UNIVERSITÉ CÔTE D'AZUR

Algorithmes Évolutionnaires (M2 MIAGE IA²)

Andrea G. B. Tettamanzi
Laboratoire I3S - Équipe SPARKS
andrea.tettamanzi@univ-cotedazur.fr

univ-cotedazur.fr

Séance 4
 Représentations et opérateurs spécialisés

Plan

- Vers les applications du monde réal : programmes évolutionnaires
- Représentations pour
- Problèmes d'allocation et d'optimisation de paramètres
- Problèmes d'association
- Problèmes de permutation
- Operateurs spécialisés pour
- Problèmes d'allocation
- Problèmes de permutation

Evolution Programs

Slogan:
Genetic Algorithms + Data Structures = Evolution Programs
Key ideas:

- use a data structure as close as possible to object problem
- write appropriate genetic operators
- ensure that all genotypes correspond to feasible solutions
- ensure that genetic operators preserve feasibility

Data Structure Close to Object Problem

- Exploit information about the problem
- Use natural representation suggested by the object problem
- Manipulate meaningful solution elements

Write Appropriate Genetic Operators

- Exploit information about solution structure
- Manipulate meaningful solution elements
- Preserve feasibility of candidate solutions
- Mutation, Recombination

Ensure Genotypes = Feasible Solutions

- Processing infeasible solution is a waste of time
- Feasible solutions = smaller search space
- Unfortunately, not always possible
- Problem with interacting constraints

Preserve Feasibility

- Genetic operators should respect constraints
- In-depth understanding of problem is required
- Ad hoc genetic operators
- Lower degree of s/w reuse, more development required

Gene "Orthogonality"

- Advisable to design encodings where genes are orthogonal
- Semantics of each gene should:
- depend on its value (allele);
- not depend on the value of other genes.
- Epistasis: interactions among genes

Designing Representations

- Representation is a critical success factor for Eas
- No cookbook available
- Coarse classification of problems:
- allocation problems ("pie" problems)
- parameter optimization problems
- permutation problems
- mapping problems

Allocation ("Pie") Problems

- Given:
- a limited amount of resources
- a set of opportunities (or tasks)
- a cost/benefit function
- Determine:
- optimal allocation of resources to opportunities
- Subject to:
- all resources must be employed
- resource limit cannot be exceeded
- other problem-dependent constraints

Pie Problem Example

- Limited resources: $€ 100,000$
- Opportunity set:
- W: European Equity
- X: American Equity
- Y: Euro Bonds
- Z: US Bonds
- Candidate solution: Invest $€ 15,000$ in $\mathrm{X}, € 25,000$ in $\mathrm{Y}, € 20,000$ in Y , €40,000 in Z

Pie Problem Representation

- Vector of absolute amounts
- >= 0
- sum up to total resources
- Vector of percentages
- >= 0
- sum up to 100\%
- Constraint elimination...

"Clever" Representation

W	X	Y	Z
128	32	90	20
$0-255$	$0-255$	$0-255$	$0-255$

"Clever" Representation

W	X	Y	Z
128	32	90	20
$0-255$	$0-255$	$0-255$	$0-255$

$$
X=32 / 270=11.85 \%
$$

Parameter Optimization Problems

Solution Representation

- A solution is an assignment of values to parameters
- Natural representation: a vector

Mapping Problems

Mapping Problem Examples

- Symbolic Regression
- Time Series Prediction
- System Modeling
- Data Mining
- Control

Solutions

- Mathematical Formulas
- Simple Programs
- Decision Trees
- Finite State Machines
- Neural Networks
- Fuzzy Rule Bases
- etc...

Solution Representation

- GP Trees a natural representation for
- mathematical formulas
- programs
- Advantages
- well-established set of genetic operators and techniques
- Drawbacks
- results are not easy to interpret/understand
- sensitive on the choice of GP primitives

Alternative Approaches (1)

- Pre-determine a parametric model for the mapping
- Fit the model to data
- Problem reduces to parameter optimization problem
- Advantages
- parameter optimization is in general simpler
- Drawbacks
- a simplistic model could lead to nonsatisfactory solutions

Alternative Approaches (2)

- Non-parametric models like
- neural networks
- (fuzzy) rule bases
- (fuzzy) decision trees
- etc.
- Where structure is not pre-determined

Permutation Problems

- Given:
- a discrete set of objects
- Determine:
- a suitable permutation for those objects

Permutation Problem Examples

- Traveling Salesman Problem
- Timetable Problem
- Job Shop Scheduling
- Vehicle Routing Problem

Representing a Permutation

- Assign an integer to each permutation object
- A permutation is a list of integers, e.g.: 1-2-4-3-8-5-9-6-7
- Direct (or "path") representation:
- list permutation elements
- example: $(1,2,4,3,8,5,9,6,7)$

