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Abstract—Cloud networking typically leads to scenarii where
a large number of TCP connections share a common bottleneck
link. In this paper, we focus on the case of TCP Cubic, which
is the default TCP version in the Linux kernel. TCP Cubic is
designed to better utilize high bandwidth-delay product path
in an IP network. To do so, Cubic modifies the linear window
growth function of legacy TCP standards, e.g., New Reno, to
be a cubic function. Our objective in this work is to assess the
performance of TCP Cubic in a cloud setting with a large number
of long-lived TCP flows. We rely on a mean-field approach leading
to a fluid model to analyze the performance of Cubic. After a
careful validation of the model through comparisons with ns-2,
we evaluate the efficiency and fairness of Cubic as compared to
that of New Reno for a set of typical cloud networking scenarii.

I. INTRODUCTION

To meet the changing requirements of Internet networks,
various strategies for congestion control in TCP have been
designed, such as Bic-TCP [1], TCP Cubic [2], Compound
TCP [3] and TCP Reno [4]. Bic-TCP and TCP Cubic are
designed specifically for high bandwidth delay products links.
TCP Cubic is the most widely used version of TCP nowadays
[5]. It is characterized by a cubic window growth function
and implemented by default in the Linux kernel since version
2.6.19.

The kind of networks for which TCP Cubic (and other
high-speed TCP flavors) has been been designed call for
analytical models to allow to predict performance in general
cases and study the impact of various parameters. Indeed,
using experimental testbeds does not usually provide enough
flexibility to explore a wide range of parameter values, while
the computational and storage cost of simulation (with, e.g., ns-
2) increases quickly when considering high-performance net-
working environments such as those met in cloud networking.

In this paper, we aim at developing an analytical model
for TCP Cubic to analyze its performance in typical cloud
scenarii where a large number of long-lived TCP connections,
e.g., HTTP streaming or back-up flows, share a bottleneck link.
Specifically, we consider three scenarii: (i) an intra data-center
(DC) scenario with a lot of ongoing traffic between physical
servers (intra-DC scenario), (ii) an inter data-center scenario
where high provisioned links are used to synchronize or back
up data (inter DC scenario), (iii) a content distribution scenario
where a large number of high speed clients, e.g., FTTH clients,
simultaneously download content from the data center (FTTH
scenario). Our contributions are twofold:

• Based on a mean-field approximation, we derive a
fluid model for TCP Cubic, that allows to predict

performance in terms of several metrics. We carefully
validate this analytical model against ns-2 simulations
for our cloud scenarii and exhibit its domain of
validity.

• We provide an extensive comparison of TCP Cubic
and New Reno for our cloud scenarii, assessing their
efficiency/fairness trade-off as well as the impact of
the buffer size on their performance.

II. RELATED WORK

Several analytical models have been proposed in the liter-
ature to analyze the performance of legacy TCP versions, but
there are fewer for TCP Cubic. The authors of [6], [7], [8]
consider a single long-lived flow. In [9], Poojary and Sharma
investigate the cases of three TCP Cubic connections as well as
the competition between a Cubic and New Reno connection. In
[8], Blanc et al. compare the performance of Cubic, Compound
TCP, HighSpeed TCP and New Reno under a simple loss
model, using Markov chains. A few studies [10], [11] have also
investigated TCP Cubic in vivo using experimental testbeds
and are discussed in Sec. VI-B.

Mean field approximations, or equivalently mean-field lim-
its, date back to the seventies [12] and are used to analyze the
limiting behavior of systems made of N objects, as N tends to
infinity. As the limit process is the solution of a deterministic
ordinary differential equation (ODE), it is referred to as a fluid
limit, or fluid model. Baccelli et al. introduced a mean-field
model for a set of N TCP Reno connections in [13]. In this
paper, the authors consider a bottleneck router implementing
the RED (Random Early Discard) active queue management
policy, the TCP Reno version of TCP at equilibrium, i.e.,
TCP operates in congestion avoidance mode and does not
experience time-outs. The model is derived, but the focus is
then put on the fixed points of the mean field equations. We
build on this work to obtain a mean field model of TCP Cubic.
The model for TCP Cubic is an extension of [13] in that it is
more complex: two parameters instead of one now define the
state of an object, and the time of the last loss is an additional
quantity that must be approximated. Furthermore, we validate
extensively our model on cloud networking scenarii, trying to
assess its domain of validity by identifying simulation behavior
that it cannot capture.

