

#### Algorithmes Évolutionnaires (M2 MIAGE IA<sup>2</sup>)

#### Andrea G. B. Tettamanzi Laboratoire I3S – Équipe SPARKS andrea.tettamanzi@univ-cotedazur.fr







#### Séance 5 Gestion des contraintes

#### Handling Constraints

Three commonly used techniques:

- Penalty functions
- Decoders/repair algorithms
- Appropriate data structures and specialized genetic operators

#### **Penalty Functions**

 Basic idea: turn constraints into optimization criteria



Andrea G. B. Tettamanzi, 2020

## **Penalty Functions**

- Basic idea: turn constraints into optimization criteria
- Caution:

Risk of spending most of the time evaluating unfeasible solutions, sticking with the first feasible solution found, or finding an unfeasible solution that scores better than feasible solutions

### Example: Transport Problem

- Given:
  - Set of *n* "factories"
  - Set of *m* "customers"
  - Cost of transporting one unit from each factory to each customer
- Minimize the cost of transport
- Constraints:
  - every customer should receive the amount ordered

#### Killer Solution for Transport Problem

- Do not deliver anything to any customer
- Total transport cost: 0
- Excellent performance at the cost of some constraint violations

## **Discussion of Penalty Functions**

- Very general
- Easy to apply
- Requires a grain of salt
- Not always efficient

#### **Decoders or Repair Algorithms**

- Computationally intensive
- Tailored to the particular problem/application

#### **Decoders or Repair Algorithms**

- Basic idea:
  - genetic operators can produce infeasible solution
  - infeasible solutions are "repaired"
- Two general approaches:
  - decoders
  - repair algorithms

#### **Decoders / Repair Algorithms**



Andrea G. B. Tettamanzi, 2020

#### **Common Assumption**

- Algorithm available which is capable of transforming an infeasible solution into a feasible one
- Complexity of the algorithm is lower-order

#### Decoders

- Infeasible solutions are kept in the population
- They are regarded as genotypes
- Genetic operators do not care about constraints
- Genotypes are "decoded" into feasible solutions

#### **Repair Algorithms**

- Feasible solutions only can be part of the population
- After a genetic operator is applied, algorithm "repairs" the offspring
- Infeasible traits never get inherited

## Discussion of Decoders, Repair Algorithms

- Very interesting in principle
- Not much used in practice
- Main issue: for many hard problems, repairing an infeasible solution is almost as hard as solving the problem

# Specialized Data Structures and Operators

- All possible genotypes encode for feasible solutions
- No time at all is spent processing infeasible solutions
- Ideal state of affairs
- Not always possible

Andrea G. B. Tettamanzi, 2020

#### Requirements

- All feasible solutions can be represented
- No infeasible solution can be represented, or...
- Genetic operators preserve feasibility
- Population is seeded with feasible solutions

Andrea G. B. Tettamanzi, 2020



Andrea G. B. Tettamanzi, 2020