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Evolutionary algorithms are a family of stochastic problem-solving techniques, within the broader category of what we
might call “natural-metaphor models”, together with neural networks, ant systems, etc. They find their inspiration in
biology and, in particular, they are based on mimicking the mechanisms of what we know as “natural evolution”. During
the last twenty-five years these techniques have been applied to a large number of problems of great practical and eco-
nomic importance with excellent results. This paper presents a survey of these techniques and a few sample applications.
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1 What Are Evolutionary Algo-
rithms?
If we think about living beings, in-

cluding humans, and their organs, their
complexity, and their perfection, we
cannot help but wonder how it was
possible for such sophisticated solu-
tions to have evolved autonomously.
Yet there is a theory, initially proposed
by Charles Darwin and later refined by
many other natural scientists, biolo-
gists and geneticists, which provides a
satisfactory explanation for most of
these biological phenomena by study-
ing the mechanisms which enable spe-
cies to adapt to mutable and complex
environments. This theory is supported
by a considerable body of evidence and
has yet to be refuted by any experimen-
tal data. According to Darwin’s theory,
these wonderful creations are simply
the result of a purposeless evolution-
ary process, driven on the one hand by
randomness and on the other hand by
the law of the survival of the fittest.
Such is natural evolution.

If such a process has been capable
of producing something as sophisti-
cated as the eye, the immune system,

and even our brain, it would seem only
logical to try and do the same by simu-
lating the process on computers to at-
tempt to solve complicated problems
in the real world. This is the idea be-
hind the development of evolutionary
algorithms (see the box entitled "Some
History" for the birth and evolution of
these algorithms).

1.1 The Underlying Metaphor
Evolutionary algorithms are thus

bio-inspired computer-science tech-
niques based on a metaphor which is
schematically outlined in Table 1. Just
as an individual in a population of or-
ganisms must adapt to its surrounding
environment to survive and reproduce,
so a candidate solution must be adapted
to solving its particular problem. The
problem is the environment in which a
solution lives within a population of
other candidate solutions. Solutions
differ from one another in terms of their
quality, i.e., their cost or merit, re-
flected by the evaluation of the objec-
tive function, in the same way as the
individuals of a population of organ-
isms differ from one another in terms
of their degree of adaptation to the en-
vironment; what biologists refer to as
fitness. If natural selection allows a
population of organisms to adapt to its

surrounding environment, when ap-
plied to a population of solutions to a
problem, it should also be able to bring
about the evolution of better and bet-
ter, and eventually, given enough time,
optimal solutions.

Based on this metaphor, the com-
putational model borrows a number of
concepts and their relevant terms from
biology: every solution is coded by
means of one or more chromosomes;
the genes are the pieces of encoding
responsible for one or more traits of a
solution; the alleles are the possible
configurations a  gene can take on; the
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Some History

The idea of using selection and random mutation for optimisation tasks
goes back to the fifties at least and the work of the statistician George E. P.
Box, the man who famously said "all models are wrong, but some are useful".
Box, however, did not make use of computers, though he did manage to for-
mulate a statistical methodology that would become widely used in industry,
which he called evolutionary operation [1]. At around the same time, other
scholars conceived the idea of simulating evolution on computers: Barricelli
and Fraser used computer simulations to study the mechanisms of natural
evolution, while the bio-mathematician Hans J. Bremermann is credited as
being the first person to recognise an optimisation process in biological evolu-
tion [2].

As often happens with pioneering ideas, these early efforts met with con-
siderable scepticism. Nevertheless, the time was evidently ripe for those ideas,
in an embryonic stage at that point, to be developed. A decisive factor behind
their development was the fact that the computational power available at that
time in major universities broke through a critical threshold, allowing evolu-
tionary computation to be put into practice at last. What we recognise today as
the original varieties of evolutionary algorithms were invented independently
and practically simultaneously in the mid sixties by three separate research
groups. In America, Lawrence Fogel and colleagues at the University of Cali-
fornia in San Diego laid down the foundations of evolutionary programming
[3], while at the University of Michigan in Ann Arbor John Holland proposed his
first genetic algorithms [4]. In Europe, Ingo Rechenberg and colleagues, then
students at the Technical University of Berlin, created what they called "evolution
strategies" (Evolutionsstrategien) [5]. During the following 25 years, each of these
three threads developed essentially on its own, until in 1990 there was a con-
certed effort to bring about their convergence. The first edition of the PPSN
(Parallel Problem Solving from Nature) conference was held that year in Dort-
mund. Since then, researchers interested in evolutionary computation form a
single, albeit articulated, scientific

exchange of genetic material between
two chromosomes is called crossover,
whereas a perturbation to the code of
a solution is termed mutation (see the
box entitled "A Genetic Algorithm at
Work" for an example).

Although the computational model
involves drastic simpli-fications com-
pared to the natural world, evolution-
ary algorithms have proved capable of
causing surprisingly complex and in-
teresting structures to emerge. Given
appropriate encoding, any individual

can be the representation of a particu-
lar solution to a problem, the strategy
for a game, a plan, a picture, or even a
simple computer program.

1.2 The Ingredients of An
Evolutionary Algorithm

Now we have introduced the con-
cepts, let us take a look at what an evo-
lutionary algorithm consists of in prac-
tice.

An evolutionary algorithm is a
stochastic optimisation technique that

proceeds in an iterative way. An evo-
lutionary algorithms maintains a popu-
lation (which in this context means a
multiset or bag, i.e., a collection of el-
ements not necessarily all distinct from
one another) of individuals represent-
ing candidate solutions for the prob-
lem at hand (the object problem), and
makes it evolve by applying a (usually
quite small) number of stochastic op-
erators: mutation, recombination, and
selection.

