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Abstract—Video traffic is a key-challenge for fixed and mobile
operators facing variable and massive load and variety of Over-
The-Top (OTT) videos. Energy consumption is also a heavy Opex
component, where the Fixed-Mobile Convergence is a promising
solution, built on on economical optic fibers and LTE base-
band operations consolidation. By combining Future Internet
Architectures (FIA) principles such as ubiquitous caching, SDN
and NFV, and FMC, we propose a complete, fully dynamic setup
which optimizes both for power consumption and Quality of
Experience (QoE), by choosing proper infrastructure (turning on
a minimum number of computing and networking equipments)
and operational (routing and caching) configurations. Our control
plane named ViRCA is scalable thanks to data analytics tech-
niques, and fully reactive to the dynamics of load and catalog
both in time and space. Numerical assessments in realistic settings
show power gains of up to 30% while the scores on different QoE
metrics are maximized. Enabling elastic co-location of caches and
radio base-band operations turns out to be crucial for both power
and QoE objectives.

I. INTRODUCTION

ISPs, and Mobile Network Operators (MNO) specifically,

are facing services’ variety and traffic increases. Telcos infras-

tructure needs to simultaneously support these services, ensure

their required QoE, and possibly monetize them. Video traffic

is in particular a key-challenge for telcos, due to the share of

video streaming in the Internet traffic expected to reach 82%
of all IP traffic by 2020 [1].

For MNOs, the network segments vulnerable to congestion

and hampering QoE are the backhaul and Radio Access

Network (RAN). This is specifically due to IP tunneling used

to make the backhaul transparent (3GPP standard). To meet the

QoE requirements, a first strategy is to skip the congested areas

by employing in-network caching (e.g., iQstream startup),

where content is stored at PDN-GWs or eNodeBs in order

not to break the mobility management imposing tunnelling

between those end-points. Proxy solutions are also used by

telcos, in partcular to resize web content for mobile device to

save bandwidth. The Evolved Packet Core (EPC) infrastructure

shall be overhauled to meet the challenges brought by 5G

services. Optical infrastructure and fine-grained (flow-based

and location-based) monitoring to feed real-time decisions are

key aspects1. To this aim, Big data is seen as a top strategic

investment by a number of telcos2. Key-enablers to this much
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1e.g., https://www.ovum.com/need-real-time-decisions-telcos/
2McKinsey: https://tinyurl.com/hq8xcr9

needed automated orchestration are SDN and NFV which, by

decoupling control plane from data plane and software from

hardware, respectively, allow to leverage the flexibility and

scalability of cloud resources to provide a fine-grained and

responsive control of the flows, while scaling up or down the

computational resources (e.g., the ElementalTM company pro-

vides software-defined video deployment to IPTV providers).

To solve the problems (interference due to spectrum limitations

and base stations’ density, mobility, etc.) at the wireless last-

hop, software-defined centralized control is also planned to

enable 5G, and is generally referred to as Cloud-RAN, where

both controllers and radio elements are hosted in the cloud

[2]. The concept of Fog computing brings together these

principles to add “a hierarchy of elements between the cloud

and endpoint devices [...] to meet these challenges in a high

performance, open and interoperable way”3.

Energy consumption on another hand is a heavy Opex com-

ponent. One promising solution for energy-efficient aggrega-

tion/access is the Fixed-Mobile Convergence (FMC) principle

[3] (see Fig. 1: Left). The idea is to manage jointly the

heterogeneous access technologies (e.g., FTTH/B, WiFi, 4G)

to consolidate within the cloud/fog fixed and mobile optical

head-ends as well as most of Base Station (BS) (base-band)

processing. This is known as Base Band Unit (BBU) hosting,

to mutualize usage of the physical resources (optical/electronic

networking equipment and cooling). However, doing so in

turn entails costs in bandwidth and opto-electronic-opto con-

versions (to compute the base-band digital signals up in the

network way before the BS), thereby requiring fine control to

truly yield energy savings without loss of performance.

We design a control plane addressing OTT video distribution

for ISPs/MNOs facing variable and high video loads. By com-

bining FIA principles such as ubiquitous caching, SDN and

NFV, and FMC, we propose a complete, fully dynamic setup

which optimizes both for power consumption and QoE, by

choosing proper infrastructure (turning on a minimum number

of computing and networking equipments) and operational

(routing and caching) configurations. Our contributions are:

• Based on a realistic power model of micro-Data Center

(DC) and networking equipments, high-level video transcoding

and low-level base-band LTE operations, we first model the

multi-objective (QoE and power) optimization problem which

accounts for reactive caching. Indeed, considering recent

3https://www.openfogconsortium.org/



findings advocating for server-controlled video rate through

continuous-rate encoding (as opposed to DASH representa-

tions selection), we address the case of massive and volatile

OTT content for which ISPs do not plan pre-fetching as for

Subscription-based VoD (SVoD), and rely on Fog computing.

• A dynamic orchestration with infrastructure-level and

operation-level re-optimizations is devised from a primal de-

composition to track load variations in time, space and content

features. The scalability for massive video data is addressed

with clustering techniques which prove efficient in simulations.