III. SYSTEM DESCRIPTION

In this work, we assume the network is in steady state,
i.e., the TCP Cubic sender has reached equilibrium. Thus, we



neglect, in line with the approach in [13], the slow start phase
of TCP.

A. Window variation in TCP Cubic

In the congestion avoidance phase, TCP Cubic features
two modes of operations, the so-called TCP and Cubic modes
[2]. The TCP mode corresponds to low bandwidth delay
products (BDPs), while the Cubic mode is triggered for high
BDPs. Each mode corresponds to a specific way of increasing
the window size and is determined by the following pair of
equations:

wc(t) = C(t− Vcubic)
3 + wmax (1)

wtcp(t) = wmax(1− β) +
3β

(2− β)

t

R(t)
(2)

where wmax is the congestion window prior to the last loss
event1, R(t) is the estimated RTT of the connection, β and
C are constant values usually set to 0.2 and 0.4, respectively,
and Vcubic = 3

√
βwmax

C . The state of a TCP Cubic connection
at time t is defined by the pair < w(t), wmax(t) > where
w(t) is set to max(wc(t), wtcp(t)) upon each ACK reception.
If the maximum is wc(t) (resp. wtcp(t)), TCP Cubic is said
to operate in Cubic mode (resp. TCP mode). The variables
w(t) and wmax(t) can take any positive real values, though in
the implementation they are upper-bounded by the maximum
possible window size defined in the stack. Let E denote the
space spanned by < w,wmax > in the remainder of the
article. When a loss occurs (the sender detects it thanks to
a DUPACK), the state of the connection is changed from
< w(t − δt), wmax(t − δt) > to < w(t), wmax(t) >=<
(1− β)w(t− δt), w(t− δt) >.

B. TCP Cubic mode of operation

From equations 1 and 2, it appears that for fixed network
set-up (the physical path between the sender and the receiver)
and stationary load conditions, TCP Cubic operates (in sta-
tionary regime) in either Cubic or TCP modes but not both.
We present in this part the relationship between the mode
of operation of TCP Cubic and the network parameters. We
thereby find out that among the three scenarii we focus on
(described in the next part), namely high speed clients to DC,
intra-DC and inter-DC, Cubic operates in the TCP mode for
the first two scenarii, while it is in Cubic mode only for the
last one.

Let us consider the difference D(t, RTT,wmax) = wc(t)−
wtcp(t). Let t0(RTT,wmax) > 0 denote the first value for
which the derivative of D(t, RTT,wmax) with respect to t is
zero:

t0(RTT,wmax) =

(
β

C(2− β)RTT

) 1
2

+ Vcubic .

It can be shown (details are omitted by lack of space) that
D(t0, RTT,wmax) is the minimum value of D(.) in t. It
increases in RTT and in wmax. In the steady state, the value
of wmax is BDP + BS, where BS denotes the buffer size
available for a TCP connection, and the RTT is lower-bounded
by the end-to-end path latency denoted by baseRTT . Hence,

1Note that wmax is varying over time but is constant between two loss
events. This is also the case for Vcubic.

for given network settings of baseRTT , BS and BDP , the
sign of F (baseRTT,BS,BDP ) = D(t0(baseRTT,BS +
BDP ), baseRTT,BS+BDP ) allows to determine the mode
of operation of TCP Cubic.