Mutation can be any operator that
randomly perturbs a solution. Recom-
bination operators decompose two or
more distinct individuals and then
combine their constituent parts to form
a number of new individuals. Selection
creates copies of those individuals that
represent the best solutions within the
population at a rate proportional to
their fitness.

The initial population may origi-
nate from a random sampling of the
solution space or from a set of initial
solutions found by simple local search
procedures, if available, or determined
by a human expert.

Stochastic operators, applied and
composed according to the rules de-
fining a specific evolutionary algo-
rithm, determine a stochastic popula-
tion-transforming operator. Based on
that operator, it is possible to model the
workings of an evolutionary algorithm
as a Markov chain whose states are
populations. It is possible to prove that,
given some entirely reasonable as-
sumptions, such a stochastic process
will converge to the global optimum
of the problem [16].

When talking about evolutionary
algorithms, we often hear the phrase
implicit parallelism. This term refers
to the fact that each individual can be
thought of as a representative of a
multitude of solution schemata, i.e., of
partially specified solutions, such that,
while processing a single individual,
the evolutionary algorithm will in fact
be implicitly processing at the same
time (i.e., in parallel) all the solution
schemata of which that individual is a
representative. This concept should not
be confused with the inherent paral-
lelism of evolutionary algorithms. This
refers to the fact that they carry out a

EVOLUTION PROBLEM
SOLVING

Environment Object problem
Individual Candidate solution
Fitness Solution quality

Table 1: A Schematic Illustration of The Metaphor Underlying
Evolutionary Algorithms.
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A Genetic Algorithm at Work

We can take a close look at how a genetic algorithm works by using an example. Let us assume we have to solve a
problem, called maxone, which consists of searching for all binary strings of length l for the string containing the maxi-
mum number of ones. At first sight this might seem to be a trivial problem, as we know the solution beforehand: it will be
the string made up entirely of ones. However, if we were to suppose that we had to make l binary choices to solve a
problem, and that the quality of the solution were proportional to the number of correct choices we made, then we would
have a problem of equivalent difficulty, by no means easy to solve. In this example we assume that all correct choices
correspond to a one merely to make the example easier to follow. We can therefore define the fitness of a solution as the
number of ones in its binary coding, set l = 10, which is a number small enough to make things manageable, and try to
apply the genetic algorithm to this problem.

First of all, we have to establish the size of the population. A sensible
choice to begin with might be 6 individuals. At this point, we need to
generate an initial population: we will do this by tossing a fair coin 60
times (6 individuals times 10 binary digits) and writing 0 if the out-
come is 'heads' and 1 if the outcome is 'tails'. The initial population
thus obtained is shown in Table A. Note that the average fitness in
the initial population is 5.67.

The evolutionary cycle can now begin. To use fitness-proportionate
selection, the simplest method is to simulate throwing a ball into a
special roulette wheel which has as many slots as individuals in the
population (6 in this case). Each slot has a width that is to the cir-
cumference of the wheel as the fitness of the corresponding indi-
vidual is to the sum of the fitness of all the individuals in the popula-
tion (36 in this case). Therefore, when we spin the wheel, the ball will
have a 7/34 probability of coming to rest in the individual 1 slot, 5/34
of landing in the individual 2 slot, and so on. We will have to throw the ball exactly 6 times in order to put together an
intermediate population of 6 strings for reproduction. Let us assume the outcomes are: 1, 3, 5, 2, 4, and 5 again. This
means two copies of individual 5 and a single copy of the other individuals with the exception of individual 6 will be used
for reproduction. Individual 6 will not leave descendants. The next operator to be applied is recombination. Couples are
formed, the first individual extracted with the second, the third with the fourth, and so forth. For each couple, we decide
with a given probability, say 0.6, whether to perform crossover. Let us assume that we perform crossover with only the
first and the last couple, with cutting points randomly chosen after the second digit and after the fifth digit respectively.
For the first couple, we will have

11.11010101 becoming 11.10110101
11.10110101       " 11.11010101.

We observe that, since the parts to the left of the cutting point are identical, this crossover will have no effect. This
contingency is more common than you might imagine, especially when, after many generations, the population is full of
equally good and nearly identical individuals. For the third couple we will have instead

01000.10011 becoming 01000.11101
11101.11101        " 11101.10011.

All that remains is to apply mutation to the six strings resulting
from recombination by deciding with a probability of, say, 1/10 for
each digit whether to invert it. As there are 60 binary digits in total,
we would expect an average of 6 mutations randomly distributed
over the whole population. After applying all the genetic operators,
the new population might be the one shown in Table B, where the
mutated binary digits have been highlighted in bold type.

In one generation, the average fitness in the population has
changed from 5.67 to 6.17, with an 8.8% increase. By iterating the
same process again and again, very quickly we reach a point at
which an individual made entirely of ones appears, the optimal
solution to our problem.

NO. INDIVIDUAL    FITNESS

1) 1111010101 7
2) 0111000101 5
3) 1110110101 7
4) 0100010011 4
5) 1110111101 8
6) 0100110000 3

Table A: The Initial Population of The Genetic
Algorithm to Solve The maxone Problem,
Showing The Fitness for All Individuals.

NO. INDIVIDUAL FITNESS

1) 1110100101 6
2) 1111110100 7
3) 1110101111 8
4) 0111000101 5
5) 0100011101 5
6) 1110110001 6

Table B: The Population of The Genetic
Algorithm to Solve The maxone Problem after
One Generation, Showing The Fitness for All
Individuals.
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population-based search, which means
that, although for the sake of conven-
ience they are usually expressed by
means of a sequential description, they
are particularly useful and easy to im-
plement on parallel hardware.