• Extended numerical simulations in realistic settings show

power gains of up to 30% while the scores on different

QoE metrics are maximized thanks to elastic consolidation

of caches/transcoders and radio base-band operations. A com-

parison with ICN is also drawn.

After the related works are presented in Sec. II, Sec. III and IV

detail the node and power consumption models. Our control

plane is detailed in Sec. V and numerical results are analyzed

in Sec. VI before the conclusion.

Fig. 1: Left: the FMC concept. Right: A micro-DC node.

II. RELATED WORKS

We organize this section into three paragraphs, each cov-

ering one aspect in our work: joint routing and caching

management, congestion minimization and energy-efficient

caching.

To minimize transmission costs, [4] expresses the caching

and routing subproblems separately, and derives routines for

each. So-called “time-slot routing” is used to avoid greedily

routing each incoming request by delaying it a bit. In [5],

Ruiz et al. design a management system for a telco-CDN

to serve a certain set of channels/contents. They express

separately different subproblems aimed at reconfiguring the

virtual resources to minimize the link costs, HTTP server and

packager resources, establishing connections and re-allocating

users. While we also explicitly optimize for video quality with

a more refined QoE model, we consider easier-to-implement

reactive caching for non-SVoD content and proper primal

decomposition from the multi-objective problem to come up

with subproblems without heuristics, as well as bundle-of-

request routing (see Sec. V). In [5], video load prediction is

used (which our plane does not encompass for simplicity, but

can easily benefit from).

In [6], the ability to cache and transcode is considered at the

eNodeB for MPEG DASH discrete representations. Only tar-

geting the sum of the videos’ qualities, the authors determine

heuristically the caching and rate decisions, and the scheduling

both between the core and the eNodeB, and the eNodeB

and user via the wireless LTE link. In [7] (close to [8]), the

problem of which video representation to cache is thoroughly

investigated when MPEG DASH is used. The authors show

the effectiveness of caching the one highest representation

per video, so that popular videos are served with higher

quality from the cache. The work however considers neither

the last-hop bandwidth limitation where lower rates videos are

needed nor the incurred cost of transcoding. By considering

the iProxy solution [9] (each proxy is a server/cache/transcoder

generating continuous video rates), our framework is relieved

from the burden of DASH representation choices. In [10], the

concept of Information-Centric Networks (ICN) is employed

to show that, in the backhaul of Orange France, HTTP traffic

can be reduced by 60% or more by adding only a few hundreds

of GBs of storage overall. However Multi-Path (MP) transfer

for video streaming has been shown to be tricky [11], [12],

the more so with multi-source ([13] resorts to H.264/SVC and

not AVC for that reason).

Energy-efficient caching (or CDNs) has also been inves-

tigated (not for video specifcally), in [14] analytically, and

in [15] who consider that the static power component can

be taken off by turning off links and network cards, which

we also consider among other levers. In [16], an online

cache-cooperation mechanism is designed so that the nodes

make their caching decisions based on their local estimate of

the global energy benefit. In [17], we sketched the idea of

leveraging FMC with video distribution. We however did not

consider caching, transcoding, decomposition and reactiveness

to handle real requests and reconfigure. Finally the potential

of 5G Cloud-RAN architectures co-locating video and BBU

processing was suggested in [18]. From this idea we build a

complete control plane enabling such potential.

III. NODE AND POWER CONSUMPTION MODELS

We assume future access/aggregation networks based on

fog computing, therefore assuming each node is a micro-DC

(represented in Fig. 1: Right) equipped with a few servers

(with storage and CPUs), electronic and optical switching

capabilities. The power consumption models of each of these

elements is detailed in our recent survey [19]. In a nutshell,

each is the sum of a static and dynamic component. For

servers, the latter is dependent on the number of activated

cores, counted in number of Virtual CPUs (vCPUs). For elec-

tronic switches and routers, it depends on traffic, and owing

to the values in [19], we neglect it. The whole consumption of

the optical equipment can be neglected as well. The number of

vCPUs, entailing the number of servers switched on, and the

number of activated switches and IP routers (where not only

the optical cross-connect is used) therefore determine the total

power consumption.



Each server may perform video transcoding and base-band

tasks, where a task is a Virtual Machine (VM) requesting

d vCPUs. A base-band VM hosted at a server is simply

the virtualized BBU, or Virtual Digital Unit (VDU), of at

least one BS (co-located at the BS in today’s LTE RAN).

The computational cost associated with each type of task is

derived in GOPS and pass-marks, then translated into number

of vCPUs in [19]. The LTE traffic is transported between the

mobile end node and the possibly deported BBU by means

of Common Public Radio Interface (CPRI). That implies

to transform the radio band signals from analog to digital,

entailing CPRI bit rate CCPRI higher than CLTE .

IV. VIDEO PROCESSING AND QOE MODEL

We characterize the users’ QoE as a function depending on

the coding parameters (rate and resolution) and on the video

content, by means of the Video Quality Metric (VQM) [20],

shown to correlate with human visual perception . We consider

four resolutions: 360p, 720p, 1080p, and 2160p (4K), and

three content types with increasing complexity (toon, movie,

and sport). From the QoE functions (VQM vs. encoding rate),

we extract a linear approximation to later obtain a linear

problem (Sec. V-A). The reader is referred to [19] for details.

