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TRACK: A New Method from a Re-examination
of Deep Architectures for Head Motion

Prediction in 360◦ Videos
Miguel Fabián Romero Rondón, Lucile Sassatelli, Ramón Aparicio Pardo, and Frédéric Precioso

Abstract—

We consider predicting the user’s head motion in 360◦ videos, with 2 modalities only: the past user’s positions and the video content (not
knowing other users’ traces). We make two main contributions. First, we re-examine existing deep-learning approaches for this problem
and identify hidden flaws from a thorough root-cause analysis. Second, from the results of this analysis, we design a new proposal
establishing state-of-the-art performance. First, re-assessing the existing methods that use both modalities, we obtain the surprising
result that they all perform worse than baselines using the user’s trajectory only. A root-cause analysis of the metrics, datasets and
neural architectures shows in particular that (i) the content can inform the prediction for horizons longer than 2 to 3 sec. (existing methods
consider shorter horizons), and that (ii) to compete with the baselines, it is necessary to have a recurrent unit dedicated to process the
positions, but this is not sufficient. Second, from a re-examination of the problem supported with the concept of Structural-RNN, we
design a new deep neural architecture, named TRACK. TRACK achieves state-of-the-art performance on all considered datasets and
prediction horizons, outperforming competitors by up to 20% on focus-type videos and horizons 2-5 seconds. The entire framework
(codes and datasets) is online and received an ACM reproducibility badge https://gitlab.com/miguelfromeror/head-motion-prediction.

Index Terms—Modeling and prediction, Virtual reality, Neural nets, Machine learning, Kinematics and dynamics
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1 INTRODUCTION

IMMERSIVE media are on the rise: the global market for Virtual
Reality (VR) is projected to grow from US$9.2 Billion in 2020

to US$89.1 Billion by 2027 [2]. 360◦ videos are an important
modality of VR, with applications in story-telling, journalism or
remote education. Despite these exciting prospects, the develop-
ment is persistently hindered by the difficulty to access immersive
content through Internet streaming. Indeed, owing to the closer
proximity of the screen to the eye in VR and to the width of
the content (2π steradians in azimuth and π in elevation angles),
the data rate is two orders of magnitude that of a regular video
[3]. To decrease the amount of data to stream, a solution is to
send in high resolution only the portion of the sphere the user has
access to at each point in time, named the Field of View (FoV).
To do so, recent works have proposed to either segment the video
spatially into tiles and set the quality of the tiles according to their
proximity to the FoV [4], [5], [6], or use projections enabling high
resolutions of regions close to the FoV [7], [8]. These approaches
however require to know the user’s head position in advance, that
is at the time of sending the content from the server (see Fig. 1).
Failing to predict correctly the future user’s positions can lead
to a lower quality displayed in the FoV, which can impair the
user’s experience. It is therefore crucial for an efficient 360◦ video
streaming system to embed an accurate head motion predictor to
periodically inform where the user will be likely looking at, over
a future horizon.

A preliminary version of this work has been published in [1]. The authors are
with Université Côte d’Azur, CNRS, I3S, 06900 Sophia Antipolis, France. Lu-
cile Sassatelli is also with Institut Universitaire de France. Frédéric Precioso
is also with Inria. E-mail: {first.last}@univ-cotedazur.fr

In this article, we consider the problem of predicting the user’s
head motion in 360◦ videos over a future horizon, based both
and only on the past trajectory and on the video content. Various
methods tackling this problem with deep neural networks have
therefore been proposed in the last couple of years (e.g., [9], [10],
[11], [12], [13]). We show that the relevant existing methods have
hidden flaws, that we thoroughly analyze to overcome with a new
proposal establishing state-of-the-art performance. We hence make
two main contributions.
Contributions:
• Uncovering hidden flaws of existing methods and performing
a root-cause analysis:
After a review and taxonomy of the most relevant and recent
methods (PAMI18 [9], CVPR18 [10], MM18 [11], ChinaCom18
[12] and NOSSDAV17 [13]), we compare them to common
baselines. First, comparing against the trivial-static baseline, we
obtain the intriguing result that they all perform worse, on their
exact original settings, metrics and datasets. Second, we show it
is indeed possible to outperform the trivial-static baseline (and
hence the existing methods) by designing a stronger baseline,
named the deep-position-only baseline: it is an LSTM-based
architecture considering only the positional information, while the
existing methods are meant to benefit both from the history of
past positions and knowledge of the video content. From there,
we carry out a thorough root-cause analysis to understand why
the existing methods perform worse than baselines that do not
consider the content information. Looking into the metrics and the
data, we show that: (i) evaluating only on some specific pieces
of trajectories or specific videos, where the content is proved
useful, does not change the comparison results, and that (ii) the
content can indeed inform the head position prediction, but for

https://gitlab.com/miguelfromeror/head-motion-prediction
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prediction horizons longer than 2 to 3 sec.. All these existing meth-
ods consider shorter horizons. Looking into the neural network
architectures, we identify that: (iii) when the provided content
features are the ground-truth saliency, the only architecture not
degrading away from the baseline is the one with a Recurrent
Neural Network (RNN) layer dedicated to the positional input,
but (iv) when fed with saliency estimated from the content, the
performance of this architecture degrades away from the deep-
position-only baseline again.
• Introducing a new deep neural architecture achieving state-
of-the-art performance on all the datasets of compared meth-
ods and all prediction horizons (0-5 sec.):
To overcome this difficulty, we re-examine the requirements on
how both modalities (past positions and video content) should
be considered given the structure of the problem. We support
our reasoning with the concept of Structural-RNN, modeling the
dynamic head motion prediction problem as a spatio-temporal
graph. We obtain a new deep neural architecture, that we name
TRACK. TRACK establishes state-of-the-art performance on all
the prediction horizons 0-5 sec. and all the datasets of the existing
competitors. In the 2-5 sec. horizon, TRACK outperforms the
second-best method by up to 20% in orthodromic distance error
on focus-type videos, i.e., videos with low-entropy saliency maps.

Owing to the critical results and perspective we raise on
the state-of-the-art, and in our concern for reproducibility, the
experimental setup and datasets of each assessed method and
all our codes, are provided online (detailed and illustrated) at
[14]. This reproducible framework has already obtained an ACM
reproducibility badge [15], and allows to easily test any future
approach.

Sec. 2 formulates the exact prediction problem considered, and
presents a taxonomy of the existing methods as well as a detailed
description of each. Sec. 3 evaluates these methods against two
baselines it introduces, the trivial-static baseline and the deep-
position-only baseline. Sec. 5 presents the first part of the root-
cause analysis by analyzing the data, introducing the saliency-only
baseline. Sec. 6 completes the root-cause analysis by analyzing
the architectural choices. Sec. 7 presents our reasoning to obtain
our new prediction method, TRACK, which establishes state-of-
the-art performance. Sec. 8 gives perspective and connects our
work to most recent critical re-examinations of deep learning-
based approaches for other application domains. Sec. 9 concludes
the article.
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Fig. 1: 360◦ video streaming principle. The user requests the
next video segment at time t, if the future orientations of the
user (θt+1, ϕt+1), ..., (θt+H , ϕt+H) were known, the bandwidth
consumption could be reduced by sending in higher quality only
the areas corresponding to the future FoV.

2 REVIEW AND TAXONOMY OF EXISTING HEAD
PREDICTION METHODS

This section reviews the existing methods relevant for the problem
we consider. We start by formulating the exact problem: it consists,
at each video playback time t, in predicting the future user’s
head positions between t and t + H , as illustrated in Fig. 1
and represented in Fig. 2, with the only knowledge of this user’s
past positions and the (entire) video content. We therefore do not
consider methods aiming to predict the entire user trajectory from
the start based on the content and on the starting point as, e.g.,
targeted by the challenge in [16] or summarizing a 360◦ video
into 2D [17], [18]. As well, and importantly, we consider that the
users’ statistics for the video are not known at test time, hence
we do not consider methods relying on these per-video statistics,
such as [19], [20]. Also, the domain of egocentric videos is related
to that of 360◦ video. However, the assumptions are not exactly
the same: only part of the scene and some regions likely to attract
the users are available (video shot from a mobile phone), contrary
to a 360◦ video. We therefore do not compare with such works.
The problem we tackle is inherently dynamic and aims to help
streaming decisions made along the playback. We then present
the existing methods and classify them based on the choices of
deep neural network architecture. Finally, we provide a detailed
description of each method we analyze later in this article.

2.1 Problem formulation
Let us first define some notation. Let Pt = [θt, ϕt] denote
the vector coordinates of the FoV at time t. Let Vt denote the
considered visual information at time t: depending on the models’
assumptions, it can either be the raw frame with each RGB
channel, or a 2D saliency map resulting from a pre-computed
saliency extractor. Let T be the video duration. The prediction
is not assessed over the first Tstart seconds of video. To match
the settings of the works we compare with, Tstart is set to 0
sec. for all the curves generated in Sec. 3. In order to skip the
exploration phase, as explained in Sec. 5.4, and be more favorable
to all methods as they are not able to consider non-stationarity of
the motion process, we set Tstart = 6 sec. from Sec. 5 onward.
We now refer to Fig. 2. Let H be the prediction horizon. We define
the terms prediction step s, and video time-stamp t, such that: at
every time-stamp t ∈ [Tstart, T ], we run predictions P̂t+s, for all
prediction steps s ∈ [0, H].