1.3 Genetic Algorithms
The best way to understand how

evolutionary algorithms work is to con-
sider one of their simplest versions,
namely genetic algorithms [6]. In ge-
netic algorithms, solutions are repre-
sented as fixed-length binary strings.
This type of representation is by far the
most general, although, as we shall see
below, not always the most convenient,
although the fact is that any data struc-
ture, no matter how complex and ar-
ticulated, will always be encoded in
binary in a computer’s memory. A se-
quence of two symbols, 0 and 1, from
which it is possible to reconstruct a
solution, is very reminiscent of a DNA
thread made up of a sequence of four
bases, A, C, G, and T, from which it is
possible to reconstruct a living organ-
ism! In other words, we can consider a
binary string as the DNA of a solution
to the object problem.

A genetic algorithm consists of two
parts:
1. a routine that generates (randomly
or by using heuristics) the initial popu-
lation;
2. an evolutionary cycle, which at each
iteration (or generation), creates a new
population by applying the genetic
operators to the previous population.

The evolutionary cycle of the ge-
netic algorithms can be represented
using the pseudocode in Table 2. Each
individual is assigned a particular fit-
ness value, which depends on the qual-
ity of the solution it represents. The
first operator to be applied is selection,
whose purpose is to simulate the Dar-
winian law of the survival of the fit-
test. In the original version of genetic
algorithms, that law is implemented by
means of what is known as the fitness-
proportionate selection: to create a new
intermediate population of n ‘parent’
individuals, n independent extractions
of an individual from the existing
population are carried out, where the
probability for each individual to be
extracted is directly proportional to its

fitness. As a consequence, above-av-
erage individuals will be extracted
more than once on average, whereas
below-average individuals will face
extinction.

Once n parents are extracted as de-
scribed, the individuals of the next gen-
eration will be produced by applying a
number of reproduction operators,
which may involve one parent only
(thus simulating a sort of asexual re-
production) in which case we speak of
mutation, or more than one parent, usu-
ally two (sexual reproduction), in
which case we speak of recombination.
In genetic algorithms, two reproduc-
tion operators are used: crossover and
mutation.

To apply crossover, the parent in-
dividuals are mated two by two. Then,
with a certain probability p

cross
, called

the "crossover rate", which is a param-
eter of the algorithm, each couple un-
dergoes crossover itself. This is done
by lining up the two binary strings,
cutting them at a randomly chosen
point, and swapping the right-hand
halves, thus yielding two new individu-
als, which inherit part of their charac-
ters from one parent and part from the
other.

After crossover, all individuals un-
dergo mutation, whose purpose is to
simulate the effect of random transcrip-
tion errors that can happen with a very
low probability p

mut
 every time a chro-

mosome is duplicated. Mutation
amounts to deciding whether to invert
each binary digit, independently of the
others, with probability p

mut
. In other

words, every zero has probability p
mut

of becoming a one and vice versa.
The evolutionary cycle, according

to how it is conceived, could go on
forever. In practice, however, one has

to decide when to halt it, based on some
user-specified termination criterion.
Examples of termination criteria are:
· a fixed number of generations or a
certain elapsed time;
· a satisfactory solution, according to
some particular criterion, has been
found;
· no improvement has taken place for
a given number of generations.

1.4 Evolution Strategies
Evolution strategies approach the

optimisation of a real-valued objective
function of real variables in an l-dimen-
sional space. The most direct represen-
tation is used for the independent vari-
ables of the function (the solution),
namely a vector of real numbers. Be-
sides encoding the independent vari-
ables, however, evolution strategies
give the individual additional informa-
tion on the probability distribution to
be used for its perturbation (mutation
operator). Depending on the version,
this information may range from just
the variance, valid for all independent
variables, to the entire variance-
covariance matrix C of a joint normal
distribution; in other words, the size of
an individual can range from l + 1 to
l(l + 1) real numbers.

In its most general form, the muta-
tion operator perturbs an individual in
two steps:
1. It perturbs the C matrix (or, more
exactly, an equivalent matrix of rota-
tion angles from which the C matrix
can be easily calculated) with the same
probability distribution for all individu-
als;
2. It perturbs the parameter vector rep-
resenting the solution to the
optimisation problem according to a
joint normal probability distribution

generation = 0
Initialize population
while not <termination condition> do

generation = generation + 1
Compute the fitness of all individuals
Selection
Crossover(p

cross
)

Mutation(p
mut
)

end while

Table 2: Pseudocode Illustrating A Typical Simple Genetic Algorithm.
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having mean 0 and the perturbed C as
its variance-covariance matrix.

This mutation mechanism allows
the algorithm to evolve the parameters
of its search strategy autonomously
while it is searching for the optimal
solution. The resulting process, called
self-adaptation, is one of the most
powerful and interesting features of
this type of evolutionary algorithm.

Recombination in evolution strat-
egies can take different forms. The
most frequently used are discrete and
intermediate recombination. In dis-
crete recombination, each component
of the offspring individuals is taken
from one of the parents at random,
while in intermediate recombination
each component is obtained by linear
combination of the corresponding
components in the parents with a ran-
dom parameter.

There are two alternative selection
schemes defining two classes of evo-
lution strategies: (n, m) and (n + m). In
(n, m) strategies, starting from a popu-
lation of n individuals, m > n offspring
are produced and the n best of them
are selected to form the population of
the next generation. In (n + m) strate-
gies, on the other hand, the n parent
individuals participate in selection as
well. Of those n + m individuals, only
the best n make it to the population of
the next generation. Note that, in both
cases, selection is deterministic and
works "by truncation", i.e., by discard-
ing the worst individuals. In this way,
it is not necessary to define a non-nega-
tive fitness, and optimisation can con-
sider the objective function, which can
be maximised or minimised according
to individual cases, directly.