While MPEG-DASH aims at adapting the served video

quality to the available network resources by providing ver-

sions encoded at certain different rates, the storing overhead

and difficulty of representation choices with a discrete set has

led to a sequence of works since 2013 showing that continuous

instead of discrete bit rate adaptation enables higher QoE

at the client, specifically in mobile networks [9], [21], [22].

In our work, we leverage these findings and assume the

client adaptation and cache policy management of the iProxy

solution [9] (also detailed in Sec. V-B). We enforce that, upon

handling a request, the iProxy instance fetches (if needed) the

highest-bitrate video in resolution 1080p (resp. 4K) if the

request is for 320p, 720p or 1080p (resp. 4K). DCT-based

representation is stored [9], from which transcoding to any

lower resolution and bitrate can be made.

V. DESIGN OF THE VIRCA CONTROL PLANE

The key components of the Virtualized Infrastructure, Rout-

ing and Cache Assignment (ViRCA) control plane are pre-

sented. First ViRCA is formalized as Mixed Integer Linear

Programming (MILP). We next show how the video catalog

only serves as a formalism and is not a scale limitation thanks

to data analytics. The dynamic orchestration is then designed

based on a primal decomposition. Finally we detail how the

optimization outcome is used to handle requests and how

monitoring is performed. The terms iProxy, server, transcoder

and cache are used interchangeably thereon.

A. Optimization formulation of ViRCA

For an access/aggregation network using the micro-DC node

architecture in Fig. 1 and for a given video catalog, we

search for the allocation of the VMs performing radio and

video processing, the content cache placement (proxy instance

selection with reactive caching) and the video stream routing

maximizing users’ QoE and minimizing consumption, jointly.

Let G(N,L) be the graph of a virtual topology of optical

paths (lightpaths). The capacity of virtual link l ∈ L is the

number cl of lightpaths in the bundle. We consider a set

EF ∈ N of optical head-ends connecting FTTH/B subscribers,

and a set EM ∈ N of cellular BS, and E = EF ∪ EM. The

(regional) Point of Presence (PoP) is the highest hierarchy

level. All the nodes are assumed to be composed as in

Section III. We consider the CPRI for transporting these base-

band signals from the BBU hotels (VDU) to the base stations.

The constraints on CPRI routing are the same as in [23]. As

mobile processing in the cloud requires strict delay limits, any

lightpath from node i ∈ N to e ∈ E cannot exceed a certain

reach. The possible set of lightpaths is LCPRI ∈ L. The set of

IP paths is referred to as P. The set of paths: joining a node

pair (i, j) ∈ N × N is denoted as Pij , traversing a virtual

link l ∈ L as Pl, traversing a node i ∈ N as Pnode
i , coming

into a node i ∈ N as Pin
i , and going out of a node i ∈ N as

Pout
i . The catalog of contents is M. The demand is the average

number vems of parallel requests for content m ∈ M issued

from e ∈ E, at resolution s ∈ S = (360p, 720p, 1080p, 4K).
Instead of having a request for a commodity, a commodity

{ems} is hence a bundle of those. This coarser granularity

allows having MP routing at the level of bundles, if not at the

level of request (each using a single path, see Sec. V-D).

As shown in [19], we consider the transcoding power only

depends on the output resolution and video type, whereby the

definition of dms in Table I. A content requested after the

last catalog update (i.e. not present in the current version) is

denoted as u /∈ M. Its explicit consideration enables using

optimally the resources not actually allocated for the foreseen

catalog contents. Tables I and in II give all detail.
Trading between power savings and QoE improvements is a

multi-objective optimization that we address by scalarization
in Eq. (1a) with parameter γ. We could use a Nash Bargaining
Solution (NBS) formulation to remove the parameter by min-
imizing the objectives’ ratio, but keeping the problem linear
helps convergence speed even in high-dimensional problems.
The motivation of model in Eq. (1) is introduced in Sec-
tions III and IV, and detailed in [19].

min
{x,y,f,vf,h,z,g,r,k,w,t}

power − γQoE (1a)

power = PCPU + PEGS + P IPR
(1b)

PCPU =
∑

i∈N

[106.4ki + 10.417(wi + ti)] (1c)

PEGS =
∑

i∈N

2020gi, P IPR =
∑

i∈N

4550ri (1d)

QoE =
∑

e∈E

m∈M

s∈S

αms

∑

i,j

xems
ij +

∑

e∈E

s∈S

αs

∑

i,j

xeus
ij (1e)

1) QoE constraints: The linear approximation of the QoE
does not provide intrinsic fairness among the bundles, as the
concave function does. We therefore add the next constraints
for bounding the QoE for each triplet {ems}:
∑

j

xems
ij ≥ bms

minvemsf
ems
i , i ∈ N, e ∈ E, m ∈ M, s ∈ S (2a)



Name Description

λim ∈ R
+ Poisson arrivals’ intensity of request for

content m ∈ M at node i ∈ N

vems ∈ R
+ Average number of parallel video requests for content

m ∈ M at resolution s ∈ S from end point e ∈ E

wdems ∈ R
+ Average watching duration of content m ∈ M

at resolution s ∈ S from end point e ∈ E

oems
i ∈ R

+ Traffic estimate needed for reactive caching at

node i ∈ N for video requests of content m ∈ M

at resolution s ∈ S from end point e ∈ E

bi ∈ R
+ Minimum bandwidth to have between PoP and node

i ∈ N to ensure connectivity

bms
min(b

ms
max) ∈ R

+ Encoding bit rates corresponding to the minimum

(resp. maximum) quality for content m ∈ M

at resolution s ∈ S (in Mbps)

