices [1]. Human mobility exhibit heterogeneous patterns
where node clustering into communities arises owing to social
relationships [5]. To leverage the diversity of the strengths of
social ties, a number of online utility-based routing policies
discussed below have been proposed.

This paper aims at identifying the structure of optimal
routing policies, given a multi-community network model, and
then assess the distance to optimal policy of some utility-based

routing policies.
Contributions: Our contributions are threefold:

o From a multi-community network model, based on mean-
field approximations leading to a fluid model of the dis-
semination process, we formulate the problem of finding
the time-dependent forwarding probabilities between any
two communities to maximize the delivery probability by
a certain deadline under a given constraint of energy.

e We prove that optimal forwarding policies are per-
community threshold policies. We provide a numerical
illustration by using a heuristic optimization algorithm.

o We discuss the comparison of the main existing decentral-
ized utility-based routing policies to the optimal policy, so
as to assess the distance of these practical routing policies
to the optimal in terms of the underlying network social
structure.

Related works: Two kinds of works are related to ours: the
study of what are the best nodes to give the packet to, i.e.,
that of optimal routing policies, and the design of decentralized
utility-based routing policies relying on a smart choice of the
utility criterion.

The first set of works include [6], [7] and [8]. In [7], Picu
and Spyropoulos consider multicast traffic and identify the best
relays to carry the L copies of a packet so as to minimize
the maximum time for a destination to retrieve a copy (L is
an upper-bound on the number of copies allowed to spread
in the network). To do so, they assume that the available
knowledge (centralized at an oracle) is only the degree of
each node, i.e., the number of different nodes a node meets
within a time window. To go from the set of nodes’ degrees
to the set of probability of contact between any two nodes,
they build on the assumption that the probability of meeting
between nodes ¢ and j is proportional to both degrees of ¢ and
j, coming from the configuration model [7]. Doing so, they
come up with the result that the L best relays to carry the L
copies are are those with the highest degrees. Then, in [8], the
same authors present a Markov Chain Monte Carlo (MCMC)
algorithm as a distributed solution for online placement to the
above defined relays. Our work differs from [7] and [8] in
that we consider unicast traffic, and we do not make such
assumption on the network connectivity but only assume that
the nodes are clustered into communities into which the nodes
have the same mobility features, following the model of [9].
Some communities may be “hub” communities, meaning that



they can often act as relays between other communities. This
allows us to define, in a centralized manner for theoretical
purpose, not only what are the communities that must receive
the L copies of a packet and how many nodes must be
infected in each community, but also what are the paths these
copies must follow. These parameters are hence dependent on
the communities of the source and destination nodes of the
unicast session. In [6], Altman et al. consider a homogeneous
network defined by the number of nodes and the mean inter-
meeting time between any pair of nodes. For probabilistic
forwarding in two-hop and epidemic routing, they formulate
the optimal control problem, based on a fluid model of the
system’s dynamics, to minimize the delay under some energy
constraint. In particular, they show that the time-dependent
problem is optimized by threshold type policies. In this paper,
we extend the work of [6] to identify the structure of optimal
routing policies that account for the social features of real-
world scenario, i.e., a multi-community environment with
heterogeneous mobility.

On the other hand, a number of routing policies have been
proposed for DTNs to improve the trade-off between perfor-
mance and energy (or memory) consumption by accounting
for the social features of PSN. Their principle is not to spend
the allowed number of transmissions with the first met nodes
(in a greedy manner), but instead to smartly choose the relays
to give the copies to. Owing to lack of space, we do not
provide a review of these main routing techniques, but rather
mention them before detailing the policies we use in Section
IV. We can cite MaxProp [10], BubbleRap[11], PeopleRank
[12] and SimBet [13]. Other similar utilities were investigated
in [14]: Last-Seen-First (LSF), Most-Mobile-First (MMF) and
Most-Social-First (MSF).The same multi-community model
as ours is considered, and a fluid model of the network
dynamics is used to prove that the utility-based replication
(MMF) achieves a lower delivery delay than a greedy-based
replication. However, they do not investigate the optimality
of forwarding policies based on such model, as we do in
this paper. As well, Bulut et al. [15] studied the effects
on the performance of multi-copy based two-hop routing
algorithm under the same model. However, they limit the
analysis to only two communities. We formulate and address
the problem in a more general case. The rest of the paper is
organized as follows. Section II presents the network model
and the mean-field approximation. In Section III, we present
the theoretical analysis of the optimization problem and the
results on the structure of optimal policies. In Section IV we
discuss the comparison of the optimal routing policies to some
decentralized utility-based policies. Section V concludes the