1.5 Evolutionary Programming
Evolution, whether natural or arti-

ficial, has nothing ‘intelligent’ about it,
in the literal sense of the term: it does
not understand what it is doing, nor is
it supposed to. Intelligence, assuming
such a thing can be defined, is rather
an ‘emergent’ phenomenon of evolu-
tion, in the sense that evolution may
manage to produce organisms or solu-
tions endowed with some form of ‘in-
telligence’.

Evolutionary programming is in-
tended as an approach to artificial in-

telligence, as an alternative to symbolic
reasoning techniques. Its goal is to
evolve intelligent behaviours repre-
sented through finite-state machines
rather than define them a priori. In
evolutionary programming, therefore,
the object problem determines the in-
put and output alphabet of a family of
finite-state machines, and individuals
are appropriate representations of fi-
nite-states machines operating on those
alphabets. The natural representation
of a finite-state machine is the matrix
that defines its state-transition and out-
put functions. The definition of the
mutation and recombination operators
is slightly more complex than in the
case of genetic algorithms or evolution
strategies, as it has to take into account
the structure of the objects those op-
erators have to manipulate. The fitness
of an individual can be computed by
testing the finite-state machine it rep-
resents on a set of instances of the prob-
lem. For example, if we wish to evolve
individuals capable of modelling a his-
torical series, we need to select a
number of pieces from the previous
series and feed them into an individual.
We can then interpret the symbols pro-
duced by the individual as predictions
and compare them with the actual data
to measure their accuracy.

1.6 Genetic Programming
Genetic programming [7] is a rela-

tively new branch of evolutionary al-
gorithms, whose goal is an old dream
of artificial intelligence: automatic pro-
gramming. In a programming problem,
a solution is a program in a given pro-

gramming language. In genetic pro-
gramming, therefore, individuals rep-
resent computer programs.

Any programming language can be
used, at least in principle. However, the
syntax of most languages would make
the definition of the genetic operators
that preserve it particularly awkward
and burdensome. This is why early ef-
forts in that direction found a sort of
restricted LISP to be an ideal expres-
sion medium of expression. LISP has
the advantage of possessing a particu-
larly simple syntax. Furthermore, it
allows us to manipulate data and pro-
grams in a uniform fashion. In prac-
tice, approaching a programming prob-
lem calls for the definition of a suit-
able set of variables, constants, and
primitive functions, thus limiting the
search space which would otherwise
be unwieldy. The functions chosen will
be those that a priori are deemed use-
ful for the purpose. It is also custom-
ary to try and arrange things so that all
functions accept the results returned by
all others as arguments, as well as all
variables and predefined constants. As
a consequence, the space of all possi-
ble programs from which the program
that will solve the problem is to be
found will contain all possible compo-
sitions of functions that can be formed
recursively from the set of primitive
functions, variables, and predefined
constants.

For the sake of simplicity, and with-
out loss of generality, a genetic pro-
gramming individual can be regarded
as the parse tree of the corresponding
program, as illustrated in Figure 1. The

Figure 1: A Sample LISP Program with Its Associated Parse Tree.
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recombination of two programs is car-
ried out by randomly selecting a node
in the tree of both parents and by swap-
ping the subtrees rooted in the selected
nodes, as illustrated in Figure 2. The
importance of the mutation operator is
limited in genetic programming, for
recombination alone is capable creat-
ing enough diversity to allow evolu-
tion to work.

Computing the fitness of an indi-
vidual is not so different from testing
a program. A set of test cases must be
given as an integral part of the descrip-
tion of the object problem. A test case
is a pair (input data, desired output).
The test cases are used to test the pro-
gram as follows: for each case, the pro-
gram is executed with the relevant in-
put data; the actual output is compared
with the desired output; and the error
is measured. Finally, fitness is obtained
as a function of the accumulated total
error over the whole test set.

An even more recent approach to
genetic programming is what is known
as grammatical evolution [8], whose
basic idea is simple but powerful: given
the grammar of a programming lan-
guage (in this case completely arbi-
trary, without limitations deriving from
its particular syntax), consisting of a
number of production rules, a program
in this language is represented by
means of a string of binary digits. This
representation is decoded by starting
from the target non-terminal symbol of
the grammar and reading the binary
digits from left to right – enough dig-
its each time to be able to decide which
of the applicable production rules
should actually be applied. The produc-
tion rule is then applied and the decod-

ing continues. The string is considered
to be circular, so that the decoding
process never runs out of digits. The
process finishes when no production
rule is applicable and a well-formed
program has therefore been produced,
which can be compiled and executed
in a controlled environment.

2 ‘Modern’ Evolutionary Algo-
rithms
Since the early eighties, evolution-

ary algorithms have been successfully
applied to many real-world problems
which are difficult or impossible to
solve with exact methods and are of
great interest to operations researchers.
Evolutionary algorithms have gained
a respectable place in the problem solv-
er’s toolbox, and this last quarter of a
century has witnessed the coming of
age of the various evolutionary tech-
niques and their cross-fertilisation as
well as progressive hybridisation with
other technologies.

If there is one major trend line in
this development process, it is the pro-
gressive separation from elegant rep-
resentations, based on binary strings,
of the early genetic algorithms, so sug-
gestively close to their biological
source of inspiration, and an increas-
ing propensity for adopting represen-
tations closer to the nature of the ob-
ject problem, ones which map more
directly onto the elements of a solu-
tion, thus allowing all available infor-
mation to be exploited to ‘help’, as it
were, the evolutionary process to find
its way to the optimum [9].