Fig. 2: For each time-stamp t, all the next positions from t until
t+H are predicted.

We formulate the problem of trajectory prediction as finding
the best model F∗H verifying:

F∗H = arg minEt

[
D
([
Pt+1, . . . ,Pt+H

]
,

FH

(
[Pt,Pt−1, . . . ,P0,Vt+1, . . . ,Vt+H ]

))]
where D (·) is the chosen distance between the ground-truth
series of the future positions and the series of predicted positions.
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Except for the results in Fig. 6, for each s, we average the errors
dist(P̂t+s,Pt+s) over all t ∈ [Tstart, T ]. As considered in the
existing methods we compare with, we make H vary between 0.2
sec. and 2.5 sec., then extend H to 5 sec. as detailed from the
analysis in Sec. 5.

2.2 Taxonomy

Various approaches to predict user motion in 360◦ video envi-
ronments have been published in the last couple of years, and
are organized in Table 1. First, for the sake of clarity, each
considered method is named with the name of the conference or
journal it was published in, appended with the year of publication,
as represented in column 1 of Table 1 (starting from the left).
They consider different objectives (col. 2), such as predicting
the future head position, gaze position or tiles in the FoV. The
prediction horizons (col. 3) also span a wide range, from 30ms
to 2.5 sec.. Some articles share common datasets for experiments
(col. 4), while generally not comparing with each other. Different
types of input and input formats are considered (col. 5): some
consider the positional information implicitly by only processing
the content in the FoV (PAMI18), other consider the position
separately, represented as a series of coordinates (e.g., CVPR18)
or as a mask (e.g., MM18), with the last sample only (IC3D17)
or various length of history, some extract features from the visual
content by employing some pre-trained saliency extractors (e.g.
NOSSDAV17, MM18) or training end-to-end representation layers
made of convolutional and max-pooling layers (e.g., PAMI18).
Finally, most of the methods but the first two in Table 1 rely on
deep-learning approaches. A key aspect is the way they handle
the combination of the positional information (if they consider
it individually) with the video content information. As these two
types of information are time series, those works all consider the
use of deep Recurrent Neural Networks (RNN), and all use Long
Short Term Memory (LSTM). However, whether the features are
first extracted from each time series independently, or whether the
time series samples are first concatenated then fed to a common
LSTM, depends on each method. The positioning of the recurrent
network in the whole architecture is the multimodality fusion
criterion we have selected (col. 6) to order the rows in Table 1
(within each group, methods are ordered from the most recently
published), thereby extracting 3 groups of methods:

• if the positional information is not explicitly considered,
then no combination is made and a single LSTM processes
the content of the FoV: PAMI18;

• combination is made after the single LSTM module in
CVPR18: the LSTM processes past positions, and its
output gets fused with the video features through a fully
connected layer (see Fig. 3-Right);

• if the current saliency map extracted from the content is
first concatenated with the current position information,
then the LSTM module handles both pieces of information
modalities simultaneously: NOSSDAV17, ChinaCom18,
MM18 (see Fig. 3-Left).

The architectures tackling this dynamic head motion predic-
tion problem have hence three main objectives: (O1) extracting
attention-driving features from the video content, (O2) processing
the time series of position, and (O3) combining (fusing) both
information modalities to produce the final position estimate. We
depict the modules in charge of (O2) and (O3) of methods MM18

and CVPR18 in Fig. 3. The existing methods are described more
in detail next and those in bold are selected for comparison with
the baselines presented in Sec. 3.
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Fig. 3: The building blocks in charge, at each time step, of
processing positional information Pt and content information Vt,
that are visual features learned end-to-end or obtained from a
saliency extractor module (omitted in this scheme). Left: MM18
[11]. Right: CVPR18. [10]

2.3 Detailed description of methods selected for com-
parison
PAMI18: Xu et al. in [9] design a Deep Reinforcement Learning
model to predict head motion. Their deep neural network only
receives the viewer’s FoV as a 42 × 42 input image, and must
decide to which direction and with which magnitude the viewer’s
head will move. Features obtained from convolutional layers
processing each 360◦ frame cropped to the FoV are then fed
into an LSTM to extract direction and magnitude. The training
is done end-to-end. The prediction horizon is only one frame, i.e.,
30ms. By only injecting the FoV, the authors make the choice
not to consider the positional information explicitly as input.
The PAMI18 architecture therefore does not feature any specific
fusion module. The better performance of our deep-position-only
baseline shown in Sec. 3 questions this choice.
IC3D17: The strategy presented by Aladagli et al. in [21] simply
extracts saliency from the current frame with an off-the-shelf
method, identifies the most salient point, and predicts the next
FoV to be centered on this most salient point. It then builds
recursively. We therefore consider that this method to be a sub-
case of PAMI18, and that the comparison with PAMI18 is thus
more relevant.
ICME18: Ban et al. in [22] assume the knowledge of the users’
statistics, and hence assume more information than our problem
definition, which is to predict the user motion only based on the
user’s position history and the video content. We therefore do not
consider this architecture for comparison. A linear regressor is
first learned to get a first prediction of the displacement, which it
then adjusts by computing the centroid of the k nearest neighbors
corresponding to other users’ positions at the next time-step.
CVPR18: In [10], Xu et al. predict the gaze positions over the
next second in 360◦ videos based on the gaze coordinates in the
past second and the video content. As depicted in Fig. 3-Right,
the time series of past head coordinates is processed by a doubly-
stacked LSTMs. For the video information, spatial and temporal
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Reference Objective Prediction
horizon Dataset Inputs

RNN
before/after
concatenation
of modalities

PAMI18
[9]

head
coordinates 30ms 76 videos,

58 users
frame cropped to FoV N/A

(no fusion)
IC3D17
[21]

head
coordinates 2s 16 videos,

61 users Pre-trained sal. in FoV
N/A
(no fusion,
no LSTM)

ICME18
[22]

tiles
in FoV 6s 18 videos,

48 users
Position history,
users’ distribution

N/A
(no LSTM)

CVPR18
[10]

gaze
coordinates 1s 208 videos,

30+ users
Video frame,
position history as coordinates before

MM18
[11]

tiles
in FoV 2.5s

11 videos,
48+ users from [23], [24]
with custom pre-processing

Pre-trained saliency,
mask of positions after

ChinaCom18
[12]

tiles
in FoV 1s NOSSDAV17’s dataset

Pre-trained saliency,
FoV tile history after

NOSSDAV17
[13]

tiles
in FoV 1s 10 videos,

25 users

Pre-trained saliency,
FoV position or
tile history

after

TABLE 1: Taxonomy of existing dynamic head-prediction methods. References in bold are considered for comparison in Sec. 3.

saliency maps are first concatenated with the RGB image, then fed
to Inception-ResNet-V2 to obtain the “saliency features” denoted
as V t+ 1 in Fig. 3-Right. They formulate the gaze prediction
problem the same way as the head prediction problem.
MM18: Nguyen et al. in [11] first construct a saliency model
based on a deep convolutional network and named PanoSalNet.
The so-extracted saliency map is then fed, along with the position
encoded as a mask, into a doubly-stacked LSTM, as shown in Fig.
3-Left.
ChinaCom18: Li et al. in [12] present a similar approach as
MM18, adding a correction module to compensate for the fact
that tiles predicted to be in the FoV with highest probability may
not correspond to the actual FoV shape (having even disconnected
regions). This is a major drawback of the tile-based approaches
as re-establishing FoV continuity may significantly impact final
performance.
NOSSDAV17: Fan et al. in [13] propose two LSTM-based net-
works, predicting the likelihood that tiles pertain to future FoV.
Visual features extracted from a pre-trained VGG-16 network are
concatenated with positional information, then fed into LSTM
cells for the past M time-steps, to predict the head orientations
in the future H time-steps. Similarly to MM18 and as depicted in
Fig. 3-Left, the building block of NOSSDAV17 first concatenates
flattened saliency map and position, and feeds it to a doubly-
stacked LSTM whose output is post-processed to produce the
position estimate. An extended version of this work has been
published in [25].
These methods therefore make for a wide range of deep network
architectural choices. In particular the fusion problem (O3), de-
fined in Sec. 2.2, may be handled differently. MM18 and CVPR18
are selected as representatives: combining both modalities before
or after the recurrent (LSTM) unit, respectively. There is no
pairwise comparison between any of the above works. From the
above articles, the only works which provided their code and their
deep neural networks for reproducibility are PAMI18 and MM18.
However, we could obtain all the datasets to compare with all (the
datasets not publicly available were kindly shared by the authors
whom we have contacted).