C. Network scenarii

We consider a classical dumbbell topology with N TCP
senders, N TCP receivers and a shared bottleneck with fixed
capacity N × L and fixed buffer size N × B. The latency
of the path between each pair of sender and receiver is fixed
and equal to baseRTT . L and B can thus be seen as the
allocated server and buffer capacities per flow. We assume a
FIFO/droptail server/queue management policy for the queue
of the bottleneck, as it is the prevalent policy in todays
network, including data-centers. The three scenarii we focus
on correspond to the following choices of L and B:

• Scenario A - FTTH-client: this scenario models the
case of high-speed clients, with FTTH access, that
are simultaneously downloading from a DC. We thus
consider L = 100Mb/s and baseRTT = 20ms, and
take the buffer size BS = 50 packets. The value
of baseRTT corresponds to typical RTTs observed
for FTTH clients [14], especially when they access
well-provisioned servers. This is in contrast with DSL
access where the latency on the last mile typical
represent around 50 ms of the total RTT.

• Scenario B - Intra-DC scenario: we consider B =
1Gb/s and baseRTT = 1ms, as servers in a typical
DC are equipped with 1 Gb/s NICs and the end-to-end
delay observed in DC are in the order of a ms [15].
We also take BS = 50 packets.

• Scenario C - Inter-DC scenario: we consider a dedi-
cated link connecting to DC that are far apart. Hence,
we take B = 1Gb/s (remember that it corresponds to
the average bandwidth per flow), baseRTT = 50ms
and BS = 500 packets.

IV. A FLUID MODEL FOR TCP CUBIC

We build on [13] and consider N TCP Cubic con-
nections routed through a bottleneck link whose aggregate
capacity is NL packets per second. The queue size at
the sending buffer of the bottleneck link router is denoted
by Q(N)(t) = Nq(N)(t), the buffer size being NB. Let
S
(N)
n (t) =< w(n)(t), w

(n)
max(t) > be the state of connection n,

for n = 1, . . . , N . In order to express all quantities governing
the connection states in terms of an absolute time variable, t
is changed to t− s(n)loss(t) in equations 1 and 2, where s(n)loss(t)
denotes the elapsed time since the last loss seen by the n-
th TCP sender. Our goal is to predict the performance of
the system of N TCP Cubic connections thanks to a fluid
model, stemming from a mean-field approximation. For the
sake of space, we only give a sketch of the formal proof which
allows us to consider the limit behavior of the system when N
tends to infinity, so as to get fluid model of the performance.
Considering Y(N)(t) = (S

(N)
1 (t), . . . , S

(N)
N (t)) as the state

of the system, that is that composed of the N connections,
Y(N)(t) is an homogeneous Markov chain that can be shown
to be a mean-field interaction model with N objects, as defined
in [16]. We define the occupancy measure as the fraction
of connections in each state at each time t, and denote it



by p(N)(t, w,wmax) for time t and state < w,wmax >.
Theorem 3.1 of [12] ensures that, as N → ∞, for any
t > 0 and < w,wmax >∈ E, p(N)(t, w,wmax) converges
uniformly almost surely to the solution p(t, w,wmax) of the
coupled Ordinary Differential Equations (ODE) below, with
initial condition p(0, (1 − β)x, x) = 1 (x is set to 5 in the
experiments of Section V). Additionally, the other quantities of
interest, namely q(N)(t), R(N)(t) and s(n)loss(t) can be expressed
thanks to their deterministic fluid limits q(t), r(t) and sloss(t),
respectively. It is worth noting that the convergence to the fluid
limit holds in the presence of q(N)(t) that can be considered
as a resource, as defined and proven in [16].

dp(t, w, wmax)

dt
=

{
w

(1− β)

1

r(t)
δ

(
wmax,

w

(1− β)

) W∑
v=1

p

(
t,

w

(1− β)
, v

)
− w

r(t)
p (t, w, wmax)

}
k(t− r(t)) +

{
−Ap(t, w, wmax)

+A
(w − 1)

r(t)
p (t, (w − 1), wmax)

}
(1− k(t− r(t)) (3)