αms(αs) ∈ R
+ Parameter for QoE linear approx. at resolution

s ∈ S (resp. for unknown content)

CLTE
e ∈ R

+ Overall capacity of LTE radio links at base station

e ∈ Em (in Mbps)

CWDM ∈ R
+ WDM channel capacity (in Mbps)

CIPR ∈ R
+ IP router switching capacity (in Mbps )

CEGS ∈ R
+ Ethernet gigaswitch switching capacity (in Mbps)

cl ∈ Z
+ Capacity of virtual link l (in number of lightpaths)

sm ∈ R
+ Size of content m ∈ M (iProxy representation size)

Si ∈ R
+ Total storage capacity at node i ∈ N

de ∈ R
+ Number of vCPUs (CPU fraction) required for the

BBU tasks for BS e ∈ Em (i.e. number of VDUs

processing the traffic destined to node e)

dms ∈ R
+ Number of vCPUs (CPU fraction) required to produce

a representation of content m ∈ M at resolution

s ∈ S from its stored version

dus ∈ R
+ Number of vCPUs (CPU fraction) required to produce

a representation of content u /∈ M at resolution

s ∈ S from its stored version

T ∈ Z
+ Number of cores (vCPUs) per physical server

K ∈ Z
+ Number of physical servers per data center node

TABLE I: MILP notation. Input Parameters

Name Description

xems
ij ∈ R

+ Total traffic rate for request bundle {ems} served

from node i ∈ N to node j ∈ N (in Mbps)

xems
p ∈ R

+ Traffic rate for request bundle {ems} served on path

p ∈ P (in Mbps)

xeus
ij ∈ R

+ Total traffic rate for request bundle {eus} served

from node i ∈ N to node j ∈ N(inMbps)

xeus
p ∈ R

+ Traffic rate for request bundle {eus} served on path

p ∈ P (in Mbps)

yp ∈ R
+ Background traffic on path p ∈ P

out
PoP (in Mbps)

fems
i ∈ [0, 1] Fraction of requests vems served from node i ∈ N

vfeus
i ∈ R

+ Number of requests for non-cataloged content served

from node i ∈ N

him ∈ [0, 1] Hit ratio of content m ∈ M at node i ∈ N

(probability for i to store m)

ze
i ∈ {0, 1} 1, if node i ∈ N hosts BBU of base station e ∈ E

0, otherwise

gi ∈ {0, 1} 1, if node i ∈ N is switched on;

0, otherwise

ri ∈ {0, 1} 1. if IP router used at node i ∈ N;

0, otherwise

ki ∈ Z
+ Number of active servers at node i ∈ N

wi ∈ Z
+ Number of vCPUs at node i ∈ N performing

the BBU processing tasks

ti ∈ Z
+: Number of vCPUs at node i ∈ N performing

the video transcoding (iProxy) tasks

TABLE II: MILP notation. Decision variables

∑

j

xems
ij ≤ bms

maxvemsf
ems
i , i ∈ N, e ∈ E,m ∈ M, s ∈ S (2b)

∑

j

xeus
ij ≥ bsminvf

eus
i , i ∈ N, e ∈ E, s ∈ S (2c)

∑

j

xeus
ij ≤ bsmaxvf

eus
i , i ∈ N, e ∈ E, s ∈ S (2d)

2) Routing constraints:

∑

i∈N,s∈S

m∈M∪u
p∈Pij

xems
p ≤ CLTE

e zej , e ∈ E
M, j ∈ N (3a)

∑

p∈Pij

xems
p = xems

ij ,
e ∈ E, m ∈ M ∪ u

s ∈ S, (i, j) ∈ N ×N
(3b)

xems
ij = 0,

e ∈ E
F, m ∈ M ∪ u, s ∈ S

i ∈ N, j ∈ N \ {e}
(3c)

∑

p∈PPoPi

yp ≥
∑

m∈M

e∈E

s∈S

oems
i fems

i + bi, i ∈ N (3d)

yp = 0, j ∈ N, p /∈ P
IP
PoPj (3e)

∑

p∈Pl

( ∑

e∈E

m∈M∪u
s∈S

xems
p + yp

)
≤ CWDM cl l ∈ L, (3f)

∑

p∈Pnode
i

( ∑

e∈E

m∈M∪u
s∈S

xems
p + yp

)
≤ CIPR

i ri i ∈ N, (3g)

∑

p∈Pin
i

∪Pout
i

( ∑

e∈E

m∈M∪u
s∈S

xems
p + yp

)
≤ CEGS

i gi i ∈ N, (3h)

In (3d), bi is set to a low value (e.g. 1Mbps) for fixed

end nodes and BBU hotels, to ensure connectivity with the

PoP. Contrary to previous works [5], [7], [24], [16], we are

able to model the reactiveness of our caching policies (which

relieves from pre-fetching to consider any OTT service) by

estimating the required bandwidth wPoP−i from PoP to cache

i to serve cache misses. It was shown in [25] that FIFO and

LRU caching policies can have their hit ratios modeled by

those of TTL caches with proper timer value. Let us consider

LRU to approach the considered iProxy policy. From Little’s

law we get (see notation in Table I):

λim =
∑

es

vemsfiems

wdems

The hit ratio is given by [25]: him = 1−exp(−λimT ), with T
such that

∑
m (1− exp(−λimT )) sm = Si. We therefore get

wPoP−i ≥
∑

m(1 − him)λimsm. Approximating (1 − him)
with a constant κ (between 0.5 and 0.8 as in Orange traces

[10, Sec. II]), we obtain oems
i = κ vemssm

wdems
.