Adopting representations closer to
the problem also necessarily implies
designing mutation and recombination

operators that manipulate the elements
of a solution in an explicit, informed
manner. On the one hand, those opera-
tors end up being less general, but on
the other hand, the advantages in terms
of performance are often remarkable
and compensate for the increased de-
sign effort.

Clearly, the demand for efficient
solutions has prompted a shift away
from the coherence of the genetic
model.

2.1 Handling Constraints
Real-world problems, encountered

in industry, business, finance and the
public sector, whose solution often has
a significant economical impact and
which constitute the main target of
operations research, all share a com-
mon feature: they have complex and
hard to handle constraints. In early
work on evolutionary computation, the
best way to approach constraint han-
dling was not clear. Over time, evolu-
tionary algorithms began to be appre-
ciated as approximate methods for op-
erations research and they have been
able to take advantage of techniques
and expedients devised within the
framework of operations research for
other approximate methods. Three
main techniques emerged from this
cross-fertilisation, which can be com-
bined if needed, that enable nontrivial
constraints to be taken into account in
an evolutionary algorithm:
· the use of penalty functions;
· the use of decoders or repair algo-
rithms;
· the design of specialised encodings
and genetic operators.

Penalty functions are functions as-
sociated with each problem constraint
that measure the degree to which a so-
lution violates its relevant constraint.
As the name suggests, these functions
are combined with the objective func-
tion in order to penalise the fitness of
individuals that do not respect certain
constraints. Although the penalty func-
tion approach is a very general one,
easy to apply to all kinds of problems,
its use is not without pitfalls. If pen-
alty functions are not accurately
weighted, the algorithm can waste a

Figure 2: Schematic Illustration of Recombination in Genetic Programming.
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great deal of time processing infeasi-
ble solutions, or it might even end up
converging to an apparent optimum
which is actually impossible to imple-
ment. For instance, in a transportation
problem, described by n factories and
m customers to which a given quantity
of a commodity has to be delivered,
where the cost of transporting a unit
of the commodity from every factory
to any of the customers, a solutions that
minimises the overall cost in an unbeat-
able way is the solution where abso-
lutely nothing is transported! If the vio-
lation of the constraints imposing that
the ordered quantity of the commodity
is delivered to each customer is not
penalised to a sufficient extent, the
absurd solution of not delivering any-
thing could come out as better than any
solution that actually meets customers’
orders. For some problems, called fea-
sibility problems, finding a solution
that doe not violate any constraint is
almost as difficult as finding the opti-
mum solution. For this kind of prob-
lems, penalty functions have to be de-
signed with care or else the evolution
may never succeed in finding any fea-
sible solution.

Decoders are algorithms based on
a parameterised heuristics, which aim
to construct an optimal solution from
scratch by making a number of choices.
When such an algorithm is available,
the idea is to encode the parameters of
the heuristics into the individuals proc-
essed by the evolutionary algorithms,
rather than the solution directly, and to
use the decoder to reconstruct the cor-
responding solution from the param-
eter values. We have thus what we
might call an indirect representation of
solutions.

Repair algorithms are operators
that, based on some heuristics, take an
infeasible solution and ‘repair’ it by
enforcing the satisfaction of one vio-
lated constraint, then of another, and
so on, until they obtain a feasible solu-
tion. When applied to the outcome of
genetic operators of mutation and re-
combination, repair algorithms can
ensure that the evolutionary algorithm
is at all times only processing feasible
solutions. Nevertheless, the applicabil-
ity of this technique is limited, since
for many problems the computational

complexity of the repair algorithm far
outweighs any advantages to be gained
from its use.

Designing specialised encodings
and genetic operators would be the
ideal technique, but also the most com-
plicated to apply in all cases. The un-
derlying idea is to try and design a so-
lutions representation that, by its con-
struction, is capable of encoding all and
only feasible solutions, and to design
specific mutation and recombination
operators alongside it that preserve the
feasibility of the solutions they are ap-
plied to. Unsurprisingly, as the com-
plexity and number of constraints in-
creases, this exercise soon becomes
formidable and eventually impossible.
However, when possible, this is the
optimal way to go, for it guarantees the
evolutionary algorithm processes fea-
sible solutions only and therefore re-
duces the search space to the absolute
minimum.

2.2 Combinations with Other
Soft-Computing Techniques

Evolutionary algorithms, together
with fuzzy logic and neural network,
are part of what we might call soft com-
puting, as opposed to traditional or
hard computing, which is based on cri-
teria like precision, determinism, and
the limitation of complexity. Soft com-
puting differs from hard computing in
that it is tolerant of imprecision, un-
certainty, and partial truth. Its guiding
principle is to exploit that tolerance to
obtain tractability, robustness, and
lower solution costs.

Soft computing is not just a mix-
ture of its ingredients, but a discipline
in which each constituent contributes
a distinct methodology for addressing
problems in its domain, in a comple-
mentary rather than competitive way
[10]. Thus evolutionary algorithms can
be employed not only to design and
optimise fuzzy systems, such as fuzzy
rule bases or fuzzy decision trees, but
also to improve the learning character-
istics of neural networks, or even de-
termine their optimal topology. Fuzzy
logic can also be used to control the
evolutionary process by acting dy-
namically on the algorithm parameters,
to speed up convergence to the global
optimum and escape from local optima,

and to fuzzify, as it were, some ele-
ments of the algorithm, such as the fit-
ness of individuals or their encoding.
Meanwhile neural networks can help
an evolutionary algorithm obtain an
approximate estimate of the fitness of
individuals for problems where fitness
calculation requires computationally
heavy simulations, thus reducing CPU
time and improving overall perform-
ance.

