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Objectives of the Course

● Provide a friendly introduction to the 
fascinating field of agent-based modeling

● We will study how to use agent-based 
modeling to understand and examine a wide 
range of complex problems related to 
Economics and beyond.

● We will also see how to build a model from 
the ground up using the Python programming 
language and how to analyze its results.
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Course Structure

● Introduction
● Building a Simple Model
● Extending Models
● Creating Agent-Based Models
● The Components of an Agent-Based Model
● Analyzing the results of an Agent-Based Model
● Verification, Validation, and Replication
● The ODD Protocol
● History of ABM and Classic Models
● Advanced Agent-Based Modeling
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Suggested Readings

● Eric Bonabeau. Agent-based modeling: 
Methods and techniques for simulating human 
systems. PNAS May 14, 2002 99 (suppl 3) 
7280-7287.

● Norman Ehrentreich. Agent-Based Modeling. 
Springer 2008.

● Uri Wilensky and William Rand. An Introduction 
to Agent-Based Modeling. MIT Press, 2015.
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Credits

● I’m indebted to many colleagues
● Main sources of inspiration

– Bill Rand (North Carolina State University)
– Janusz Szwabiński
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What is a Model?

● A simplified representation of a phenomenon 
(process, object, or event)
– Focuses on relevant aspects
– Abstracts away non-relevant aspects

● “Essentially, all models are wrong, but some are 
useful” (George Box, 1987)
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Agent-Based Modeling

● A tool for studying complex systems
– Alternative/complementary to mathematical tools
– Advantage : more realistic description

● Agents
– Discrete, autonomous entities
– Have goals and behavior
– May be heterogeneous

● Basic assumptions
– Key aspects of behavior, interaction can be described
– We can (re-)construct complex processes and systems bottom-up

● Simulation is the main tool to test models (= theories)
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Reactive vs. Cognitive Agents

● Reactive Agents
– Input-output mapping (sensors → actuators)
– Simple behavior (described by fixed rules or math equations)
– No or limited internal state

● Cognitive Agents
– S/w artifacts that exhibit intelligent behavior in complex domains
– Autonomous, responsive, proactive, goal-oriented, co-operative
– Deliberation
– Established cognitive architecture (e.g., the BDI Model)
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Complex Systems

● A system composed of many interacting parts in 
which the emergent outcome of the system is a 
product of the interactions between the parts and 
the feedback between that emergent outcome 
and individual decisions

● Emergence: “the action of the whole is more 
than the sum of the parts” (Holland, 2014)

● Feedback: The effect of the emergent result on 
the decisions of the individuals
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How do you understand
Complex Systems?

● Complex Systems can be difficult to predict, 
control and manage, which in many ways is the 
goal of public policy

● Agent-Based Modeling and Complex Systems 
analysis is to provide a “flight simulator” rather 
than a perfect prediction
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What Makes Complex Systems 
Complex? 

● Path dependence
● Sensitivity to initial conditions (→ chaos)
● Non-linearity and dynamics
● Diversity and heterogeneity
● Interconnectedness and interactions
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A Third Way of Doing Science

● Two traditional ways of doing science
– Induction - inferring from particular data a general 

theory
– Deduction - reasoning from first principles to a general 

theory

● Third Way
– Generative - using first principles to generate a 

particular set of data that can create a general theory

(Axelrod, 1997)
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When to Use ABM?