2.4 Description of datasets from the literature for com-
parison

This information is summarized in Table 1, and detailed here:
PAMI18: This dataset contains both head movement and eye
movement data of 58 subjects on 76 360◦ videos of variable
duration, from 10 to 80 seconds (25 seconds in average).
CVPR18: It is made of 208 360◦ videos between 15 and 80
seconds (36s in average), each video is viewed by at least 31
participants.
NOSSDAV17: This dataset consists of 10 360◦ videos with a
duration of 60 seconds, along with the identification number of
the tiles that overlap with the FoV of the viewer according to
the head orientation data (the tile size considered is 192 × 192).
This dataset contains the traces of 50 participants, however, for the
experiment performed in [13], the traces of 25 participants only
were used.
MM18: The dataset used in MM18 consists on the post-processing
of two publicly available datasets [23], [24]. The first dataset [24]
includes 18 videos viewed by 48 users, from which 9 videos are
selected. The second dataset [23] has five videos viewed by 59
users, from which 2 videos are used. From the chosen videos, a
segment is selected such that there are one or more events that
introduce a new salient region (e.g. a scene change).
MMSys18: We also considered the dataset presented by David
et al. in [26] and referred to as MMSys18. It is made of 19,
360◦ videos of 20 seconds, along with the head positions of 57
participants starting their exploration at a random angular position.

3 COMPARISON AGAINST TWO BASELINES:
TRIVIAL-STATIC AND DEEP-POSITION-ONLY

To compare the above recent proposals (PAMI18, CVPR18,
MM18, ChinaCom18, NOSSDAV17) to a common reference, we
first introduce the trivial-static baseline. First, we show that all
these methods on their original settings, metrics and datasets, are
outperformed by this trivial baseline. This is surprising and raises
the question of whether it is actually possible to learn anything
meaningful with these settings (datasets and prediction horizons).
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To answer this question, we then introduce a deep-position-only
baseline, that we design as a sequence-to-sequence LSTM-based
architecture exploiting the time series of past positions only
(disregarding the video content). We show this new baseline is
indeed able to outperform the trivial-static baseline (establishing
state-of-the-art performance). Later, Sec. 5 introduces a saliency-
only baseline.

3.1 Definition of the trivial-static baseline
Different linear predictors can be considered as baselines. We
consider here the simplest one which predicts no motion:[
P̂t+1, . . . , P̂t+H

]
=
[
Pt, . . . ,Pt

]
.

More complex baselines exist. For example in [27], a Linear
Regressor and a Neural Network perform better than the trivial-
static baseline. However, as we will see, all existing methods
trying to leverage both the video content and the position to predict
future positions perform worse than the trivial-static baseline,
without exception.

3.2 Design of the deep-position-only baseline
We now present an LSTM-based predictor which considers po-
sitional information only. An LSTM enables non-linear shape of
the motion and the memory effect due to inertia, as discussed in
[10] and shown by the generated trajectories in [14]. We select a
sequence-to-sequence (seq2seq) architecture because it has proven
powerful at capturing complex dependencies and generating real-
istic sequences, as shown in text translation for which it has been
introduced [28].
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Fig. 4: The deep-position-only baseline based on an encoder-
decoder (seq2seq) architecture.

As depicted in Fig. 4, a seq2seq framework consists of an
encoder and a decoder. The encoder receives the historic window
input (samples from t−M to t−1 shown in Fig. 2) and generates
an internal representation. The decoder receives the output of the
encoder and progressively produces predictions over the target
horizon, by re-injecting the previous prediction as input for the
new prediction time-steps. This is a strong baseline (not only a
trivial-static or linear predictor) processing the head coordinates
only. We have optimized the deep-position-only baseline as de-
scribed in [14] and [29, Sec. I]. This baseline has been inspired
from the work of Martinez et al. in [30], which re-examined major
deep networks as multi-modal fusion methods, combining video
content and motion time series for 3D human skeleton motion
prediction. Their findings that all state-of-the-art methods were
worse than a simple baseline, have echoed and corroborate with
our own findings for the problem of multi-modal fusion methods
for head motion prediction as detailed below. We give more
perspective on this aspect in Sec. 8.

Reproducibility: All the additional details of implementation
are described in the supplemental material joined to the sub-
mission [29, Sec. II]. We emphasize that the entire reproducible

framework, with all methods including baselines, homogeneized
datasets and common metrics, has been published in [15], obtained
an ACM reproducibility badge, and is available in full at [14].

3.3 Results

We now present the comparisons of the state-of-the-art methods
presented in Sec. 2.2 with the trivial-static baseline and deep-
position-only baseline defined above. We report the exact results
of the original articles, along with the results of our baselines, the
deep-position-only baseline being trained and tested on the exact
same train and test subsets of the original dataset as the original
method (there is no training for the trivial-static baseline). The
benchmark metrics (related to predicting head or gaze positions, or
FoV tiles) are those from the original articles, so are the considered
prediction horizons H .

Results for PAMI18 are shown in Table 2, for CVPR18 in Fig.
5-Bottom, for MM18 in Fig. 5-Top, for ChinaCom18 in Table
3 and for NOSSDAV17 in Table 4. Let us mention that none
of these methods considered baselines identical to the trivial-
static baseline and deep-position-only baseline defined above. All
perform worse than both our trivial-static and deep-position-only
baselines. Specifically, all but one (CVPR18) perform significantly
worse.
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Fig. 5: Top: Comparison with MM18 [11], H =2.5 seconds. Bot-
tom: Comparison with CVPR18 [10], prediction horizon H = 1
sec. CVPR18-repro is introduced in Sec. 4.1, the model TRACK
in Sec. 6.2.

We define below the metrics used for every considered predic-
tor:
• NOSSDAV17 [13] considers the following metrics:
− Accuracy: ratio of correctly classified tiles to the union of
predicted and viewed tiles.
− Ranking Loss: number of tile pairs that are incorrectly ordered
by probability normalized to the number of tiles.
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Method KingKong SpaceWar2 StarryPolar Dancing Guitar BTSRun InsideCar RioOlympics Average

PAMI18 [9] 0.809 0.763 0.549 0.859 0.785 0.878 0.847 0.820 0.753
trivial-static baseline 0.974 0.963 0.906 0.979 0.970 0.983 0.976 0.966 0.968

deep-position-only baseline 0.983 0.977 0.930 0.984 0.977 0.987 0.982 0.976 0.977
TRACK 0.974 0.964 0.912 0.978 0.968 0.982 0.974 0.965 0.968

Method SpaceWar CMLauncher2 Waterfall Sunset BlueWorld Symphony WaitingForLove Average

PAMI18 [9] 0.626 0.763 0.667 0.659 0.693 0.747 0.863 0.753
trivial-static baseline 0.965 0.981 0.973 0.964 0.970 0.968 0.978 0.968

deep-position-only baseline 0.976 0.989 0.984 0.973 0.979 0.976 0.982 0.977
TRACK 0.965 0.981 0.972 0.964 0.970 0.969 0.977 0.968

TABLE 2: Comparison with PAMI18 [9]: Mean Overlap scores of FoV prediction, prediction horizon H ≈ 30ms (1 frame). The
model TRACK is introduced in Sec. 6.2.

trivial-static baseline deep-position-only baseline ChinaCom18
Accuracy F-score Accuracy F-score Accuracy F-score

Hog Rider 96.29% 0.8858 96.97% 0.9066 77.09% 0.2742
Driving with 95.96% 0.8750 96.59% 0.9843 77.34% 0.2821
Shark Shipwreck 95.23% 0.8727 96.12% 0.8965 83.26% 0.5259
Mega Coaster 97.20% 0.9144 97.71% 0.9299 88.90% 0.7011
Roller Coaster 96.99% 0.9104 97.50% 0.9256 88.28% 0.6693
Chariot-Race 97.07% 0.8802 96.91% 0.9056 87.79% 0.6040
SFR Sport 96.00% 0.8772 96.91% 0.9054 89.29% 0.7282
Pac-Man 96.83% 0.8985 97.16% 0.9089 87.45% 0.6826
Peris Panel 95.60% 0.8661 96.54% 0.8947 89.12% 0.7246
Kangaroo Island 95.35% 0.8593 96.54% 0.8954 82.62% 0.5308

Average 96.15% 0.8840 96.90% 0.9063 72.54% 0.5155

TABLE 3: Comparison with ChinaCom18 [12], prediction horizon
H = 1 second.

Method Accuracy F-Score Rank Loss

NOSSDAV17-Tile [13] 84.22% 0.53 0.19
NOSSDAV17-Orient. [13] 86.35% 0.62 0.14
trivial-static baseline 95.79% 0.87 0.10
deep-position-only baseline 96.30% 0.89 0.09
TRACK 95.48% 0.85 0.15

TABLE 4: Comparison with NOSSDAV17: Performance of Tile-
and Orientation-based networks of [13] compared against our
deep-position-only baseline, prediction horizon H = 1 second.
The model TRACK is introduced in Sec. 6.2.