The combination of evolutionary
algorithms with other soft computing
techniques is a fascinating research
field and one of the most promising of
this group of computing techniques.

3 Applications
Evolutionary algorithms have been

successfully applied to a large number
of domains. For purely illustrative pur-
poses, and while this is not intended to
be a meaningful classification, we
could divide the field of application of
these techniques into five broad do-
mains:
� Planning, including all problems
that require choosing the most eco-
nomical and best performing way to
use a finite set of resources. Among the
problems in this domain are vehicle
routing, transport problems, robot tra-
jectory planning, production schedul-
ing in an industrial plant, timetabling,
determining the optimal load of a trans-
port, etc.
� Design, including all those prob-
lem that require determining an opti-
mal layout of elements (electronic or
mechanic components, architectural el-
ements, etc.) with the aim of meeting
a set of functional, aesthetic, and ro-
bustness requirements. Among the
problems in this domain are electronic
circuit design, engineering structure
design, information system design, etc.
� Simulation and identification,
which requires determining how a
given design or model of a system will
behave. In some cases this needs to be
done because we are not sure about
how the system behaves, while in oth-
ers its behaviour is known but the ac-
curacy of a model has to be assessed.
Systems under scrutiny may be chemi-
cal (determining the 3D structure of a
protein, the equilibrium of a chemical
reaction), economical (simulating the
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dynamics of competition in a market
economy), medical, etc.
� Control, including all problems that
require a control strategy to be estab-
lished for a given system;
� Classification, modelling and ma-
chine learning, whereby a model of the
underlying phenomenon needs to be
built based on a set of observations.
Depending on the circumstances, such
a model may consist of simply deter-
mining which of a number of classes
an observation belongs to, or building
(or learning) a more or less complex
model, often used for prediction pur-
poses. Among the problems in this do-
main is data mining, which consists of
discovering regularities in huge
amounts of data that are difficult to spot
"with the naked eye".

Of course the boundaries between
these five application domains are not
clearly defined and the domains them-
selves may in some cases overlap to
some extent. However, it is clear that
together they make up a set of prob-
lems of great economic importance and
enormous complexity.

In the following sections we will
try to give an idea of what it means to
apply evolutionary algorithms to prob-
lems of practical importance, by de-
scribing three sample applications in
domains that differ greatly from one
another, namely school timetabling,
electronic circuit design, and behav-
ioural customer modelling.

3.1 School Timetabling
The timetable problem consists of

planning a number of meetings (e.g.,
exams, lessons, matches) involving a
group of people (e.g., students, teach-
ers, players) for a given period and re-
quiring given resources (e.g., rooms,
laboratories, sports facilities) accord-
ing to their availability and respecting
some other constraints. This problem
is known to be NP-complete: that is the

main reason why it cannot be ap-
proached in a satisfactory way (from
the viewpoint of performance) with
exact algorithms, and for a long time
it has been a testbed for alternative
techniques, such as evolutionary algo-
rithms. The problem of designing time-
tables, in particular for Italian high
schools, many of which are distributed
over several buildings, is further com-
plicated by the presence of very strict
constraints, which makes it very much
a feasibility problem.

An instance of this problem con-
sists of the following entities and their
relations:
� rooms, defined by their type, ca-
pacity, and location;
� subjects, identified by their required
room type;
� teachers, characterised by the sub-
jects they teach and their availability;
� classes, i.e., groups of students fol-
lowing the same curriculum, assigned
to a given location, with a timetable
during which they have to be at school;
� lessons, meaning the relation <t, s,
c, l>, where t is a teacher, s is a sub-
ject, c is a class and l is its duration
expressed in periods (for example,
hours); in some cases, more than one
teacher and more than one class can
participate in a lesson, in which case
we speak of grouping.

This problem involves a great many
constraints, both hard and soft, too
many for us to go into now in this arti-
cle. Fortunately, anybody who has
gone to a high school in Europe should
at least have some idea of what those
constraints might be.

This problem has been approached
by means of an evolutionary algorithm,
which is the heart of a commercial
product, EvoSchool [11]. The algo-
rithm adopts a ‘direct’ solution repre-
sentation, which is a vector whose
components correspond to the lessons
that have to be scheduled, while the
(integer) value of a component indi-
cates the period in which the corre-
sponding lesson is to begin. The func-
tion that associates a fitness to each
timetable, one of the critical points of
the algorithm, is in practice a combi-
nation of penalty functions with the
form

where h
i
 is the penalty associated

with the violation of the ith hard con-
straint, s

j
 is the penalty associated with

the violation of the jth soft constraint,
and parameters a

i
 and b

j
 are appropri-

ate weightings associated with each
constraint. Finally, g is an indicator
whose value is 1 when all hard con-

II DD <<2<<2 ++ DD
+
–

+
–II DD <<2<<2 ++ DD
+
–

+
–

Figure 3: A Schematic Diagram of A Sample Circuit Obtained by Composition of 6 Primitive Operations.

Table 3: Primitive Operations for The Representation of Digital Filters. (The format
of the primitives is fixed, with two operands, of which only the required operands
are used. The integers n and m refer to the inputs at cycles t – n and t – m
respectively.)

Operation Code operand 1 operand 2 Description

Input I not used not used Copy input
Delay D n not used Delay n cycles
Left shift L n p multiply by 2p

Right shift R n p divide by 2p

Add A n m add
Subtract S n m subtract
Complement C n not used complement input
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straints are satisfied and zero other-
wise. In effect, this means that soft
constraints are taken into consideration
only after all hard constraints have
been satisfied.