● Medium Numbers
● Heterogeneity
● Complex but Local Interactions
● Rich Environments
● Time
● Adaptation
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Medium Numbers

● Too few agents and the simple may be too simple
– Game theory and ethnography work well

● Too many agents and means may describe the 
system well
– Mean-field approaches and statistical descriptions

● The key is that the number of agents that can 
affect the outcome of the system be a medium 
number
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Heterogeneity

● Agents can be as heterogeneous as they need 
to be

● Many other approaches assume homogeneity 
over individuals
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Complex but Local Interactions

● ABM can model complex interactions
– History dependent
– Property dependent

● The assumption is that these are local
– No global knowledge
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Rich Environments

● The environment the agents interact in can be 
extremely rich
– Social Networks
– Geographical systems

● The environment can even have its own agent-
like rules
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Time

● Almost all agent-based models feature time
● ABM is a model of process
● Nearly necessary
● There are exceptions

– Solving complex equilibrium problems
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Adaptation

● Adaptation is when an agent’s actions are 
contingent on their past history

● An agent may take different actions depending 
on its own past experience

● Usually sufficient
● Very few modeling approaches besides ABM 

feature adaptive individuals
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Agent-Based Modeling (ABM)
vs. Equation-Based Modeling (EBM)
● Many EBMs make the assumption of homogeneity
● EBMs are often continuous and not discrete
● The nano-wolf problem (Wilson, 1998)
● EBMs require aggregate knowledge in many cases
● Ontology of EBMs is at a global level
● EBMs do not provide local detail
● EBMs are Top-Down, ABMs are Bottom-Up
● EBMs are generalizable, but restricted
● ABM can be built from analytical models, and can complement 

EBMs
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ABM vs. Statistical Modeling 

● Hard to link to first principles and behavioral 
theory

● Need to have the right kind of data
● ABM can complement by building from first 

principles to statistical results
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ABM vs. Lab Experiments

● Lab experiments can generate theory
● Lab experiments are rarely scaled up
● ABM can be created from lab experiments

– ABM can explore macro-implications of lab 
experiments

– ABM can generate new hypotheses
– ABM can determine sensitivity of results
– ABM can compare generative principles
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Limitations

● High Computational Cost
– Benefit of more insight and data to intermediate stages

● Many Free Parameters
– Simply exposing parameters that other models assume

● May Require Individual-Level Behavioral 
Knowledge
– Provides better insight
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Uses of ABM

● Description
● Explanation
● Experimentation
● Analogy
● Education / Communication
● Touchstone
● Thought Experiments
● Prediction
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Description

● An ABM is a description of a real-world system
● A simplified description but still a description
● Models that are not simplified are useless
● “Make your model as simple as possible but no 

simpler.” - Albert Einstein
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Explanation

● An ABM provides an explanation of potential 
underlying phenomenon that control a system

● They are a proof-of-concept that something is 
possible

● They illuminate the power of emergence
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Experimentation

● ABMs can be run repeatedly under slightly 
different conditions to observe the resultant 
changes

● We can change the model and see what 
happens

● We can then go back to the real-world and 
validate these experiments
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Analogy

● ABMs help us to understand other system with 
similar patterns of behavior

● For instance, a model of flocking birds can help 
us understand fish and even locusts

● They can even help us understand engineered 
systems, e.g., drones
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Education / Communication

● ABMs help us communicate our results to 
others

● They encapsulate knowledge in a way that is 
easily transferable

● They encourage exploration about different 
theories
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Touchstone

● ABMs create a focal object
– Papert (1980) calls them an object to think with

● They give us a common language to describe a 
phenomenon and to argue about its causes

● They turn complex systems into a set of simple 
rules
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Thought Experiments

● ABMs can explore things that may not even 
exist in the real world, or are very idealized 
examples of the real world

● ABM gives us the power to say what will 
happen if we assume a few basic rules
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Prediction

● ABM is often used to think about possible future 
scenarios

● But the validity of a prediction is determined by 
how well the model has been validated

● It is difficult to assess the validity of any model 
for an event that has not yet occurred

● Prediction can often be reduced to description 
and explanation
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ABM Tool Kits

● NetLogo
– Easy to learn
– Logo-based

● Recursive Porous Agent 
Simulation Toolkit
– GIS support
– Java-based

● MASON
– fast, flexible, portable
– Java-based

● Mesa
– Python 3-based
– Web GUI
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