− F-Score: harmonic mean of precision and recall, where preci-
sion is the ratio of correctly predicted tiles by the total number of
predicted tiles, and recall is the ratio of correctly predicted tiles
by the number of viewed tiles.
Let us point out here that the tile data is not balanced, as more
tiles pertain to class 0 (tile 6∈ FoV) than to class 1 (tile ∈ FoV)
owing to the restricted size of the FoV compared to the complete
panoramic size. If we predict all the tiles systematically in class
0, the accuracy already gets to 83.86%. The accuracy is indeed
known to be a weak metric to measure the performance of such
unbalanced datasets.
• PAMI18 [9] uses as metric the Mean Overlap (MO) defined as:

MO =
A(FoVp ∩ FoVg)

A(FoVp ∪ FoVg)

Where FoVp is the predicted FoV, FoVg is the ground-truth FoV,
and A(·) is the area of a panoramic region.
• CVPR18 [10] uses the Intersection Angle Error IAE for
each gaze point (θ, ϕ) and its prediction (θ̂, ϕ̂), defined as
IAE = arccos(〈P, P̂ 〉), where P is the 3D coordinate in the

unit sphere:
P = (x, y, z) = (cos(θ)cos(ϕ), cos(θ)sin(ϕ), sin(θ)). Let
us mention that CVPR18 also considers a deep-position-only
baseline. However, ours appears stronger, likely due to the seq2seq
architecture. We readily apply our different predictors on the gaze
data available in the CVPR18-dataset.
• MM18 [11] takes the tile with the highest viewing probability
as the center of the predicted viewport, and assigns it and all
the neighboring tiles that cover the viewport, with label 1. Tiles
outside the viewport are assigned 0. Then, the score is computed
on these labels as IoU = TP/TT (True Positive TP , True Total
TT ), the intersection between prediction and ground-truth of tiles
with label 1 (TP ) over the union of all tiles with label 1 in the
prediction and in the ground-truth (TT ).
• ChinaCom18 [12] uses the Accuracy and F-Score on the labels
assigned to each predicted tile.

4 ROOT CAUSE ANALYSIS: THE METRICS IN QUES-
TION

We have shown that the existing methods assessed above, which
try to leverage both positional information and video content to
predict future positions, perform worse than a simple baseline
assuming no motion, which in turn can be outperformed by
the deep-position-only baseline (considering only positional
information). This section and the next two (Sec. 5 & Sec. 6)
aim to identify the reasons why the existing approaches perform
worse than the baselines. In this part, we focus on the possible
causes due to the evaluation, specifically asking:

Q1 Metrics: Can the methods perform better than the baselines
for some specific videos or pieces of trajectories?

4.1 Evaluation Metrics
Let us first describe the losses and evaluation metrics considered
from now on. The prediction of the FoV motion can be cast as a
classification problem, where pixels or tiles are classified in or out
of future FoV (as done in NOSSDAV17, MM18, ChinaCom18).
However, this problem is inherently imbalanced. Therefore, for
the analysis, we choose to keep the original formulation as a
regression problem. The tracking problem on a sphere can be
assessed by different distances. Given two points on the surface
of the unit sphere P1 = (θ1, ϕ1) and P2 = (θ2, ϕ2), where θ is
the longitude and ϕ is the latitude of the point, possible distances
are:
• Mean squared error = ((θ1 − θ2)2 + (ϕ1 − ϕ2)2)/2
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•Angular error =
√

arctan(sin(∆θ)/ cos(∆θ))2 + (ϕ1 − ϕ2)2,
where ∆θ = θ1 − θ2
• Orthodromic distance
= arccos (cos (ϕ1) cos (ϕ2) cos (∆θ) + sin (ϕ1) sin (ϕ2))
which is a reformulation of:

D(P1, P2) = arccos ( ~P1 • ~P2), (1)

where • is the dot product operation, and ~P1 are the coor-
dinates in the unit sphere of point P . Indeed, for a point
P1 = (θ1, ϕ1), the coordinates in the unit sphere are then given
by ~P1 = (cos θ1 cosϕ1, sin θ1 cosϕ1, sinϕ1).
The latter two metrics are able to handle the periodicity of
the latitude, which the first one cannot. The difference between
angular error and orthodromic distance is that the latter computes
the distance on the surface of the sphere, while the angular error
computes the error of each angle independently. Finally, owing to
its adequacy to the tracking problem on the unit sphere, we choose
the orthodromic distance as the test metric in our approach.

4.2 Q1: Can the methods perform better than the base-
lines for some specific pieces of trajectories or videos?
The metrics used in Sec. 3 are averages over time trajectories and

videos. The question we ask is whether the methods can perform
better than the baselines for some specific pieces of trajectories or
videos.

4.2.1 Specific pieces of trajectory
To evaluate whether the existing methods perform better than the

baselines in some specific pieces of the trajectory, we adopt the
same approach as in [31, Sec. 4], introducing the Average non-
linear displacement error as a metric to evaluate the error around
the non-linear regions of the trajectory where most errors occur
owing to human-content interactions. We therefore quantify the
difficulty of prediction with the second derivative of the trajectory,
i.e., the radius of curvature. To obtain detailed results (for each
instant of time of each user and video pair), we re-implement
CVPR18 with the exact same architectural and training parameters
as those described in the article [10].1 The curve CVPR18-repro
in Fig. 5-Bottom shows that we obtain similar results on the
original dataset (higher on the first half of the truncated CDF,
then slightly lower on the second half of the truncated CDF).
This confirms the validity of our re-implementation. Fig. 6-Left
depicts the distribution of the prediction difficulty. Fig. 6-Right
shows that for every difficulty range, CVPR18-repro is not able to
improve the prediction over the baselines. Considering CVPR18
and MM18 the two representative and best performing methods
in Sec. 3 (apart from the baselines), for the sake of space we also
report the results for MM18 in the supplemental material in [29,
Sec. IV]. We obtained similar qualitative results with MM18.

We conclude that for more difficult parts of the trajectory, the
CVPR18-repro or MM18 methods are not able to improve over
the baselines.

4.2.2 Specific videos
Fig. 6-Left shows that the majority of the data is in the 0-1

difficulty range, therefore, we can think the models have difficulty
to pay attention to the rarer cases of trajectory pieces where the

1. We had to replicate the architecture of CVPR18 because we could not find
any official code and the authors did not reply to our emails. Our reproduced
code is available online at [14] and detailed in [29, Sec. III].
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Fig. 6: Left: Distribution of difficulty in the CVPR18 dataset.
Right: Error as a function of the difficulty for the CVPR18-repro
model.

prediction difficulty is higher. To evaluate whether the existing
methods perform better than the baselines when the dataset (train
and test sets) is properly balanced with videos where the content is
proved to help, we consider the dataset prepared in Sec. 6.1. The
details on the usefulness of the content are given in Sec. 5. The
performance of CVPR18-repro and MM18-repro on this dataset
can be seen in Fig. 13 in average and per test video in [29, Sec.
V]: they are never able to take advantage of the content as they are
systematically outperformed by the deep-position-only baseline
(even for the videos where the saliency is proved useful).

Answer to Q1: No, the methods considering the video content do
not perform better than the deep-position-only baseline for specific
pieces of trajectories or videos where the knowledge of the content
should improve the prediction.

5 ROOT CAUSE ANALYSIS: THE DATA IN QUESTION

In this section, we focus on the possible causes due to the data. In
Sec. 6, we analyze the possible architectural causes. This section
therefore aim to answer question Q2, whose answer is provided at
the end of the section:

Q2 Data: Do the datasets (made of videos and motion traces)
match the design assumptions the methods build on?
To answer Q2, we consider the assumptions at the core of the
existing architectures attempting to leverage the knowledge of
position history and video content, and break them down into :

• Assumption (A1): the position history can inform the
prediction of future positions

• Assumption (A2): the visual content can inform the pre-
diction of future positions

We identify whether these assumptions hold in the datasets and
settings considered by the existing methods (Sec. 5.1 and 5.4),
and introduce a new saliency-only baseline to do so (Sec. 5.2).

5.1 Assumption (A1): the position history is informa-
tive of future positions
The amount of information held by a process about another one
can be quantified by the Mutual Information (MI). This in turns
informs on the degree of predictability of the target process using
the first process. MI has been used in [32] for inter-user analysis.
Here, we define the MI between head positions of a given user at
time t and t+s by I(Pt;Pt+s) = DKL(Pr[Pt, Pt+s]||Pr[Pt]⊗
Pr[Pt+s]), where DKL(·) and ⊗ stand for the Kullback–Leibler
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Fig. 7: Mutual information I(Pt;Pt+s) between Pt and Pt+s (av-
eraged over t and videos) for all the datasets used in NOSSDAV17,
PAMI18, CVPR18 and MM18, with the addition of MMSys18.

divergence and convolutional product, respectively. For each of the
datasets considered in PAMI18, CVPR18, MM18, NOSSDAV17,
and MMSys18, Fig. 7 represents MI normalized and averaged over
all videos and time stamp t, as a function of s ∈ [0, H = 5sec.].
The 2D-coordinates have been discretized in 128 bins. This figure
shows that position at time t+ s can be predicted to a significant
degree by Pt when s is low (e.g., lower than 2 sec.). As expected,
the further away the prediction step, the lowest the predictability
of Pt+s from Pt. In [29, Sec. VI], we also relate MI with a more
intuitive characterization of the datasets, showing that the amount
of user’s motion is generally low, except in the MMSys18 dataset.
Does Assumption (A1) hold?: On the datasets and prediction
horizons considered in the literature (H ≤ 2 sec.), the position
history is therefore strongly informative of the next positions.
Another element supporting this observation is the best perfor-
mance obtained by our baseline exploiting position only (see Sec.
3 above). A similar study was conducted in [27] showing that the
viewer motion has a strong temporal auto-correlation.

