

Testing Carlo Cipolla's Laws of Human Stupidity with Agent-Based Modeling

Andrea G. B. Tettamanzi and Célia da Costa Pereira

Université Nice Sophia Antipolis, I3S, UMR 7271 06900 Sophia Antipolis, France

Andrea G. B. Tettamanzi, 2014

Research Question

- C. Cipolla (1976). The Basic Laws of Human Stupidity.
- Tongue-in-cheek, but in most cultures humor is a way to tell truths that hurt without breaking social norms.
- If taken seriously, Cipolla's theory should enable us to make falsifiable claims.
- We consider Darwin's theory of evolution well corroborated.
- Is Cipolla's theory of human stupidity compatible with Darwin's theory of evolution?
- Under which assumptions do the two theories not contradict each other?
- We use agent-based simulation to answer these questions.

Cipolla's Theory of Human Stupidity

- Stupidity is the main obstacle to welfare in human societies
- Why is stupidity so powerful and hard to act against?
- Abstract model of a human agent's social behavior:
 - X: average gain (loss) agent obtains for its actions
 - Y: average gain (loss) agent causes to other agents with its actions

Social Behavior

Cipolla's Five "Laws" of Human Stupidity

- 1. Any numerical estimate of the fraction σ of stupid people always and inevitably turns out to be an underestimate
- 2. The probability that a given person be stupid is independent of any other characteristic of that person
- 3. A stupid person is a person who causes losses to other persons while himself deriving no gain and even possibly incurring a loss
- 4. Non-stupid people always underestimate the damaging power of stupid individuals
- 5. A stupid person is the most dangerous type of person

Critique

- A consequence of Cipolla's 1st and 2nd laws is that stupid people must be an overwhelming majority of any sample population
- Apparent contradiction with Darwinian natural selection:
 - Stupid and helpless people should have a competitive disadvantage vis-à-vis more opportunistic individuals
 - In the log run, one would expect rational individuals (= intelligent + bandits) to take over the entire population
- Possible explanatory hypotheses (to test):
 - Damages stupid people cause to others neutralize selection
 - Stupid people are more resilient to damages inflicted by others
 - The observed fraction is the effect of particular initial conditions
 - Etc...

An Agent-Based Model

- Agent behavior governed by a bivariate normal PD
- Agents are individuals of an evolutionary algorithm
- Agents' genome: $(\mu_x,\mu_y,\sigma_x,\sigma_y, heta)$
- Agents in the initial population have a wealth of 100
- Death when wealth < 0; asexual division when wealth > 200
- Agent interaction cycle (= 1 simulation period):
 - "active" agent randomly selected from the population
 - "passive" agent randomly selected from the remaining agents
 - < x, y > randomly extracted form the active agent's PD
 - Active agent's wealth updated according to x
 - Passive agent's wealth updated according to y

An Agent-Based Model

Wealth Distribution

- In general, not a zero-sum game:
 - If most agents act intelligently, the population will enjoy an overall wealth increase
 - If most agents act stupidly, the overall welfare of the population will decrease and nothing prevents it from becoming extinct
- One may enforce a zero-sum game by redistributing net wealth surplus or loss proportionally to all the agents in the population

Wealth Transfer

Linear

$$W_{t+1}^a = W_t^a + x$$
 $W_{t+1}^p = W_t^p + y$

Logarithmic

$$W_{t+1}^{a} = \begin{cases} W_{t}^{a} + x, & \text{if } x \leq 0; \\ W_{t}^{a} + \log(x+1), & \text{otherwise;} \end{cases}$$

Hyperbolic

$$W_{t+1}^{a} = \begin{cases} W_{t}^{a} + x, & \text{if } x \leq 0; \\ W_{t}^{a} + \frac{x}{x+1}, & \text{otherwise}; \end{cases}$$

Andrea G. B. Tettamanzi, 2014

Defense

- To model the fact that rational agents know better
- Rational agents are able to build defenses against bandits (but not against stupid agents, by Cipolla's 4th and 5th laws)
- In an interaction, if the active agent is behaving like a bandit (i.e., x > 0 and y < 0), both x and y are discounted by multiplying them by a "defense factor" 1 δ .

$$\delta = \frac{\mu_x^p}{\mu_x^p + 1}$$

Relativized Effects of an Interaction

- To model the hypothesis that stupid agents are more resilient than others to damages inflicted by their peers
- The x and y effects of an interaction are "relativized" with respect to the μ_y of the receiving agent (be it active or passive)
- The active agent's wealth will be updated according to

$$x - \mu_x^a$$

• The passive agent's wealth will be updated according to

$$y - \mu_x^p$$

Initial Distribution

Andrea G. B. Tettamanzi, 2014

Experimental Protocol

- We tried all combinations of the following parameters
 - Initial distribution: i = all | stupid | deleterious
 - Transfer function: f = linear | logarithmic | hyperbolic
 - Defense: d = off | on
 - Relativized effects: r = off | on
 - Zero-sum game: z = off | on
- This gives a total of 72 combinations
- We code-name combinations as strings of parameters:
 - Example: ia-flin-d-r-z
- Initial population: 1,000 agents. Max population: 10,000 agents
- Simulation length: 1,000,000 periods

Results: Final Distributions

۲		-				۲	en e
ie-flie	ia-Ilie a	in Diete	ie Bieren	in Direct	ie Dieste .	ia-Iliente -Tapalo	in Binders
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
is-Day	ta-Roy a	te Dape	ie Dapen	ia-Dagal	in Depth	is-Repórt	ia-Rapitera
ia-Digo	ia-Barn	Le Digen	te Byper a	ia-Digent	ter Bygenha	in System	in Byrdens 126
	.						
is-Itia	in-Rin a	in the s	in Direct	in Direct	in Director	is-flie-d-s	in-Dis-d-r-s
ie-Dag	te-Bay a	te Dape	te Dapen	te Dagel	in Expire	in Bayder	in-Hapdree
					M.D		
	1 11 12 14	State 1	a support	1 See.	·	1.546.051	
			-		- 19 A.		
	Margan.	128.0.C	all filments	al-filed	and the state	at the star	ad-Dised-rea
	100						
14-11-ng	at tags	an tager	an stap e a	at tage	and the part of	10-12-0-0	ad Capitoria
			NT NO				

Results: Observations

- A first inspection of the final distributions reveals the following:
 - Relativization of the effects is critical to the survival and proliferation of stupid agents
 - Restricting our attention to runs with r = on, the most promising distributions may be observed when a zero-sum game is enforced
 - The only setting which results in a preponderance of stupid agents from a "neutral" initial distribution is ia-flin-d-r-z, with defense turned on
 - An initial distribution biased toward stupid agents appears to favor the prevalence of stupid agents in the final distribution
- Overall, eight parameter settings achieved a final distribution featuring a majority of stupid agents.

Evolution of Population Composition

ia-flin-d-r-z

is-fhyp-r

id-flin-r-z

Simulation ia-flin-d-r-z

Final distribution

Final wealth distribution

Population size

Conclusion

- Some of the parameter settings we have tried led to emergent behaviors quite in line with Carlo Cipolla's theory
- One parameter setting, in particular, namely ia-flin-d-r-z, looks like a very promising first approximation of Cipolla's laws
- Zero-sum game enforcement appears to be critical.
 - This is not obvious and calls for an explanation
 - The subjective utility of the agents is somehow relative to the welfare of their peers (envy?)