3) VDU placement constraints:

zei = 0, e ∈ E
F, i ∈ N (4a)

zei = 0, e ∈ E
M, i ∈ E \ {e} (4b)

zei = 0, e ∈ E
M, i ∈ N | L

CPRI
ie = {∅} (4c)

∑

i∈N

zei = 1, e ∈ E
M

(4d)

∑

e∈E
M

dez
e
i ≤ wi, i ∈ N (4e)



4) Transcoder and cache placement constraints:
∑

i∈N

fems
i ≤ 1, e ∈ E,m ∈ M, s ∈ S (5a)

him ≥ fems
i , i ∈ N, e ∈ E,m ∈ M, s ∈ S (5b)

∑

m∈M

smhim ≤ Si, i ∈ N (5c)

∑

e∈E

s∈S

(
∑

m∈M

dmsvemsf
ems
i + dusvf

eus
i

)

≤ ti, i ∈ N (5d)

5) VM placement constraints:

wi + ti ≤ Tki, i ∈ N (6a)

ki ≤ Kgi, i ∈ N (6b)

B. Scaling up catalog with video analytics

Our system targets OTT distribution, where ISPs/MNOs are

faced with variable and high video loads of large and variable

catalogs, for which content pre-fetching is not planned. Other

works employing MILP formulation for caching and routing

assignments are plagued with the curse of dimensionality: a

catalog of only 100 content is considered in [24], [5] considers

a limited number of channels and heuristics, while [7] designs

a heuristic reactive caching policy based on the insights from

the low-dimensional MILP. We take a different approach. We

posit that key features impacting the optimization problem

(and not the content ids) are necessary and sufficient. This

approach to manage high and variable volumes of very diverse

videos calls for data analytics to extract the only information

necessary for the problem at hand, as exposed below. It proves

highly efficient to find QoE-power trade-offs within a few

seconds to minutes as detailed in Sec. VI.

The size of the MILP depends on the number of ems
{end node id,content id,resolution}. Before each optimization

round, a clustering is performed to collapse the requests into

groups meaningful to the optimization by revealing organi-

zation of the requests into patterns [26]. Their considered

features are those impacting the resource allocation: content

type, duration, size, resolution indicator (0 for up to 1080p, 1

for 4K), number of parallel requests for each end node. As an

ordinal variable, type is normalized as a rank, duration, size

and parallel requests as z-scores, while the 4K flag is left as

binary [26, Chap. 4]. A K-Means clustering with Euclidean

distance is then invoked on the normalized observation matrix

made of all the requested content. The maximum number of

centroids can be set to control the MILP solving complexity,

which scales as (number of paths)×(number of contents). We

set this max product to 106 in the results below and deduce

the maximum number of clusters in each case. The obtained

centroids are then de-normalized. The size of each centroid is

replaced with the sum of sizes of cluster’s members, which

guarantees that all individual contents in the same cluster can

be stored in the intended cache. The 4K flag of each centroid

is set to the majority. The hence obtained synthetic contents

are representative of the actual demand. We do not consider

prediction of the video demands, though this can be included

to make the synthetic content even more accurate, as in [5].

The second data analytics tool is provided within iProxy [9]:

each cache stores a content-based hash (from DCT coeffi-

cients) of each video, i.e. a video dictionary. It prevents from

storing replicates requested from different URLs.

C. Decomposition and dynamic orchestration

A primal decomposition is typically used in resource al-

location problems (as the ViRCA problem) where a master

problem allocates the existing resources by directly giving each

subproblem the amount of resources that it can use [27]. We

identify here the virtualized infrastructure allocation variables

(z, g, r, k, w, t) as the coupling variables, leading to a two-level

structure where ViRCA corresponds to the master problem

and the subproblem, called Routing and Caching Assignment

(RCA), solves routing and content cache placement (iProxy in-

stance selection in our reactive framework). Since the physical

and virtualized network infrastructure (VMs deployment and

active routers) is an input parameter of the RCA problem, the

computational and switching budgets are the resources RCA

allocates to maximize QoE only:

max
{x,y,f,vf,h}

QoE, s.t. (2), (3), (5) (7)

where the integer variables z, g, r, k, w, t are now inputs set to

the last ViRCA solution’s values. Another benefit is that, since

all the integer variables in the ViRCA problem are coupling

variables, the RCA subproblem becomes a simpler Linear

Programming (LP) problem solvable in polynomial time.

Algo. 1 shows how the network and computational resources

dynamically reconfigure by means of ViRCA and RCA.