5.2 Definition of the saliency-only baseline
To analyze Assumption A2 in Sec. 5.4 and assess how much gain
can the consideration of the content bring to the prediction, we first
define a so-called saliency-only baseline. This baseline is defined
from an attentional heat map, either extracted from the visual
content (heat map then named Content-Based saliency) or directly
from the position data of all the users (heat map then named
Ground-Truth saliency). For either type of heat map, the saliency-
only baseline provides an upper-bound on the prediction error that
a more refined processing of the heat map, in combination with
the past positions, would make. In this section, we only consider
heat maps obtained from the users data, we therefore start by
defining such heat maps. Only in Sec. 6.2 do we use the heat
maps estimated from the video content.

5.2.1 Definition of the ground-truth saliency
To be independent from the imperfection of any saliency predictor
fed with the visual content, we consider here the ground-truth
saliency: it is the heat map (2D distribution) of the viewing
patterns, obtained at each point in time from the users’ traces.
To compute the ground-truth saliency maps, we consider the point

at the center of the viewport P t
u,v for user u ∈ U and video v ∈ V

at time-stamp t ∈ [0, T ], where T is the length of the trace. For
each head position P t

u,v , we compute the orthodromic distance
D(·) from P t

u,v to each point Qx,y at longitude x and latitude
y in the equirectangular frame. Then, we use a modification of
the radial basis function (RBF) kernel shown in Eq. 2 to convolve
the points in the equirectangular frame and obtain the Ground-
Truth Saliency (GT Sal) for user u on video v at time t in image
location (x, y):

GT Saltu,v,x,y = exp

(
−
D(P t

u,v, Qx,y)2

2σ2

)
, (2)

where D(P t
u,v, Qx,y) is the orthodromic distance, computed us-

ing Eq. 1. A value of σ = 6◦ is chosen so that the ground-truth
saliency maps look qualitatively similar to those of PanoSalNet
[11] used in Sec. 6.2. We compute saliency maps GT Saltu,v
per user u ∈ U , video v ∈ V and time-stamp t by convolving
each head position P t

u,v with the modified RBF function in
Eq 2. The saliency map at time t of video v is calculated as
GT Saltv = 1

U

∑
u∈U GT Saltu,v , where U is the total number

of users watching this video.

5.2.2 Definition of the K-saliency-only baseline
We extract the K highest peaks of the heat map for every
prediction step t + s (for all t, for all s ∈ [0, H]). At every
t + s, the K-saliency-only baseline predicts P̂t+s as the position
of the peak, amongst the K peaks, which is closest to the last
known user’s position Pt.

Fig. 8 and 9 show the prediction error of the K-saliency-only
baseline for K = 1, 2, 5. For low s, we verify that the higher K ,
the lower the error close to time t, because the more the number of
points of interest possibly considered. However, as the prediction
step s increases and t+ s gets away from t, the error is lower for
lower K . Indeed, if the user moves, then she is more likely to get
closer to a more popular point of interest, that is to a higher-ranked
peak.

5.2.3 Definition of the saliency-only baseline
As mentioned in the beginning of the section, each K-saliency-
only baseline can be considered as an upper-bound on the error
that the best predictor optimally combining position and content
modality could get. Therefore, for a given κ, we define the
saliency-only baseline as the minimum of these K-saliency-only
baseline, for K ∈ [1, κ] and for every s in [0, H]. In this article,
we set κ = 5. The saliency-only baseline is shown in red in
Fig. 12. From Fig. 12, we do not represent the K-saliency-only
baselines anymore, but only the saliency-only baseline.

5.3 Background on human attention in VR

Before analyzing Assumption (A2), let us first provide some
characteristics of the human attention in VR identified recently.
It has been recently shown in [33] and [34] that, when presented
with a new VR scene (the term “scene” is defined by Magliano
and Zacks in [35] as a period of the video between two edits with
space discontinuity), a human first goes through an exploratory
phase that lasts for about 10 to 15 sec. ( [34, Fig. 18], [33, Fig.
2]), before settling down on so-called Regions of Interest (RoIs),
that are salient areas of the content. The duration and amplitude
of exploration, as well as the intensity of RoI fixation, depend
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Fig. 8: Prediction error on the MMSys18 dataset. The deep-
position-only baseline is tested on the 5 videos above, and trained
on the others (see [29, Sec. I] or [14], [15]). Top left: Average
results on all 5 test videos. Rest: Detailed result per video
category (Exploration, Moving Focus, Ride, Static Focus). Legend
is identical in all sub-figures.
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tal material [29, Sec. II] or [14] for the train-test video split used
for the deep-position-only baseline (identical to original methods).
Legend is identical in both sub-figures.

on the video content itself. Almquist et al. [34] have identified the
following main video categories for which they could discriminate
significantly different users’ behaviors: Exploration, Static focus,
Moving focus and Rides. In Exploration videos, the spatial distri-
bution of the users’ head positions tends to be more widespread,
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Fig. 10: Transfer Entropy (TE) TEV→P (t, s) between Vt+s and
Pt+s (averaged over t and videos) for all the datasets used in
NOSSDAV17, PAMI18, CVPR18 and MM18, with the addition
of MMSys18.

making harder to predict where the users will watch and possibly
focus on. Static focus videos are made of a single salient object
(e.g., a standing-still person), making the task of predicting where
the user will watch easier in the focus phase. In Moving focus
videos, contrary to Static focus videos, the RoIs move over the
sphere and hence the angular sector where the FoV will be likely
positioned changes over time. Rides videos are characterized by
substantial camera motion, the attracting angular sector being
likely that of the direction of the camera motion.

5.4 Assumption (A2): the visual content is informative
of future positions
We now analyze whether this assumption (A2) holds, and for
which settings (datasets, prediction horizons). As for (A1), we first
quantify how much additional information can be gained on Pt+s

by knowing the visual content Vt+s at time t+s, given we already
know the past positions. This corresponds to the conditional
MI I(Pt+s;Vt+s|Pt), also named Transfer Entropy (TE) and
satisfying for every video: TEV→P (t, s) = I(Pt+s;Vt+s|Pt) =
H(Pt+s|Pt) − H(Pt+s|Pt, Vt+s), where H(·) denotes the en-
tropy. TE has been used in [32] but not with saliency data. Fig.
10 represents TEV→P (t, s) averaged over all time stamps t and
videos of every dataset. The 2D-coordinates have been discretized
in 128 bins and Vt+s is taken as the Content-Based saliency
defined in Sec. 6.2, the probability values being discretized into
256 bins. The TE values cannot be compared across the datasets,
but the important observation is that the TE value triples from
s = 0 to s = 5 sec. It shows that the predictability of future
positions from the content, conditioned on the position history,
is initially low then increases with s. The results of MI in Fig.
7 and TE in Fig. 10 therefore show that short-term motion is
mostly driven by inertia from t, while the content saliency may
impact the trajectory in the longer-term. To cover both short-
term and long-term, we set the prediction horizon H = 5 sec..
We confirm this and better quantify the durations of both phases
for the different video categories in the next results. We analyze
A2 on the datasets used in NOSSDAV17, MM18, CVPR18 and
PAMI18. We also consider an additional dataset, referred to as
MMsys18-dataset [26]. All these datasets are detailed in Sec.
2.4. In MMsys18-dataset, the authors show that the exploration
phase in their videos lasts between 5 and 10s, and show that after
this initial period, the different users’ positions have a correlation
coefficient reaching 0.4 [26, Fig. 4]. This dataset is made of 12
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Exploration videos, 4 Static focus videos (Gazafisherman, Sofa,
Mattswift, Warship), 1 Moving focus video (Turtle) and 2 Ride
videos (Waterpark and Cockpit). Fig. 8, 9, 12 and 11 depict the
prediction error for prediction steps s ∈ [0, H = 5 sec.], obtained
with the deep-position-only baseline and saliency-only baseline
on the 4 previous datasets. We remind that each point for every
given step s, is an average over all the users and all time-stamp
t ∈ [Tstart, T ], with T the video duration and Tstart = 6 sec.
from now on to skip the initial exploration phase (presented right
above in the beginning of this Sec. 5.4) and ensure that the content
can be useful for all time-stamps t. By analyzing the saliency-
only baseline for every prediction step s (saliency baseline in red
in Fig. 12), the same phenomenon can be observed on all the
datasets: the saliency-only baseline has a higher error than the
deep-position-only baseline for prediction steps s lower than 2 to
3 seconds. This means that there is no guarantee that the prediction
error over the first 2 to 3 seconds can be lowered by considering
the content. After 2 to 3 sec., on non-Exploration videos, we
can see that relevant information can be exploited from the heat
maps to lower the prediction error compared to the deep-position-
only baseline. When we isolate the results per video type, e.g.,
in Fig. 8, for Exploration (PortoRiverside, PlanEnergyBioLab), a
Ride (WaterPark) a Static focus (Warship) and a Moving focus
(Turtle) videos, we observe that the saliency information can
significantly help predict the position for prediction steps beyond
2 to 3 seconds.