paper.
II. NETWORK MODEL

We use the heterogeneous mobility model considered in
[14], [15]: the network is made of N mobile nodes divided
into M communities (possibly centered around home-points).
The number of nodes in community ¢ is N;, and we assume
that a node pertains to only one community. We denote the

total number of nodes by N = Zf\il N;, and consider the
node partition vector N = (Ny,..., Ny). The time between
contacts of any pair of nodes of communities ¢ and j is
exponentially distributed [16] with mean 1/8ij, where (;;
is the inter-meeting intensity defined as the mean number of
meetings per time unit between a given node of community
¢ and a given node of community j, and we assume that
Bii > Bij, for i # j, for all 4,5 € {1,...,M}. Let § be
the matrix storing the {3;;}1_,. The scenario under study is
a source node S of community ¢, that wants to send a message
(or packet) to a destination node of community c4. The multi-
packet case is part of future work. We consider a unicast
session without background traffic. Let 7 be the delivery
deadline until which the message is relevant to the destination.
For the sake of lighter notation, a node of community ¢ is
denoted as i-node.

Let X Z»(N) (t) be the fraction of i-nodes (over V) that have a

copy of the message at time ¢. Let X ™ (¢) = Zf\il XfN)(t).
Let u(t) be the policy controlling the message spreading:
u;(t) is the probability that a j-node gives the packet to a
i-node when they meet.
Mean-field approximations: We build on [17], [18] and
consider time ¢ sampled over the discrete domain, i.e., ¢ € N.
The expected change in the number of infected ¢-nodes in one
time slot is defined by

N m) = XM +1)

In our model, we  have fl-(N) (m) =
Zj\il u”(t)/)’”ijJ(% — mz) When N tends to inﬁnity,
as we consider a sparse network where the density remains
constant when the total number of nodes increases (the ratios
N;/N, for all ¢ = 1,..., M, keep constant), )\” = BN,
remains constant in N Therefore forallt=1,..., M:

Z i () Aij m] m;)

that is independent of N . Then Theorem 3.1 of [17] ensures
that the process X(N)(t) converges to a deterministic process
X(t) = (Xi(t),...,Xp(t)) which is the solution of the
Ordinary Differential Equation (ODE):

— X)) | XM (1) =m

hm f

N;
Vi=1,...,M Zuu i X ( )(N —X;(t)),
where X, (0) = z and Xi(()) = 0 for i # c,. The above
equation is referred to as the fluid model (or mean-field limit)
of the dissemination process.

Let D, ., be the random variable describing the time of
delivery. As well, we can derive the fluid limit P,._ ., (7)
of the cumulative distribution function (CDF) of the delay
(we assume that the probability that a node gives the packet
to the destination node upon meeting is 1): *)

cs,cq

dt
Zj]\il Aegi Xj(1 = P, ., (t)), whereby:
_f Z Ac 7X (t)
P. o (r)=1—exp =1 ¢ : (1)



III. OPTIMIZATION RESULTS

In this section, we first express the problem of optimizing
the routing policy u(t) = {u;; (t)}%-:1 subject to an energy
constraint, and secondly, we derive the structure of the optimal
routing policies for a given optimization problem. For the sake
of clarity, let X;(¢) turn to be the number of i-nodes infected
by the message, for all ¢ = 1,..., M. We consider that the
energy consumed by the whole network from time O up to
T is proportional to the total number of transmissions that
occurred within this time interval. As we do not consider any
buffer cleaning mechanism, the energy is hence proportional
to X(7) — X(0). Let e(7) be defined as this total number
of transmissions: €(7) = X (1) = Z]A/il X, (7). Enforcing an
energy constraint therefore consists in finding a policy u(t)
such that e(7) < F, where E is given by the problem.