ViRCA is not meant to be solved as often as RCA, as it

implies activating and deactivating DC nodes introducing non

negligible control overheads, while RCA simply consists of

lighter routing and iProxy selection updates. Before running

ViRCA or RCA, to reduce the unnecessary executions of the

solver (typically, CPLEX), two re-optimization conditions are

identified. For ViRCA, the actual number of used vCPUs

#vCPUs in all the micro-DC nodes is simply verified to

decide whether one of the nodes can be switched off (meaning

VMs can be better consolidated). For the RCA case, the re-

optimization condition is based on the validity of the last RCA

optimal solution with respect to the current network state. In a

few words, we compare if the video demand variation in terms

of traffic units between two consecutive RCA re-optimizations

can be accommodated in the budgets of bandwidth (xems
i

variables) and transcoding resources (ti variables) found at

the last RCA or ViRCA run, respectively. To do so, the

slackness of the constraints (2) and (5d) are saved. These

slackness (referred to as Σ∗) represent the spare bandwidth

and transcoding resources for the optimal allocation. Then,

from the monitoring described in the next paragraph, we

compute the variations ∆{vemsf
ems
i } and ∆{vfeus

i } between

two consecutive RCA re-optimizations (discrepancy between

the planned and actual number of parallel requests of type



ems served from i). We obtain the approximate slackness Σ̂.

If Σ̂ does not exceed Σ∗, the last optimized bandwidth and

transcoding allocations can still hold the actual video demand

despite the ∆ deviations. Otherwise, RCA is triggered again. If

this RCA re-optimization provokes a significant drop in QoE

(larger than 20% of the maximum QoE), the ViRCA routine

is triggered again. This enables the resources to be scaled up

when only re-configuration with RCA is mo more sufficient.

Algorithm 1: Routine to trigger re-optimizations

if time ≥ lastViRCAreopt time + ViRCA reoptimPeriod then1

lastViRCAreopt time = time ;2

if #vCPUs ≤
∑

∈N
(wi + ti)−KT then3

Trigger power-QoE optim. by running ViRCA;4

5

6

else if time ≥ lastRCAreopt time + RCA reoptimPeriod then7

lastRCAreopt time = time ;8

if Σ̂ ≥ Σ∗ then9

Trigger QoE optim. by running RCA;10

if RCA sol ≤ 0.8 maxQoE then11

Trigger power-QoE optim. by running ViRCA;12

13

14

15

D. Implementation

We consider a SDN management, where each client in-

coming request is intercepted and sent to the controller.

As described in Algo. 2, based on the xems
p budgets, the

controller decides which iProxy is going to serve the client

through which path (injecting the appropriate rules into the

switches), unlike in greedy or time-slot routing [4]. Another

key-component is the monitoring process. The average number

vfems
i (k) of parallel requests of type ems (defined over syn-

thetic content used for the optimization) served and rejected

by node i is monitored each period k of duration Tsample. The

RCA re-optimization is hence triggered depending on the value

vfems
i = maxk=1,...,K vfems

i (k), where K is the number

of samples since last optimization. Prior to running RCA or

ViRCA, the content clustering is performed with the new video

set (which may have changed) since last optimization.

VI. NUMERICAL RESULTS

In order to get first assessments, we create a Matlab discrete-

event simulator (with CPLEX as solver). By lack of space,

this choice is more thoroughly motivated in [28]. However

to consider reproducible research standards, we make our

simulator publicly available at [28] and are planning a full

deployment within ns-3.

A. Simulation settings

The FMC and backhaul target scenarios are represented with

2 topologies: ‘FMC tree’ from [23] and ‘Mobile backhaul’

from [10] depicted in Fig. 2. Dashed links are redundant links

only used in case of failure in today’s configuration, but meant

to be activated in FIA, such as SDN or ICN for 5G; we thus

Algorithm 2: Routine to handle requests

Data: request for video with attributes [type,duration,size,4K
flag,originating end node e], B(p): available bandwidth
on each path p, CPU(i): available CPUs at i, cluster
centroids used for the last optim., budgets xems

p from last
optim.

Result: server index i and path p
Find ems by classifying request into the appropriate cluster1

based on attribute vector;
Find p with xems

p ≥ bms
min, B(p) ≥ bms

min and2

CPU(src(p)) ≥ dms;
if p empty then3

Find p with
∑

ms
xems
p ≥ bms

min, B(p) ≥ bms
min and4

CPU(src(p)) ≥ dms;
5

else if p empty then6

Find p with dest. e (if fixed) or BBU(e) (if mobile) s.t.7

B(p) ≥ bms
min, and CPU(src(p)) ≥ dms;

else8

Reject request;9

if p not empty then10

return p, i = src(p);11

12

consider them activated permanently. FMC tree is a four-stage

tree with 1 PoP, 2 level-1 and 4 level-2 aggregation nodes. The

latter connect the end nodes (5 fixed, 10 mobile).

Fig. 2: The Mobile backhaul topology from [10]

The load and catalog assumptions are the same as in the

literature [10], [4], [5], [24]. Users demand follows a Poisson

process of rate λ = 0.4 (requests per end node per second).

We later investigate the impact of the load on performance,

through a load factor applied on λ. A catalog is made of 10000
videos, with a Zipf-distributed popularity with parameter 0.8.