We therefore conclude by answering
Q2 Data: Do the datasets (made of videos and motion traces)
match the design assumptions the methods build on?

5.5 Q2: Do the datasets (made of videos and motion
traces) match the design assumptions the methods
build on?

Answer to Q2:
• Study of MI for assumption A1 confirms that the level of pre-
dictability of short-term position from past position is significant,
corresponding to the inertia effect and frequent low velocity in
some datasets.
• Considering the ground-truth saliency (attentional heat maps),
we conclude on A2 by stating that considering the content in the
prediction can significantly help for non-Exploration videos if the
prediction horizon is longer that 2 to 3 sec.. There is no guarantee
it can significantly or easily help for shorter horizons. All the
selected existing works considered prediction horizons lower than
2.5 sec., making it very unlikely to outperform the deep-position-
only baseline.

Having shown it is difficult to outperform the deep-position-
only baseline on these short horizons, next we investigate why
most existing methods are however not able to match its perfor-
mance.

6 ROOT CAUSE ANALYSIS: THE ARCHITECTURES
IN QUESTION

In Sec. 5, we have analyzed the possible causes for the weak-
ness of the existing predictors, related to the metrics and the
assumptions on the dataset. As they do not suffice to explain
the counter-performance of the existing methods compared with
single-modality baselines, in this section, we state and analyze
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Fig. 11: Prediction error on the dataset of PAMI18. We refer to the
supplemental material [29, Sec. II] or [14] for the train-test video
split used for the deep-position-only baseline (identical to original
method). Top left: Average on test videos. Rest: Results per video
category (Exploration, Moving Focus, Ride, Static Focus). Legend
is identical in all sub-figures.

the possible architectural causes. Let us recall the three main
objectives a prediction architecture must meet, as stated in Sec.
2.2: (O1) extracting attention-driving features from the video
content, (O2) processing the time series of position, and (O3)
fusing both information modalities to produce the final series of
position estimates. Note that this is a conceptual description, and
does not necessarily correspond to a processing sequence: fusion
(O3) can be performed from the start and O1 and O2 may not be
performed in distinguishable steps or elements, as it is the case in
NOSSDAV17 or MM18.

The main interrogation is: Why does the performance (of
existing predictors compared with baselines) degrade when both
modalities are considered? To explore this question from the
architectural point of view, we divide this in two intermediate
questions Q3 and Q4.

Q3 on ground-truth saliency: If O1 is solved perfectly by
providing the ground-truth saliency, what are good choices for
O2 and O3?
That is, in comparison with the baselines considering each modal-
ity individually, choices whose performance improves, or at least
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Fig. 12: Prediction error on the dataset of CVPR18. We refer to the
supplemental material [29, Sec. II] or [14] for the train-test video
split used for the deep-position-only baseline (identical to original
method). Top left: Average on test videos. Rest: Results per video
category (Exploration, Moving Focus, Ride, Static Focus). Legend
is identical in all sub-figures.

does not degrade, when considering both information modalities.

6.1 Answer to Q3 - Analysis with ground-truth saliency
In our taxonomy in Sec. 2.2, we have distinguished the prediction
methods that consider both input modalities, based on the way
they handle the fusion: either both position and visual information
are fed to a single RNN, in charge of at least O3 and O2 at
the same time (case of MM18, ChinaCom18, NOSSDAV17), or
the time series of positions are first processed with a dedicated
RNN, the output of which then gets fused with visual features
(case of CVPR18). To answer Q3, we consider their most recent
representatives: the building blocks of MM18 and CVPR18 (see
Fig. 3). We still consider that O1 is solved perfectly by considering
the ground-truth saliency introduced in Sec. 5.4.
Prediction horizon: From the answer to Q2, we consider the
problem of predicting head positions over a prediction horizon
longer than the existing methods (see Table 1), namely 0 toH = 5
seconds. This way, both short-term where the motion is mostly
driven by inertia at t, and long-term where the content saliency
impacts the trajectory, are covered.
Dataset: Given the properties of MMSys18-dataset, where users
move significantly more (see Sec. 5.1) and which comprises

different video categories (introduced in Sec. 5.4), we select this
dataset for the next experiments investigating the architectures.
In particular, we draw a new dataset out of MMSys18-dataset,
selecting 10 train and 4 test videos by making sure that the sets are
balanced between videos where the content is helpful (Static focus,
Moving focus and Rides) and those where it is not (Exploration).
Specifically, the train set is made with 7 Exploration videos, 2
Static Focus and 1 Ride, while the test set has 2 Exploration,
1 Static focus and 1 Ride videos. This number of videos is
equivalent to the dataset considered in MM18, ChinaCom18 and
NOSSDAV17 (10). This dataset is therefore challenging but also
well fitted to assess prediction methods aiming to get the best out
of positional and content information.
Auto-regressive framework: Our re-implementation of CVPR18,
named CVPR18-repro, has been introduced in Sec. 4.1. For
MM18, we use the code provided by the authors in [36]. The eval-
uation metric is still the orthodromic distance as exposed in Sec.
5.4. We make three modifications to CVPR18 and MM18 (shown
in Fig. 3), which we refer to as CVPR18-improved and MM18-
improved, respectively. First, as for our deep-position-only base-
line, we add a sequence-to-sequence auto-regressive framework
to predict over longer prediction windows. We therefore embed
each MM18 and CVPR18 building blocks into the sequence-to-
sequence framework. It corresponds to replacing every LSTM cell
in Fig. 4 with the building blocks represented in Fig. 3. Second,
we train them with the mean squared error based on 3D Euclidean
coordinates (x, y, z) ∈ R3. This helps the convergence with a
seq2seq framework handling content, which is likely due to the
removal of the discontinuity of having to use a modulo after each
output in the training stage when Euler angles are considered. With
3D Euclidean coordinates, the projection back onto the unit sphere
is made only at test time. We however retain the orthodromic
distance as the benchmark metric. Third, instead of predicting the
absolute position as done by MM18, we predict the displacement
(motion). This corresponds to having a residual connection, which
helps to reduce the error in the short-term, as also identified by
[30]. Specifically for the MM18 block, we also change (1) the
saliency map that we grow from 16× 9 to 256× 256, and (2) the
output, i.e. the center of the FoV, which is defined by its (x, y, z)
Euclidean coordinates.
Training: We train each model for 500 epochs, with a batch size
of 128, with Adam optimization algorithm with a learning rate
of 0.0005 and the mean squared error based on 3D Euclidean
coordinates (x, y, z) ∈ R3 as loss function.
Results: Fig. 13 shows the improved models of MM18 and
CVPR18 perform better than the original models. It also shows
that MM18-improved is still not able to perform at least as well
as the deep-position-only baseline. However, it is noticeable that
CVPR18-improved is able to outperform the deep-position-only
baseline for long-term prediction, approaching the saliency-only
baseline. CVPR18-improved is also able to stick to the same
performance as the deep-position-only baseline for short-term pre-
diction. Fig. 14 provides the detailed results of CVPR18-improved
over the different videos in the test set, associated with their re-
spective category identified in [34]. While the average results show
reasonable improvement towards the saliency-only baseline, we
observe that CVPR18-improved significantly improves over the
deep-position-only baseline for non-exploratory videos. Finally,
we recall that the visual features provided to CVPR18-improved
are the ground-truth saliency (i.e., the heat maps obtained from
the users traces).
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Fig. 13: Average prediction error of the original and improved
models of MM18 and CVPR18, all fed with GT-sal, compared
with baselines.
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Fig. 14: Prediction error for CVPR18-improved. Detailed result
for each type of test video. Legend is identical in all sub-figures.

Answer to Q3: If O1 is solved perfectly by providing the ground-
truth saliency, then O2 and O3 are best achieved separately by
having a dedicated recurrent unit to extract features from the
positional information only, before merging them in subsequent
layers with visual features, as CVPR18 does. If the same recurrent
unit is both in charge of O2 and O3, as in MM18, it appears to
prevent from reaching the performance of the deep-position-only
baseline.

Therefore, we next analyze:

Q4 on content-based saliency: If O1 is solved approximately by
providing a saliency estimate obtained from the video content
only, do the good choices for Q3 still hold, or does the
performance degrade away from the baselines again? If so, how

to correct?

6.2 Answer to Q4 - Analysis with content-based
saliency
We first summarize the findings of the root-cause analysis so far.
In Q1, we found that even though averaging the prediction error
over the trajectory might benefit the baselines, it does not and it
is not a cause for the worse performance. In Q2, we have shown
that the design assumption of the predictors are met if the dataset
is made of non-exploratory videos with sufficient motion, and the
prediction horizon is greater than 2 to 3 sec.. In Q3, on hori-
zons and datasets verifying the latter conditions, we have found
that when the visual information is represented by ground-truth
saliency (O1 is perfectly solved), only the architecture of CVPR18
is able to exploit this modality without degrading compared with
the baselines.