All other ingredients of the evolu-
tionary algorithm are fairly standard,
with the exception of the presence of
two mutually exclusive perturbation
operators, called by the mutation op-
erator, each with its own probability:
· intelligent mutation;
· improvement.

Intelligent mutation, while preserv-
ing its random nature, is aimed at per-
forming changes that do not decrease
the fitness of the timetable to which it
is applied. In particular, if the operator
affects the ith lesson, it will propagate
its action to all the other lessons involv-
ing the same class, teacher or room.
The choice of the "action range" of this
operator is random with any given
probability distribution. In practice, the
effect of this operator is to randomly
move some interconnected lessons in
such a way as to decrease the number
of constraint violations.

Improvement, in contrast, restruc-
tures an individual to a major extent.
Restructuring commences by randomly
selecting a lesson and concentrates on
the partial timetables for the relevant
class, teacher, or room. It compacts the
existing lessons to free up enough
space to arrange the selected lesson
without conflicts.

A precisely balanced interaction
between these two operators is the se-
cret behind the efficiency of this evo-
lutionary algorithm, which has proven
capable of generating high quality
timetables for schools with thousands
of lessons to schedule over different
buildings scattered over several sites.
A typical run takes a few hours on a
not so powerful PC of the kind to be
found in high schools.

3.2 Digital Electronic Circuit
Design

One of the problems that has re-
ceived considerable attention from the
international evolutionary computation
community is the design of finite im-
pulse response digital filters. This in-
terest is due to their presence in a large

number of electronic devices that form
part of many consumer products, such
as cellular telephones, network de-
vices, etc.

The main criterion of traditional
electronic circuit design methodologies
is minimising the number of transis-
tors used and, consequently, produc-
tion costs. However, another very sig-
nificant criterion is power absorption,
which is a function of the number of
logic transitions affecting the nodes of
a circuit. The design of minimum
power absorption digital filters has
been successfully approached by
means of an evolutionary algorithm
[12].

A digital filter can be represented
as a composition of a very small
number of elementary operations, like
the primitives listed in Table 3. Each
elementary operation is encoded by
means of its own code (one character)
and two integers, which represent the
relative offset (calculated backwards
from the current position) of the two
operands. When all offsets are positive,
the circuit does not contain any feed-
back and the resulting structure is that
of a finite impulse response filter. For
example, the individual
  (I 0 2) (D 1 3) (L 2 2) (A 2 1) (D 1 0) (S 1 5)

corresponds to the schematic dia-
gram in Figure 3.

The fitness function has two stages.
In the first stage, it penalises violations
of the filter frequency response speci-
fications, represented by means of a
‘mask’ in the graph of frequency re-
sponse. In the second stage, which is
activated when the frequency response
is within the mask, fitness is inversely
proportional to the circuit activity,
which in turn is directly proportional
to power absorption.

The evolutionary algorithm which
solves this problem requires a great
deal of computing power. For this rea-
son, it has been implemented as a dis-
tributed system, running on a cluster
of computers according to an island
model, whereby the population is di-
vided into a number of islands, resid-
ing on distinct machines, which evolve
independently, except that, every now
and then, they exchange ‘migrant’ in-
dividuals, which allow genetic mate-

rial to circulate while at the same time
keeping the required communication
bandwidth as small as we wish.

A surprising result of the above
evolutionary approach to electronic
circuit design has been that the digital
filters discovered by evolution, besides
having a much lower power absorption
in comparison with the corresponding
filters obtained using traditional design
techniques, as was intended, they also
bring about a 40% to 60% reduction
in the number of logic elements and,
as a consequence, in area and speed as
well. In other words, the decrease in
consumption has not been achieved at
the expense of production cost and
speed. On the contrary, it has brought
about an overall increase in efficiency
in comparison with traditional design
methods.

3.3 Data Mining
A critical success factor for any

business today is its ability to use in-
formation (and knowledge that can be
extracted from information) effec-
tively. This strategic use of data can
result in opportunities presented by
discovering hidden, previously unde-
tected, and frequently extremely valu-
able facts about consumers, retailers,
and suppliers, and business trends in
general. Knowing this information, an
organisation can formulate effective
business, marketing, and sales strate-
gies; precisely target promotional ac-
tivity; discover and penetrate new mar-
kets; and successfully compete in the
marketplace from a position of in-
formed strength. The task of sifting
information with the aim of obtaining
such a competitive advantage is known
as data mining [13]. From a technical
point of view, data mining can be de-
fined as the search for correlations,
trends, and patterns that are difficult
to perceive "ith the naked eye" by dig-
ging into large amounts of data stored
in warehouses and large databases,
using statistical, artificial intelligence,
machine learning, and soft computing
techniques. Many large companies and
organisations, such as banks, insurance
companies, large retailers, etc., have a
huge amount of information about their
customers’ behaviour. The possibility
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of exploiting such information to infer
behaviour models of their current and
prospective customers with regard to
specific products or classes of products
is a very attractive proposition for or-
ganisations. If the models thus obtained
are accurate, intelligible, and informa-
tive, they can later be used for deci-
sion making and to improve the focus
of marketing actions,.

For the last five years the author
has participated in the design, tuning,
and validation of a powerful data min-
ing engine, developed by Genetica
S.r.l. and Nomos Sistema S.p.A (now
an Accenture company) in collabora-
tion with the University of Milan, as
part of two Eureka projects funded by
the Italian Ministry of Education and
University.

The engine is based on a genetic
algorithm for the synthesis of predic-
tive models of customer behaviour,
expressed by means of sets of fuzzy
IF-THEN rules. This approach is a
clear example of the advantages that
can be achieved by combining evolu-
tionary algorithms and fuzzy logic.