All the equations describing the system involve per-connection
quantities. In the above equation, W denotes the maximum
possible value of w and wmax. The probability that a packet
be dropped by the bottleneck buffer at time t is denoted by
k(t), whose expression is the same as in [13] for droptail,
as that of q(t). The parameter A denotes the increase of the
congestion window w(t) between t and t + dt. Depending
on the mode of operation (either Cubic or TCP), A is hence
the time derivative of wc(t) or wtcp(t) given in equations 1
and 2: A = 3C(t − sloss(t) − Vcubic)2 or A = 3β

2−β
1
r(t) . The

parameter sloss(t) denotes the average absolute time of the last
loss before time t. It is estimated thanks to the intensity i(t)
of the loss process, assumed to be Poisson as in [13], and we
take:

sloss(t) =

{
0 , if i(t) < 1
t− t

i(t) , otherwise (4)

V. NUMERICAL RESULTS

In this section, we present validation results based on the
three scenarii presented in Section III-C. Our approach for
validation is to compare the fluid model results against ns-2
simulations. The former are obtained using a numerical ODE
solver of matlab. The TCP packet size is set to 1480 bytes. We
set the number of connections in ns-2 to N = 10. We consider
the time-series of average window size and instantaneous
queue size, and the marginal distribution of the window size.

Both for FTTH and intra-DC scenarii (only the latter is
represented), TCP Cubic operates in the TCP mode. Figures 1
and 2 show a very good temporal match both in terms of the
variation of amplitudes and in the frequency of oscillations of
the two metrics for intra DC scenario.

In the Inter-DC scenario, owing to the large bandwidth
delay product of the path and the high RTT, TCP Cubic
operates in the Cubic mode. The matching between the model
and the simulation is less good in this scenario, as it can be
observed from Figures 3 and 4. Our model does not capture the
loss synchronization effect among the sources that occurs in
the simulation. Indeed, the shape of the average window time
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series in Figure 3 indicates that almost all connections experi-
ence loss simultaneously and repeatedly. We have checked in
the ns-2 simulations that all the 10 connections have indeed
synchronized loss events, in spite of the various techniques
we tried to avoid synchronization of sources (increase of
the buffer size and the level of multiplexing, i.e., number
of active connections). It seems to be a fundamental feature
of TCP Cubic to exhibit this loss event synchronization as
already observed by Hassayoun and Ros in [17]. In this paper,
the authors studied several high speed version of TCP and
observed, through simulation, the existence of synchronization
among sources even when using several counter-measures like
RED policy, traffic on the backward path or time-varying RTT.
They also observed that while a lot of sources experience
losses simultaneously, the utilization of the link remain close
to the maximum. This is confirmed by our simulations and
somewhat captured by our model. A deeper analysis will be
performed in a future work to identify whether the infinite
number of connections the model considers is the root cause
for not capturing the synchronization effect.
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VI. STUDY OF FAIRNESS AND THE IMPACT OF THE
BUFFER SIZE

In this section, we present applications of our fluid models
to the study of two key problems. The first one is the fairness
of TCP Cubic as compared to that of TCP New Reno. While
TCP Cubic is able to take advantage of paths with larger
bandwidth delay products, one can question its ability to share
the bandwidth evenly between flows. We use New Reno as a
reference here, as this version of TCP is known to achieve a
good level of fairness when the flows share the same path.

The second issue that we investigate is the impact of the
buffer size on the efficiency of Cubic (and also New Reno).
The question of buffer sizing has received a lot of attention,
e.g., [18], [17], [19]. Rules derived from [17], [19] recommend
using buffer sizes whose range is between 10% and 60%
of the bandwidth delay product of the path. However, some



measurements studies focusing specifically on TCP Cubic,
observe a detrimental effect of small buffer [11]. However, the
authors in [11] pinpointed that the jury was still out concerning
the root cause of the inefficiency that they observed as it could
be an intrinsic feature of TCP Cubic or an artefact of their
testbed.