In this section, we do not consider O1 perfectly solved
anymore. We consider the saliency information (i.e., heat map)
is estimated from the video content only, not obtained from the
users’ statistics anymore. Our goal is not to find the best saliency
extractor for O1, but instead to uncover the impact of less accurate
saliency information onto the architecture’s performance, to then
overcome this impact if necessary.

In the remainder of the paper, when the heat map fed to a
method is obtained from the video content (not from the users
traces), the name of the method is prefixed with CB-sal (for
Content-Based saliency). Also, CB saliency-only baseline denotes
the saliency-only baseline defined in Sec. 5.2.3 when the heat
map is obtained from the content, and not from the users traces.
Conversely, when the heat map fed to a method is obtained from
the users traces (and not estimated from the video content), the
name of the method is prefixed with GT-sal (for Ground-Truth
saliency, defined in Sec. 5.2.1). The GT saliency-only baseline
denotes the saliency-only baseline defined in Sec. 5.2.3 when the
heat map is obtained from the users traces.
Saliency extractor: We consider PanoSalNet [11], [36], also
considered in MM18. The architecture of PanoSalNet is composed
by nine convolution layers, the first three layers are initialized
with the parameters of VGG16 [37], the following layers are
first trained on SALICON [38], and finally the entire model is
re-trained on 400 pairs of video frames and saliency maps in
equirectangular projection. We exemplify the resulting saliency
on a frame in [15, Fig. 6].
Results of CVPR18-improved: First, Fig. 15 shows the ex-
pected degradation using the content-based saliency (obtained
from PanoSalNet) compared with the ground-truth saliency: the
CB saliency-only baseline (dashed red line) is much less accurate
than the GT saliency-only baseline (solid red line).
Second, we observe that, despite performing well with ground-
truth saliency, CVPR18-improved fed with content-based saliency
degrades again away from the deep-position-only baseline. Specif-
ically, two questions arise:

• Why does CB-sal CVPR18-improved degrades from GT-
sal CVPR18-improved for horizons H ≤ 2 sec., where
the best to achieve is the deep-position-only baseline
according to Fig. 13?
The training losses are the same. The only difference
is in the input values representing the saliency. We can
show that the saliency CB-sal is less sparse than GT-sal,
hence there are more non-zero inputs, which are also less
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Fig. 15: Prediction error of CB-sal CVPR18-improved (with
Content-Based saliency) against GT-sal CVPR18-improved (with
Ground-Truth saliency) and baselines.

accurate (obviously, compared to the GT). Therefore, the
contribution of the CB-sal inputs should be nullified by
the weights of the fully-connected layer in charge of the
fusion. It is simple to verify that when fully connected
layers have to cancel out part of their inputs acting as noise
for the classification task, the convergence of the training
error degrades with the number of such inputs. Such
wrong performance in training indicates a sub-optimal
architecture for the problem at hand.

• Why does CB-sal CVPR18-improved degrade from origi-
nal CVPR18 for H ∈ [0s, 1sec.]?
The first difference is the training loss, defined over a
longer horizon for CB-sal CVPR18-improved (H ∈ [0
sec.,5 sec.]), while it is only for H = 1 sec. in original
CVPR18. The former loss is therefore likely more diffi-
cult to explore and minimize. The second difference is
the presence, in original CPVR18, of convolutional and
pooling layers processing various visual inputs including
saliency before the fusion. Such layers can help decrease
the input level into the fusion layer. However, they are not
sufficient to enable a fully-connected layers to predict over
[0s,Hs] for H ≥ 3 sec., as discussed in the next section.

Partial answer to Q4: If O1 is solved approximately by providing
a saliency estimate obtained from the video content only, the
good choice for Q3 (CVPR18-improved) is not sufficient anymore.

7 TRACK: A NEW ARCHITECTURE FOR CONTENT-
BASED SALIENCY

We now first complete the root-cause analysis by examining
more detailedly the architectural reasons for CVPR18-improved
to degrade away again from the baselines with CB-sal. We then
propose our new deep architecture, TRACK, stemming from this
analysis. Its evaluation shows superior (once equal) performance
on all the datasets of considered competitors and wider prediction
horizons.

7.1 Analysis of the problem with CVPR18-improved
and content-based saliency (CB-sal)
The fundamental characteristic of the problem at hand is: over the
prediction horizon, the relative importance of both modalities (past
positions and content) varies. Indeed, we expect the motion inertia
to be more prominent first, and only then the content to possibly
attract attention and change the course of the motion. It is therefore
crucial to have a way of combining both modality features in a
time-dependent manner to produce the final prediction. However,
in the best-performing architecture so far, CVPR18-improved, we
notice that the single RNN component enables this time-dependent
modulation only for the positional features, while the importance
of the content cannot be modulated over time. Replacing the
ground-truth saliency with content-based saliency, the saliency
map becomes much less correlated with the positions to predict. It
is therefore important to be able to attenuate its effect in the first
prediction steps, and give it more importance in the later prediction
step.

7.2 Designing TRACK
From the latter analysis, a key architectural element to add is
a RNN processing the visual features (such as CB-sal), before
combining it with the positional features. Furthermore, this
analysis connects with the seminal work of Jain et al., introducing
Structural-RNN in [39]. It consists in casting a spatio-temporal
graph describing a problem’s structure into a rich RNN mixture
following well-defined steps. Though the connection with head
motion prediction is not direct, we can formulate our problem
structure in the same terms. First, two contributing factor com-
ponents are involved: the user’s FoV and the video content.
We can therefore express the spatio-temporal graph of a human
watching a 360◦ video in a headset as shown in Fig. 16. Second,
these two components are semantically different, and are therefore
associated with: (i) an edgeRNN and a nodeRNN for the FoV, (ii)
an edgeRNN for the video (only one input to the node), resulting
in the architectural block shown in purple in Fig. 17. Embedded
into a sequence-to-sequence framework, we name this architecture
TRACK.

Fig. 16: The dynamic head motion prediction problem cast as a
spatio-temporal graph. Two specific edgeRNN corresponds to the
brown (inertia) and blue (content) loops, a nodeRNN for the FoV
encodes the fusion of both to result into the FoV position.

Components of TRACK: The modules of TRACK are rep-
resented by (i) a doubly-stacked LSTM with 256 units each,
processing the flattened CB-saliency map pre-generated for each
time-stamp; (ii) another set of doubly-stacked LSTM with 256



14

units to process the head orientation input; (iii) a third set of
doubly-stacked LSTM with 256 units to handle the multimodal
fusion; and finally (iv) a FC layer with 256 and a FC layer with 3
neurons is used to predict the (x,y,z) coordinates, as described in
Sec. 6.

7.3 Evaluation of TRACK
7.3.1 Comparison with GT-sal CVPR18-improved
On the MMSys18 dataset introduced in Sec. 6.1 (with higher
user motion, and balanced video categories) and for prediction
horizons up to 5 sec., Fig. 18 compares the results of TRACK with
both CB-sal CVPR18-improved and GT-sal CVPR18-improved.
Indeed, GT-sal CVPR18-improved is considered as a lower-bound
on the error of CVPR18, which does not use PanoSalNet (and
whose implementation is not available online nor was commu-
nicated on request). We observe that TRACK outperforms CB-sal
CVPR18-improved (as expected), and equates to GT-sal CVPR18-
improved, which is remarkable. This confirms the importance of
the additional architectural elements of TRACK, able to exploit
the (approximated) CB-saliency.

7.3.2 Comparison with all methods on their original metrics
and H ≤ 2.5 sec.
For the sake of space, the results of TRACK against all the
considered existing methods, on their original metrics and pre-
diction horizons, are presented in Sec. 3.3. It can be seen that
on every dataset, TRACK (always with CB-saliency) establishes
state-of-the-art performance: Fig. 3-Left shows that it outperforms
MM18 (which also uses PanoSalNet), Table 2 shows that it signif-
icantly outperforms PAMI18, as does Table 4 for NOSSDAV17.
ChinaCom18 is trained with the leave-one-out strategy, and the
dataset is the same as NOSSDAV17. The results of TRACK
listed against NOSSDAV17 in Table 4 are thus a lower-bound
to TRACK’s performance if it were trained with the leave-one-out
strategy, already outperforming ChinaCom18 by more than 30%.
As expected from the answer to Q2 in Sec. 5.5, for such short
prediction horizons (H ≤ 2.5 sec.), TRACK does not outperform
the deep-position-only baseline. Its slightly inferior performance
is due to the fact that we did not do any hyperparameter tuning for
TRACK, while we did for the deep-position-only baseline which is
smaller (tuning the number of layers and neurons). When training
forH = 5 sec., the next results in Fig. 19 and [29, Sec. VIII] show
that, for s ≤ 3 sec., TRACK is similar to or even outperforms the
deep-position-only baseline for 4 datasets in 5.