The approach assumes a data set is
available: that is, a set as large as we
like of records representing observa-
tions or recordings of past customer
behaviour. The field of applicability
could be even wider: the records could
be observations of some phenomenon,
not necessarily related to economy or
business, such as the measurement of
free electrons in the ionosphere [14].

A record consists of m attributes,
i.e., values of variables describing the
customer. Among these attributes, we
assume that there is an attribute meas-
uring the aspect of customer behaviour
we are interested in modelling. With-
out loss of generality, we can assume
there is just one attribute of this kind
— if we were interested in modelling
more than one aspect of behaviour, we
could develop distinct models for each
aspect. We could call this attribute ‘pre-
dictive’, as it is used to predict a cus-
tomer’s behaviour. Within this concep-
tual framework, a model is a function
of m – 1 variables which returns the
value of the predictive attribute de-
pending on the value of the other at-
tributes.

The way we choose to represent

this function is critical. Experience
proves that the usefulness and accept-
ability of a model does not derive from
its accuracy alone.

Accuracy is certainly a necessary
condition, but more important is the
model’s intelligibility for the expert
who will have to evaluate it before au-
thorising its use. A neural network or a
LISP program, to mention just two al-
ternative ‘languages’ that others have
chosen to express their models, may
provide killer results when it comes to
accuracy. However, organisations will
be reluctant to ‘trust’ the results of the
model unless they can understand and
explain how the results have been ob-
tained.

This is the main reason for using
sets of fuzzy IF-THEN rules as the lan-
guage for expressing models. Fuzzy
IF-THEN rules are probably the near-
est thing to the intuitive way experts
express their knowledge, due to the use
of rules that express relationships be-
tween linguistic variables (which take
on linguistic values of the type LOW,
MEDIUM, HIGH). Also, fuzzy rules
have the desirable property of behav-
ing in an interpolative way, i.e., they
do not jump from one conclusion to the
opposite because of a slight change in
the value of a condition, as is the case
with crisp rules.

The encoding used to represent a
model in the genetic algorithm is quite
complicated, but it closely reflects the
logical structure of a fuzzy rule base.
It allows specific mutation and recom-
bination operators to be designed
which operate in an informed way on
their constituent blocks. In particular,
the recombination operator is designed
in such a way as to preserve the syn-
tactic correctness of the models. A child
model is obtained by combining the
rules of two parent models: every rule
in the child model may be inherited
from either parent with equal probabil-
ity. Once inherited, a rule takes on all
the definitions of the linguistic values
(fuzzy sets) of the source parent model
that contribute to determining its se-
mantics.

Models are evaluated by applying
them to a portion of the data set. This
yields a fitness value gauging their ac-
curacy. As is customary in machine

learning, the remaining portion of the
data set is used to monitor the gener-
alisation capability of the models and
avoid overfitting, which happens when
a model learns one by one the exam-
ples it has seen, instead of capturing
the general rules which can be applied
to cases never seen before.

The engine based on this approach
has been successfully applied to credit
scoring in the banking environment, to
estimating customer lifetime value in
the insurance world [15], and to the
collection of consumer credit receiva-
bles.

4 Conclusions
With this short survey on evolution-

ary algorithms we have tried to pro-
vide a complete, if not exhaustive - for
obvious reasons of space -, overview
of the various branches into which they
are traditionally divided (genetic algo-
rithms, evolution strategies, evolution-
ary programming and genetic program-
ming). We have gone on to provide
some information about the most sig-
nificant issues concerning the practi-
cal application of evolutionary comput-
ing to problems of industrial and eco-
nomic importance, such as solution
representation and constraint handling,
issues in which research has made sub-
stantial progress in the last few years.
Finally, we have completed the picture
with a more in-depth, but concise, il-
lustration of three sample applications
to "real-world" problems, chosen for
being in domains which are as differ-
ent from one another as possible, with
the idea of providing three complemen-
tary views on the criticalities and the
issues that can be encountered when
implementing a software system that
works. Readers should appreciate the
versatility and the enormous potential
of these techniques which are still com-
ing of age almost forty years after their
introduction. Unfortunately, this sur-
vey necessarily lacks an illustration of
the theoretical foundations of evolu-
tionary computing, which includes the
schema theorem (with its so-called
building block hypothesis) and the con-
vergence theory. These topics have
been omitted on purpose, since they
would have required a level of formal-
ity unsuited to a survey. Interested
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readers can fill this gap by referring to
the bibliography below. Another aspect
that has been overlooked because it is
not really an ‘application’, although it
is of great scientific interest, is the im-
pact that evolutionary computation has
had on the study of evolution itself and
of complex systems in general (for an
example, see the work by Axelrod on
spontaneous evolution of co-operative
behaviours in a world of selfish agents
[18]).

Readers wishing to look into the
field of evolutionary computation are
referred to some excellent introductory
books [6][9][17][19] or more in-depth
treatises [20][21], or can browse the
Internet sites mentioned in the box
"Evolutionary Algorithms on the
Internet".
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Evolutionary Algorithms on The Internet

Below are a few selected websites where the reader can find introductory or ad-
vanced information about evolutionary algorithms:
· <http://www.isgec.org/>: the portal of the International Society for Genetic and

Evolutionary Computation;
· <http://evonet.lri.fr/>: the portal of the European network of excellence on evolu-

tionary algorithms;
· <http://www.aic.nrl.navy.mil/galist/>: the GA Archives, originally the "GA-List" mail-

ing list archives, now called the "EC Digest"; it contains up-to-date information
on major events in the field plus links to other related web pages;

· <http://www.fmi.uni-stuttgart.de/fk/evolalg/index.html>: the EC Repository, main-
tained at Stuttgart University.