Let us re-state that the catalog size does not impact the

online operation of our optimization (the catalog is never

assumed to be known a priori), but only serves to generate

the event trace. To be representative of YouTube-like services

where short videos prevail [29] and other OTT services like

Netflix, we consider 3 possible durations of 4, 15 and 60
min. As well, shorter videos prevail on mobile accesses, and

the distributions of video durations are set to [0.5, 0.3, 0.2]
on fixed accesses, on mobile accesses to [0.66, 0.24, 0.1] and

[0.5, 0.3, 0.2] for high and low popularity content, respectively.

As most of YouTube videos are abandoned before the end,

we consider the actual watching duration of each request



represent a random fraction of the content duration, with three

possible modes [0.72, 0.65, 1.00] taken from [30] for the first

two. The last 1.0 accounts for longer videos such as series or

movies that people tend to watch entirely. The probabilities of

each resolution (360p, 720p, 1080p, 4K) to be requested are

set to [0.3, 0.3, 0.3, 0.1] for fixed accesses and [0.4, 0.4, 0.2, 0]
for mobile, based on [31]. According to [32], [33], the

last-hop bandwidths are picked within [5, 15, 30, 40, 60, 80]
Mbps and [2, 5, 10, 15, 20, 25] Mbps for fixed and mobile

accesses, respectively. The simulation results are obtained with

Tsample = 5min (as in MPLS-TE), RCA reoptimPeriod =
5min, V IRCA reoptimPeriod = 30min, κ = 0.5. The per-

node storage is 500GB.

To objectively assess the gains of each component of

ViRCA (flexible caching, transcoding and BBU consolidation),

we define the following competitors:

• ViRCA2: ViRCA with no possible deportation of BBU

(entirely flexible caching with no FMC);

• ViRCA3: ViRCA with caching only at end node (or

BBU if mobile node) and PoP as considered in the

PDNCache/ENodeBCache solution in [10]; corresponds

to constrained caching compliant with today’s 4G func-

tioning (also with BBU deportation here).

Finally the QoE metrics retain only the impacts of

elements ViRCA controls: (i) rejection ratio, (ii) aver-

age relative rate: for each served request, (served video

rate)/min(bms
max, last hop bw) and (iii) startup delay to fetch

the first 15s of video (non-zero, when a iProxy is forced to

fetch the content through the PoP; and negligible, otherwise,

as the cache-to-client delay is maintained almost fixed by the

iProxy video rate adaptation to bandwidth).

B. Pareto analysis of optimal solutions

We first consider the results of the optimization alone

and analyze the QoE-power tradeoff. For conciseness, we

cannot show all results of both topologies. They however

yield qualitatively similar results analyzed thereon. Fig. 3

represents the Pareto curves where each point is obtained

for a certain value of γ (see Eq. 1a), which denotes below

the normalized value once the difference of units between

the QoE and power component has been corrected. The first

asset is that our ViRCA plane allows to find the minimum

power to reach the highest QoE, by considering γ > 1.

The gains in power range from 10% for FMC tree to 30%
for Mobile backhaul, compared to ViRCA2 which does not

allow BBU deportation. While ViRCA3 exhibits gains in

power too, when the load increases it is unable to maintain

QoE. Indeed, as the number of cacheable content is included

in the QoE formulation, ViRCA3 is unable to spend more

power to cache (and transcode) more content beyond the last

blue point, as it allows for caching only at BBU and PoP.

ViRCA, with all degrees of freedom both in terms of BBU

deportation and flexible caching, obtains the best of both

limited solutions ViRCA2 (no convergence) and ViRCA3 (no

ubiquitous caching).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

power (W) 10
5

0

500

1000

1500

2000

Q
o
E

ViRCA

ViRCA2

ViRCA3

load factor = 0.05

load factor = 0.2

load factor = 1

Fig. 3: Pareto frontier, FMC tree

Fig. 4 depicts the breakdown of consumed power between

CPU (for transcoding and BBU operations), switching (for

mini-DCs hosting a BBU or cache) and IP routing (for mini-

DCs adding, dropping or simply switching IP traffic via a

virtual link). When the load factor grows from 0.05 to 0.2,

the CPU consumption almost doubles (more requests must be

transcoded) while the routing and switching remain almost

constant as no more nodes are used. The increase in active

nodes is seen when reaching a load factor of 1. Proper

consolidation is therefore crucial for power gains.

Finally, Fig. 5 shows the geographic breakdown of each

power item. Under low load (0.01 and 0.05), most of the

power is located high in the network, showing a high level

of consolidation: co-location of the various computations and

higher number of uninterrupted lightpaths. The load increase

makes more lower-level nodes and end nodes to be used, to

exploit the computational and caching abilities.

ViR
C
A

ViR
C
A2

ViR
C
A3

ViR
C
A

ViR
C
A2

ViR
C
A3

ViR
C
A

ViR
C
A2

ViR
C
A3

ViR
C
A

ViR
C
A2

ViR
C
A3

0

0.5

1

1.5

2

2.5

p
o
w

e
r 

(W
)

10
5

CPU power

Routing power

Switching power

0.01 0.05 0.2 1load factor:

Fig. 4: Breakdown of power, Mobile backhaul, γ = 1

C. Simulation results: fixed load

The following results are obtained for Mobile backhaul.