Adjacency Representation

- One integer per object
- ith integer denotes the next element after object i
- Example: (2, 4, 8, 3, 9, 7, 1, 5, 6)
- 2 comes after 1 (1st position)
- 4 comes after 2 (2nd position)
- 8 comes after 3 (3rd position)
- etc.
- Result: 1-2-4-3-8-5-9-6-7

Ordinal Representation

- Vector of $\mathrm{n}-1$ integers
([1..n], [1..n-1], [1..n-2], ..., [1..2])
- Decoding:
- place all object in a list
- for $i=1$ to $n-1$,
- remove the $x[i]$-th object from the list
- append it to the permutation

Ordinal Representation Example

Permutation:

Ordinal Representation Example

Genotype: (1, 1, 2, 1, 4, 1, 3, 1, 1)

Permutation: 1

Ordinal Representation Example

Genotype: (1, 1, 2, 1, 4, 1, 3, 1, 1)

Objects:
$(3,4,5,6,7,8,9)$

Permutation: 1-2

Ordinal Representation Example

Genotype: (1, 1, 2, 1, 4, 1, 3, 1, 1)
Objects: $\quad(3,5,6,7,8,9)$

Permutation: 1-2-4

Ordinal Representation Example

Genotype: (1, 1, 2, 1, 4, 1, 3, 1, 1)

Objects:
$(5,6,7,8,9)$

Permutation: 1-2-4-3

Ordinal Representation Example

Permutation: 1-2-4-3-8

Etc...

Ordinal Representation Example

Genotype: (1, 1, 2, 1, 4, 1, 3, 1, 1)

Objects:

Permutation: 1-2-4-3-8-5-9-6-7

Matrix Representation

- Square $\{0,1\}$ matrix
- Entry (i, j) is 1 iff i th object before j th object
- Decoding:
- build partial order directed graph
- eliminate cycles

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Matrix Representation Example

0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	1
0	0	0	0	0	1	1	0	0

Sorting Representation

- Associate a real weight to each object
- Sort object according to their weight
- The order of objects is the permutation

Example

Permutation:

$$
1-2-4-3-8-5-9-6-7
$$

Degeneracy

- Many different genotypes correspond to the same permutation
- In particular, the n-dimensional Euclidean space gets partitioned into n! "slices", each corresponding to one partition
- All n! "slices" touch at the origin
- Not necessarily bad for Eas
- Leads to the emergence of so-called "neutral networks"

Degeneracy and Neutral Networks

Discussion of Sorting Representation

- Advantages:
- no need for specialized operators
- presence of neutral networks
- Drawbacks:
- search space is much larger than solution space
- decoder has a complexity of $O(n \log n)$

Specialized Operators

- Straightforward mutation and recombination operators may produce illegal chromosomes
- Devise specialized versions adapted to each particular representation

Mutation for Pie Problems

Recombination for Pie Problems

- Simply performing one-point crossover or uniform crossover is not satisfactory
- Gene semantics depends on their context
- Example:
$\begin{array}{ll}\text { - } \operatorname{In}(9,1,0), 9 & \text { "means" } 90 \% \\ \text { - } \operatorname{In}(9,46,45), & 9 \quad \text { "means" } 9 \%\end{array}$
- We need to take this meaning into account

"Balanced" Crossover

"Balanced" Crossover Example

$$
\begin{aligned}
& \text { TOT }=10 \\
& \text { TOT }=100 \\
& \text { TOT }=101
\end{aligned}
$$

Discussion of "Balanced" Crossover

- What do we learn from this simple example?
- An operator should not only preserve feasibility
- It should operate at the semantic level

Mutations for Permutation Problems

(Path representation)

- Insertion Mutation
- Displacement Mutation
- Swap Mutation
- Heuristic Mutation

Insertion Mutation

- Randomly pick a position, then insert its content into a random position
- Example:

Displacement Mutation

- A generalization of Insertion Mutation
- Move various elements at once
- Example:

Swap Mutation

- Randomly pick two position, then swap their contents
- Example:

(2, 7, 8, 3, 9, 4, 1, 5, 6)

Heuristic Mutations

- Good perturbation heuristics are known for most combinatorial optimization problems from local optimization techniques
- Idea: use those moves as mutation operators
- Example:
- 2-opt heuristics in TSP: remove two edges and reconnect the two resulting paths in a different way

2-opt Mutation

2-opt Mutation

2-opt Mutation

2-opt Mutation (2)

2-opt Mutation

2-opt Mutation

Recombinations for Permutation Problems

(Path representation)

- Order Crossover (Davis, 1995)
- Partially Mapped Crossover (Goldberg and Lingle, 1985).
- Position-Based Crossover
- Order-Based Crossover
- Cycle Crossover

Order Crossover

- Give two parents P1 and P2
- Select a random substring S of P1
- Copy substring S to the first offspring O1
- Delete from P2 the elements in S
- Insert the remaining elements of P2 into empty position of O1
- Copy the remaining elements of P2 into O2
- Fill the empty positiond of O2 with the elements in S