A. The optimization problem with an energy constraint

We consider the following constrained optimization prob-

lem (CP): [Find u(¢) that maximizes P, .,(7) subject to
e(r) < El.
From eq. (1), problem (CP) is equivalent to maxi-
mize Jo (T, ut)) = [/ Z;w:l Be,j X (t)dt. Expressing
evea(Tu(t)) as Jo, ey (7 0(t)) = 71, Begy fo X (t)dt, we
can see that problem (CP) is a linear optimization problem
in the fOT X,(t)dt, for j = 1,...,M, but a non-linear
optimization problem in u(t).

B. The structure of optimal routing policies

Although the optimization problem (CP) is non-linear, we
are able to identify the subset of policies the optimal policies
belong to: below is presented the way to the main result of the
paper, that is the per-community threshold structure of optimal
policies.

Definition 3.1 (Condition (C)): A policy u(t) verifies con-
dition (C) if and only if there exists a couple of indexes
(I,j) with 0 < wuy;(t) < 1 for some non-empty interval
[a,b] C [0,7]. Let C(u(t)) = I denote the former I index.

Definition 3.2: Consider a policy u(t) verifying condition
(C) and X (7) < E. We define a threshold policy u(t) obtained
from u(t) by the following procedure:

o Initialization: T = C(u(t))
o Recursion: Do{
u(t) =output of atomic step with input (u(t), I)
1= C(a(t))
u(t) =u(t)
}while(q(t) satisfies condition (C))
« Atomic step: Let X(¢) be the state process under policy
u(t), and X(t) that under policy (t).
We first take, for all 4,5 =1,..., M:

’l_l,”(t): 1 ,1fz:landt§t1
0 ,if¢e=Tandt > t;

where t; is such that X;(7) = X;(t;) = X7(7). Then
appropriately threshold all @;;(t) for ¢ # I:

Y 0 ,if¢#Tandt>t;
where t; is such that X;(7) = X;(t;) = X;(7).

Lemma 3.1: Let the success probability for policy w;;(t)
be P,(7) and that for policy @;;(t) be P.(7). Then: (i) @;; (¢
satisfies the energy constraint X (7) < 7, and (ii) P.(7) >
Py(1).

Proof: (i) By construction of the improvement procedure of
definition (3.2). (ii) By construction, each of the atomic steps
generates X;(t) > X;(t) and X;(7) = X;(7) for all i =
1,..., M, and X;(t) = X/(t) for t € [a,b] (Def. 3.2, whereby
the result P.(T) > P,(7). o

Theorem 3.1: An optimal policy for problem (CP) is a per-

community threshold policy, i.e., has the following structure:
for all ¢,5 = 1,..., M, there are thresholds s, € [0, 7] for
which, for all j = 1,..., M, w;;(t) =1 for t € [0,s;] and
u;j(t) =0 for ¢t > s,.
Proof: Let u(t) be an arbitrary policy which satisfies the
energy constraint but is not a threshold policy as defined above.
Then, there exists some couple (7,j) and some non-empty
interval [a, b] C [0, 7] on which 0 < u;;(t) < 1. So u(t) can
be strictly improved according to Lemma 3.1. Hence, u(¢) is
not optimal. o
This theoretical result means that, given the 5 and N pa-
rameters, the optimal number of copies to spread in each
community is decided by the optimization solution, and the
way to spread those copies is the fastest as possible, that is, for
each community ¢, in an epidemic way from any communities
7 until s;, i.e., until the number of copies is reached. This
is in accordance with the results in the case of homogeneous
DTN, where [6], [4] showed that threshold-policies or Spray-
and-Wait, are the best in terms of mean delivery delay under
an energy constraint. It is worth noticing that the so-called
optimal policies, obtained from the optimization of problem
(CP), are offline policies.