Throughout this section, we restrict ourselves to the intra-
DC and FTTH scenarii, as we obtained good match with
simulations for those cases. While TCP Cubic operates in TCP
mode in these scenarii, note that the algorithms that govern
TCP Cubic in TCP mode and TCP New Reno are not the
same.

A. Fairness analysis

For the case of TCP Cubic and New Reno, we assess
the fairness of the protocol by two metrics. To capture the
time variation of the distribution of congestion windows, we
compute, at each time instant the coefficient of variation2

(CoV) of the window size distribution and we report the cdf
of CoV over a large time period. It is clear from Figure 5
that TCP Cubic achieves a better level of fairness than TCP
New Reno over the two scenarii of interest, as (i) the CoVs
for Cubic are both smaller and span also over a smaller set of
values and (ii) the marginal cdfs (not represented here) span
over a smaller set of values for Cubic.

Fairness and efficiency have to be assessed jointly. We
report in Figures 6 the distribution of utilization for the FTTH
and intra-DC scenarii for both TCP Cubic and New Reno.
We can now conclude that the better fairness of Cubic is not
achieved at the expense of a lower link utilization.
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B. Impact of the buffer size

In this section, we investigate the impact of the buffer size
on the utilization of the queue (and consequently of the server).
We report results only for the intra-DC scenario owing to space
constraints. We vary the buffer size at the bottleneck from 10%
of the BDP to 100% of the BPD for both Cubic and New
Reno - see Figures 7 and 8, where we present the normalized
occupancy of the queue. Several conclusions can be drawn
from these figures. First, both Cubic and New Reno are greedy
in the sense that the larger the buffer size, the larger the queue
occupancy. It is not necessarily a good news as larger queue
occupancy means larger set-up latency for new incoming flows
and larger jitter for time sensitive traffic, e.g. Web searches in
a DC [20]. Second, Cubic is more greedy than New Reno.

2The CoV is the ratio of the standard deviation to the mean of a distribution.
It can be seen as a normalized measure of its variability.

Third, TCP New Reno is clearly less efficient than Cubic for
buffer sizes smaller than 60% of the BDP as we observe a
significant fraction of mass at zero, meaning that the buffer
is often empty, hence the server is likely to be underutilized.
Overall, for the case of Cubic, our model suggests that this
version of TCP is able to survive with buffer sizes as small as
20% of the BDP. The experimental results obtained in [11] are
thus not pathological behaviors of Cubic, but are likely to be
due to another cause, e.g., a bad implementation (the author
in [11] used an early implementation of Cubic in the Linux
kernel). Note however that when the buffer size becomes very
low, other technical problems might appear in real network
appliances (such as competition between reading and writing
into buffers). Hence, while the behavior observed in [11] does
not seem to be due to Cubic itself, it is likely to be observed
with other real experimental networks.
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VII. CONCLUSION

In this paper, we have derived a fluid model for TCP Cubic,
that allowed to predict the values of various metrics such as
distribution of the window sizes of N connections, throughput,
RTT, loss rate and queue size. The model accuracy is very
good for the intra-DC and FTTH scenarii, while it is less
good for the inter-DC scenario where TCP Cubic operates
in Cubic mode and causes loss synchronization amongst the
connections, as observed in [17]. Future work includes to
identify whether such behavior of TCP arises from a too low
level of multiplexing, that cannot be captured by the model that
is a limit when the number of connections tends to infinity.
Finally, we show that TCP Cubic is at once more efficient
and fair than TCP New Reno, in particular in the case of
low buffer sizes. In contrast to TCP New Reno, TCP Cubic
is able to survive with buffer sizes as small as 20% of the
BDP, thereby shedding some light on the possible cause of
bad utilization observed in experimental works for such buffer
sizes. Our future work aims at having a more general model,
encompassing the slow-start phase, and mixing TCP New Reno
and Cubic connections, to assess wider results about these TCP
versions.
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