Order Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6)$
- $\mathrm{P} 2=(9,8,7,6,5,4,3,2,1)$

Order Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6) \mathrm{S}=(8,3,9,7)$
- $\mathrm{P} 2=(9,8,7,6,5,4,3,2,1)$

Order Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6) \mathrm{S}=(8,3,9,7)$
- $\mathrm{P} 2=(9,8,7,6,5,4,3,2,1)$
- O1 = (, _, 8, 3, 9, 7, _, _, 」)
- O2 = (, _, _, _, _, _, _, _, _)

Order Crossover Example

- P1 $=(2,4,8,3,9,7,1,5,6) S=(8,3,9,7)$
- P2 = (, _, _, 6, 5, 4, _, 2, 1)
- O1 = (_, _, 8, 3, 9, 7, _, _, _)
- O2 = (, _, _, _, _, _, _, _, _)

Order Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6) \mathrm{S}=(8,3,9,7)$
- P2 = (, _, _, 6, 5, 4, _, 2, 1)
- O1 = (6, 5, 8, 3, 9, 7, 4, 2, 1)
- O2 = (, _, _, _, _, _, _, _, _)

Order Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6) \mathrm{S}=(8,3,9,7)$
- P2 = (, _, _, 6, 5, 4, _, 2, 1)
- O1 = (6, 5, 8, 3, 9, 7, 4, 2, 1)
- O2 = (, _, _, 6, 5, 4, _, 2, 1)

Order Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6) \mathrm{S}=(8,3,9,7)$
- P2 = (, _, _, 6, 5, 4, _, 2, 1)
- O1 = (6, 5, 8, 3, 9, 7, 4, 2, 1)
- $\mathrm{O} 2=(8,3,9,6,5,4,7,2,1)$
- Done!

Partially Mapped Crossover (PMX)

- Randomly pick two crossover points
- Exchange the two substrings within the crossover points
- Fill the remaining positions in the offspring by mapping the elements of the parents:
- if an element does not occur in the substring within the crossover points, leave it unchanged
- otherwise, replace it with the element in the substring of the other parent

PMX Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6)$
- $\mathrm{P} 2=(9,8,7,6,5,4,3,2,1)$

PMX Example

- $\mathrm{P} 1=(2,4,|8,3,9,7| 1,5,6$,
- $\mathrm{P} 2=(9,8,|7,6,5,4| 3,2,1$,

PMX Example

- $\mathrm{P} 1=(2,4,|8,3,9,7| 1,5,6$,
- P2 = (9, 8, | 7, 6, 5, 4, | 3, 2, 1)
- O1 = (2, 4, | 7, 6, 5, 4, | 1, 5, 6)
- $\mathbf{O 2}=(9,8,|8,3,9,7| 3,2,1$,

PMX Example

- P1 = (2, 4, | 8, 3, 9, 7, | 1, 5, 6)
- $\mathrm{P} 2=(9,8,|7,6,5,4| 3,2,1$,
- $\mathrm{O} 1=(2,8,|7, \underline{6,5,4}| 1,3,9$,
- $\mathrm{O} 2=(6,5,|\underline{8}, 3,9,7| 4,2,1$,
- Done!

Position-Based Crossover

- Select k random positions in P1
- Copy them into the corresponding positions of O1
- Fill the empty positions with the remaining elements in the same order as they occur in P2
- Build O 2 by means of the dual operation
- O1 inherits
- absolute positions from P1 for k elements
- relative positions from P2 for the other elements

Order-Based Crossover

- Select k random positions
- Impose the order in which their elements appear in P1 to P2 to produce O1
- Impose the order in which their element appear in P2 to P1 to produce O2

Cycle Crossover

- Select a random position in P1
- Look up the content of the same position in P2 and look for the same element in P1
- Continue like that until going back to the initial position: i.e., until a cycle has formed
- Copy into O1 the positions of P1 containing elements of the cycle
- Fill the other positions of O1 with the elements found in P2
- Construct O2 in a complementary fashion

Cycle Crossover Example

- $P 1=(2,4,8,3,9,7,1,5,6)$
- $\mathrm{P} 2=(9,8,7,6,5,4,3,2,1)$
- Cycle $=(8,7,4)$

Cycle Crossover Example

- $P 1=(2,4,8,3,9,7,1,5,6)$
- P2 = (9, 8, 7, 6, 5, 4, 3, 2, 1)
- Cycle $=(8,7,4)$

Cycle Crossover Example

- $\mathrm{P} 1=(2,4,8,3,9,7,1,5,6)$
- P2 = (9, 8, 7, 6, 5, 4, 3, 2, 1)
- Cycle $=(8,7,4)$
- O1 = (9, 4, 8, 6, 5, 7, 3, 2, 1)
- O2 = (2, 8, 7, 3, 9, 4, 1, 5, 6)
- Done!

Conclusions

- Examples of specialized mutation and recombination operators adapted to particular representations
- Many degrees of freedom
- Not always obvious which alternative is best
- Empirical evaluation of alternatives