C. Example of numerical optimization

Thanks to the differential evolution algorithm [19], a numer-
ical heuristic optimization method, we analyze the resulting
optimal threshold policy on a toy-example in which there are
M = 3 communities, the number of nodes in each community
is N = (33,33, 34), the § matrix is given below:

0.2 0.1 0.05
B=1] 01 04 0.1
0.05 0.1 0.3

We set the community of the source and destination to ¢, = 1
and ¢y = 3, and the deadline 7 = 0.7 for which P;(7) is the
objective to maximize. Let h;; for all 7,5 = 1,..., M be
the time threshold up to when a j-node gives a i-node a copy
upon meeting, and stops doing so thereafter. Table I shows the
optimized time thresholds h;;, T'X;; which is the total number
of transmissions from community ¢ to community j by time



E hi,j TXij TX
0.695 0.682 0.673 17 5 4

100 0.678 0.680 0.696 10 23 9 97
0.688 0.679 0.678 4 4 21
0.127 0.252 0.501 1 2 1

40 0.098 0.245 0.581 0 7 6 40
0.137 0.219 0.505 0 1 22
0.132 0.063 0.325 1 0 1

10 0.119 0.080 0.296 0O 0 O 9
0.106 0.018 0.332 0o 0 7

TABLE I

ANALYSIS OF THE OPTIMAL THRESHOLD POLICY.

7, and the total number of transmissions to be compared with
FE. We have TX” = fOT Biyjuiyj(t)Xi(t)(Nj — X](t))dt and
TX = 2%:1 TX;;. Let us first comment the hj; values. The-
orem 3.1 states that the h;;, for given i and all j = 1,..., M,
must be equal (to the per-community threshold s;). In the
optimization procedure, the h;; are the output shown in Table
I. They can be set independently, and they appear to be almost
constant per column, as predicted by Theorem 3.1. Only the
second column for ¥ = 10 exhibits significant differences, but
they do not impact the number of transmissions received in
the second community, that keeps 0. Let us now comment the
TX;; values, that allow easier interpretation of the thresholds
by making appear the sharing of the energy budget across
the communities. When the maximum number of copies is
highly constrained (£ = 10), it is better for the source to
give a copy to community cq4, and to let the allowed number
of copies be fully allocated to spreading inside c;. However,
when the allowed number of copies E increases to 40, then
some spare copies, additionally to that in the destination, are
worthy spreading in community 2 because the S matrix shows
that community 2 has a higher meeting rate with ¢4 = 3 than
¢s; = 1 has.

IV. DISTANCE FROM OPTIMALITY OF DECENTRALIZED
UTILITY-BASED POLICIES

After having theoretically identified the structure of (offline)
optimal policies and derived the numerical optimization, now
we compare the existing online utility-based policies to the
optimal ones, so as to analyze in what cases we can expect
these solutions will perform relatively close to, or far from,
the optimal policy.

Main classes of utility-based policies have been summarized
in [14]. Each node ¢ = 1,..., N maintains a utility function
U;(j) for each other node j. If node 4, carrying a copy of
the packet destined to node d, has r > 1 forwarding tokens
and encounters node j with no copy, then ¢ decides to give a
copy to j based on the following rules: (i) if U;(d) > U;(d)
(R1) or (ii) if U;(d) > Uy, for some threshold value Uy, (R2).
For example the so-called Last-Seen-First (LSF) policy is such
that U;(j) = 1-&-%(]) where 7;(7) is the time elapsed since the
nodes ¢ and j last encountered each other.

For the purpose of comparison of utility-based policies
to the optimal policies devised in Section III, consider the
multi-community network model of Section II. Let ¢; and
c; be the communities of nodes ¢ and j, respectively. Let
us consider the LSF policy. The inter-meeting time between

5. The
expectation of U;(j) can be computed rigorously and is equal
to E[Ui(j)] = Beye, €1 T(0, Be,e, ), where T(0, Be,c, ) is the
upper incomplete Gamma function. Consider the approxima-
tion of E[U;(j)] by Be,c,. valid for low S, .

Considering rule (R1), the fluid model for optimal threshold
policy and utility-based policy are as follows:

1 and j is exponentially distributed with mean

dXy(1)
dt

M
=1

for optimal threshold policy where, u;;(t) turns to be inde-

pendent of ¢ according to Theorem 3.1, and

dXi(t)
dt

= (Ne=Xi(t) > BuXu(t), unil X(t) = E

l:ﬂlcd >5kcd

for utility-based policy with rule (R1).
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Fig. 1. Graphs of communities connections corresponding to two /3 matrices.