Fig. 6 to 7 are obtained for a constant load factor of 1 and

γ = 1. While the ViRCA model reduces the QoE to a single

metric (the linearized VQM) for the sake of tractability, it is

remarkable that ViRCA outperforms its competitors on other

metrics (startup-delay and rejection ratio). Fig. 6 indeed shows

that ViRCA achieves a number of rejected requests lower than

those of ViRCA2 and ViRCA3, an intermediate startup delay

for a power consumption close to that of ViRCA3. The relative
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video rate (for the accepted requests) saturating at 1 reveals

that the limiting resource in this configuration are the available

serving iProxies. As exposed before, the delay is zero when

the selected iProxy does not need to fetch content via the PoP,

and ViRCA3 is more often in such situation, since iProxies are

more constrained to be at the PoP, yielding to lower startup

delays.

Fig. 7 shows the startup delay (top figure) per class of

popularity (from high to low: 5% most popular, next 15%,

next 80%). Let us first specify that the other two QoE metrics,

fraction of rejections and relative rate, are not correlated with

the popularity. Indeed, there is intentionally no (costly) cache

lookup at the time of assigning a request to a cache and no

resource reservation (only planning as in MPLS-TE).
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D. Simulation results: varying load and catalog

We then consider the load varies over time and space, corre-

sponding to flash crowds. To make sure to provide maximum

QoE under minimum corresponding power, γ is set to 10. The

end nodes are divided in halves. The 4 successive quarters of

requests are generated with a load factor of [0.05, 1, 0.05, 0.05]
respectively for the first half of end nodes, [0.05, 0.05, 1, 0.05]
for the second half. The plotted fraction of nodes are with

respect to the maximum value over time. Fig. 8 shows that

the fraction of (virtual) CPUs dedicated to BBU operations

remains constant as the vCPUs demand de is independent

from load [19]. The red dots denote the reason for a rejection

(1: not enough CPU, 2 and 4: not enough bandwidth cache-

end node and PoP-cache, resp.). When the load suddenly

increases, the drop in QoE (relative rate) triggers a ViRCA

optimization right after the more frequent RCA. The number

of VCPUs for transcoding gets higher, and the QoE goes

back to maximum. Another drop is experienced when the

load shifts to the second half of end nodes, and proper re-

optimization is again performed to re-locate the resources.

After the flash crowds, resources are scaled back down again

while maintaining maximum QoE.

Our proposal lies within the FIA trends, in particular for

centralized control and MP ability. If MP to serve a single

request is not considered as in ICN, optimizing budget over

bundles of similar (ems) requests is meant to leverage MP at

the bundles level. To verify if this ability is indeed exploited

by the system, Fig. 9 shows that during the period of flash-

crowd about 15% to 25% of concurrent same-type requests

follow two different paths from the same cache to the same end

nodes. This fraction may be increased in case the main limiting

resource is not the cache’s CPUs (as shown in Fig. 8) but

the bandwidth (if links capacity are lowered to current values

where optic fibers are not in the whole backhaul yet). Indeed,

let us change the number T of CPUs per machine from 12 to

48 to compare with an ICN solution such as that presented in

[10] for this same backhaul topology. Fig. 9 shows that the

gains in rejections between ViRCA (meant to encompass the

ICN abilities) and ViRCA3 (restricted solution similar to the

PDNCache/ENodeBCache solutions of [10]) are about 50%.

This is the same order of magnitude as the delay performance

shown in [10, Fig. 3]. We compare to delay performance as

our simulator does not involve retroactive bandwidth sharing

with congestion control and merely rejects excess requests.

This comparison thereby demonstrates that our scheme is able

to leverage the ICN principle, while being more complete

by incorporating formally video QoE and power objectives

through the transcoding and FMC capabilities.

Finally, we consider that the catalog varies over time and

space. The load factor is set to 0.05. The event trace is

generated with 2 distinct catalogs. The share of the first catalog

over the 4 quarters is [1, 1, 0.8, 0] for the first half of end nodes,

and [1, 0.8, 0, 0] for the second half. Fig. 10 shows that the

system is able to keep up with the content features changes.

The above analysis therefore demonstrates the ability of the

proposed system to handle highly dynamic environments.

VII. CONCLUSION

We have designed a control plane for telcos to address

the massive increase of OTT video demand. Bringing to-
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Fig. 9: Left: Instantaneous number of paths per request type.

Right: Performance with T = 48 instead of 12 (static load).
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gether BBU deportation (FMC), micro-DC with virtualiza-

tion, transcoding, reactive caching and data analytics, the

most power-efficient configuration of active nodes, routing

and caching is found to get the highest QoE. A dynamic

orchestration with infrastructure-level and operation-level re-

optimizations is devised from a primal decomposition to track

load variations in time, space and content features. Simula-

tions show power gains of up to 30% while the scores on

different QoE metrics are maximized. Elastic consolidation

of caches/transcoders and radio base-band operations is hence

crucial for power gains while maintaining highest QoE. Next

works involve employing column-generation to better scale the

optimization in number of paths, and deploying our control

plane on an SDN testbed.
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