7.3.3 Exhaustive cross-comparison with all methods on all
datasets with the orthodromic distance and H = 5 sec.
Average results: Fig. 19 presents the performance, on all 5
datasets (CVPR18, PAMI18, MMSys18, MM18, NOSSDAV17)
of every (re-)implemented method, all with CB-sal: TRACK,
CVPR18-improved, MM18-improved, deep-position-only base-
line, trivial-static baseline. The results are averaged over the
videos in the respective test sets made of 42 videos for CVPR18,
16 for PAMI18, 4 for MMSys18, 2 for MM18 and 2 for NOSS-
DAV17.
• For prediction steps s ≥ 3 sec., TRACK outperforms all
methods on all five datasets, except for the NOSSDAV17 dataset
where it equates to the best (likely because the saliency-only
baseline does not outperform the deep-position-only baseline on
the NOSSDAV17 dataset, as shown in Fig. 9).

• For s ≤ 3 sec., TRACK equates to the best method which is
the deep-position-only baseline, except on the CVPR18 dataset
where it has a slightly inferior performance but equates to the
other methods.
Gains on video categories: The results in Sec. 5.4 have shown
that the gains that can be expected from a multimodal architecture
over the deep-position-only baseline are different depending on
the video category: whether it is a focus-type or an exploratory
video. The results in Fig. 19, averaged over all the videos of a
test set, are therefore not entirely representative of the gains. To
analyze the gains of TRACK over different video categories, we
proceed as follows. First, we only focus on the CVPR18, PAMI18
and MMSys18 datasets to have a sufficient number of videos in
the test set. Then, for MMsys18, we group the test videos into a
Focus category (with Waterpark and Warship) and an Exploration
category (with Portoriverside and Energybiolab), as done in Sec.
5.4. Finally for CVPR18 and PAMI18, in order to apply this binary
categorization Focus vs Exploratory, we rely on the users behavior.
Indeed, the more the users tend to have a focusing behavior, the
lower the entropy of the GT saliency map2. Thus we consider
the entropy of the GT saliency map of each video to assign the
video to one category or the other. We sort the videos of the test
set in increasing entropy, and we represent in Fig. 20 the results
averaged over the bottom 10% (focus-type videos) and top 10%
(exploratory videos).
• On the low-entropy/focus-type videos and for s ≥ 3 sec.,
TRACK significantly outperforms the second-best method: by
16% for PAMI18 to 20% for both CVPR18 and MMSys18 at
s = H = 5 sec.. TRACK performs similarly or better for s < 3
sec..
•On the high-entropy/exploratory videos, the gains of TRACK are
much less significant: TRACK often performs similarly or slightly
worse than the deep-position-only baseline, yet never degrading
significantly away from this baseline, as the other methods do.
Such results are expected from the observations drawn in Sec. 5.4
(Fig. 8,11,12) showing that the saliency-only baseline does not
outperform the deep-position-only baseline on exploratory videos.
Qualitative examples: In Fig. 21, we exemplify the results on
two low-entropy videos, also showing a representative frame with
a user’s future trajectory and the prediction of TRACK. More
examples are in [29, Sec. VIII]. On focus-type videos, TRACK
outperforms significantly the second-best method: by up to 25%
in the examples.

7.4 Ablation study of TRACK
To confirm the analysis that led us to introduce this new archi-
tecture TRACK for dynamic head motion prediction, we perform
an ablation study of the additional elements we brought compared
to CVPR18-improved: we either replace the RNN processing the
CB-saliency with two FC layers (line named AblatSal in Fig.
22), or replace the fusion RNN with two FC layers (line named
AblatFuse).

Fig. 18 and 22 confirm the analysis in Sec. 7.1: the removal
of the first extra RNN (not present in CVPR18) processing
the saliency input has more impact: AblatSal degrades away
from the deep-position-only baseline in the first time-steps. The
degradation is not as acute as in CVPR18-improved as the fusion
RNN can still modulate over time the importance of CB-saliency.

2. The entropy of the 2D map is computed per frame, then averaged over all
the frames for t ≥ 6 sec. to skip the exploratory phase.
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Fig. 18: Comparison, on the MMSys18 dataset, of TRACK
with baselines and both CB-sal CVPR18-improved and GT-sal
CVPR18-improved.

However, it seems this fusion RNN cancels most of its input
(position and saliency features), as the performance of AblatSal
is consistently similar to that of the trivial-static baseline (not
plotted for clarity). The AblatFuse line shows that the impact of
removing the fusion RNN is less important.

Answer to Q4: If O1 is solved approximately by providing a
saliency estimate obtained from the video content only, the good

choice (CVPR18-improved) for Q3 is not sufficient anymore.
A RNN dedicated to processing the saliency must be added to
prevent the prediction in the first time-steps from degrading away
from the deep-position-only baseline. Our new deep architecture,
named TRACK, achieves state-of-the-art performance on all con-
sidered datasets and prediction horizons.

8 DISCUSSION

It is interesting to note that only a few architectures have been
designed in the same way as TRACK, and none for head motion
prediction. Indeed, following up on [39], Sadeghian et al. in
[40] proposed a similar architecture to predict a pedestrian’s
trajectory based on the image of the environment, the past ego
trajectory and the trajectories of others. Let us also mention that
the CVPR18 block is similar to an early architecture proposed for
visual question answering in 2015 [41], and PAMI18 is similar to
Komanda proposed in 2016 for autonomous driving [42].

This article brings a critical analysis to existing deep architec-
tures aimed to predict the user’s head motion in 360◦ videos from
past positions and video content. As we exhibit the weaknesses of
the evaluation scenarios considered by previous works (dataset and
competitor baselines), it is important to mention that other such
critical analyses have been made for other application domains
of deep learning very recently. Indeed, besides Martinez et al.
mentioned earlier who showed in [30] the weakness of existing
architectures for 3D-skeleton pose prediction, Ferrari Dacrema
et. al. performed an analysis of recommendation systems in [43].
Not only did they show the difficulty to reproduce the evaluated
algorithms, but also that the state-of-the-art methods could not
outperform simple baselines. Similarly, the meta-analysis of Yang
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Fig. 20: Top row (resp. bottom row): results averaged over the 10% test videos having lowest entropy (resp. highest entropy) of the GT
saliency map. For the MMSys dataset, the sorting has been made using the Exploration/Focus categories presented in Sec. 5.4. Legend
and axis labels are the same in all figures.

et. al. [44] for information retrieval, and Musgrave et. al. [45] for
loss functions, show that, contrary to the claims of the authors of
multiple recent papers, there has been no actual improvement in
several years of proposed neural networks to solve the problem in
each of these fields.

In [46], Blalock et. al. show that the difficulty to reproduce,
measure and compare the performances of different algorithms
makes it difficult to determine how much progress has been made
in a field, and this difficulty grows when each work uses different
datasets, different performance metrics and different baselines.
In the present article, we have faced the same difficulties. From
an entire reproducible framework [14] we have made to enable
replication and comparison, we could perform a critical and
constructive analysis.

Our approach and findings are therefore aligned with other
critical re-examinations of existing works in other application

domains of deep learning.

9 CONCLUSION

This article has brought two main contributions. First, we carried
out a critical and principled re-examination of the existing deep
learning-based methods to predict head motion in 360◦ videos,
with the knowledge of the past user’s position and the video
content. We have shown that all the considered existing methods
are outperformed, on their datasets and with their test metrics, by
baselines exploiting only the positional modality. To understand
why, we have analyzed the datasets to identify how and when
should the prediction benefit from the knowledge of the content.
We have analyzed the neural architectures and shown there is
only one whose performance does not degrade compared with
the baselines, provided that ground-truth saliency information is
provided, and none of the existing architectures can be trained
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Fig. 21: Example of performance on two individual test videos of
type Focus. On the frame, the green line represents the ground
truth trajectory, and the corresponding prediction by TRACK is
shown in red. More examples on other datasets are provided in the
supplemental material [29, Fig. 5].
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Fig. 22: Per-video results of TRACK and ablation study. The
legend is identical for all sub-figures.

to compete with the baselines over the 0-5 sec. horizon when
the saliency features are extracted from the content. Second,
decomposing the structure of the problem and supporting our
analysis with the concept of Structural-RNN, we have designed a
new deep neural architecture, named TRACK. TRACK establishes
state-of-the-art performance on all the prediction horizons H ∈ [0
sec.,5 sec.] and all the datasets of the existing competitors. In the
2-5 sec. horizon, TRACK outperforms the second-best method
by up to 20% on focus-type videos, i.e., videos with low-entropy
saliency maps.

The experimental setup and datasets (whose formats we ho-
mogenized) of each assessed method and all our codes, are illus-
trated and provided online at [14]. This reproducible framework

has already obtained an ACM reproducibility badge [15], and
allows the community to easily test any predictor.

In future works, we will investigate deep attention mechanisms
to refine the time- and space-varying fusion of modalities, as well
as consider variational approaches (with VRNN) to also obtain
confidence on the prediction, which is crucial for decision-making.
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