Fig. 2 shows the CDF of the delivery delay both for LSF
and the optimal policies, for two [ matrices, with M = 4
communities, N/4 = 25 nodes per community, ¢; = 1 and
cq = 2. The simulations are done by averaging over 200
runs for each point, and the contact traces for each 5 matrix
have been generated synthetically based on exponentially
distributed inter-meeting times. The confidence intervals are
not plotted for the sake of visibility, but the differences are
statistically significant. As expected, the performance of LSF
is worse than that of the optimal policy, as the latter assumes
full knowledge of the network topology, whereas the former
learns the graph topology from the encounters. The question
that arises is therefore whether the gap between LSF and
optimal is only due to the absence of assumption on the
network topology for LSF, or also to the very definition of
the utility done in LSF. To answer this question, Fig. 2 also
shows the performance of “LSF steady” which denotes the
LSF policy where the utility U;(j) is set to §;; from the
beginning, so as to lift the impact of utility convergence on the
difference between LSF and optimal. We observe from Fig. 2
that such impact either fully explains the difference (for SGooq)
or only partly (for Sp.q). Indeed in utility-based routing, the
packet can be disseminated only from source community cg
to successive communities i1, 142, ... With B4 < Bi,a < Biyd
(in a so-called gradient-based manner) until packet reaches
destination. Doing so, some low-delay paths from the source to
the destination can be missed by the LSF policy. For example,
let us consider the two toy-examples in Fig. 1 with ¢, = 1
and ¢4 = 2. The performance is shown in Fig. 2. The LSF



policy is expected to perform well on Sgooq and bad on Sgad,
as in the latter case, LSF will not allow the packet to get to
community 4, and hence to travel along the low-delay path
1—4—3— 2, contrary to the optimal policy.

Optimal under ﬁGood

Optimal under ﬁBad

o LSF under ﬁGood
~ 0.5- _.LSF under BBad al
o 1 o F

0.4- o4 i LSF steady under B, | |

_. LSF steady under BBad

6.1-% |
% : 1 2 3 4 5 6 7 8 s 10
T
Fig. 2. CDF of the delivery delay, under L = E = 10.

Community 1 2 3 4
BGood 1.74 | 2.65 | 1.61 | 0.640
BBad 2.03 | 348 | 1.19 0
TABLE I

MEAN NUMBER OF TRANSMISSIONS IN EACH COMMUNITY BY THE LSF
POLICY, UNDER E = 10.

Utility-based policy based on order-2 neighbors can perform
better than LSF on network configurations such as p,4. That
is the case of Prophet [3], that uses history of encounters ,
and the utility value is updated with the transitivity property.
This feature brings Prophet closer to the optimal routing than
LSF is, at the expense of complexity. In MaxProp [10], each
node i keeps the record of the meeting rate with node j, fZ,
for all ¢,57 = 1,..., M (that is similar to f3;; estimations)
of each path towards destination and selects the best path, in
terms of delivery likelihood, to forward the packet. It therefore
tries to approach the optimal solution. However, these two
routing algorithms work with a single copy. In BubbleRap
[11], each node keeps the record of its community label, its
local rank and its global rank. Local rank and global rank are
based on betweenness centralities estimated by the number of
different nodes met within a time window inside and outside
the node’s community, respectively. Such parameters imply a
different model than the multi-community model presented in
Section II, which does not allow to distinguish between nodes
inside the same community. Therefore the global rank can be
expressed thanks to the multi-community model, but the local
rank will be the same for all the same community nodes. The
multi-community model does not encompass such possibility
for the sake of simplicity, so as to be able to derive theoretical
results on optimal routing policies as done in Section III, then
to compare with existing online utility-based policies.

V. CONCLUSION

In this paper we have addressed the problem of optimizing
routing policies in mobile social DTN. Thanks to a mean-field
approximation of the spreading process, we have formulated

the problem of finding the optimal time-dependent policies
under a given constraint of energy. We have proven theoret-
ically that the optimal policies are per-community threshold
policies, and we have discussed the distance to optimal of
online utility-based polices of the literature. As future work,
we plan to address the case where the message is split over
several data packets, where communities can overlap, and in
particular, based on the obtained results, we intend to study
new routing schemes where the number of copies delivered to
each node is a function of the utility value of this node, so as
to generalize the utility-spraying presented in [14] (Def. 3.2).
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