Concurrency
and Parallelism

Master 1 International

fUni!T rsité Andrea G. B. Tettamanzi
Nice L Université de Nice Sophia Antipolis
S':'P ia Antipolis Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2012

L ecture 2

Communication and
Synchronization

Andrea G. B. Tettamanzi, 2012

Conventional Procedure Call

Stack pointer

Main program's Main program's

local variables / local variables
il bytes

buf

fd

return address

read's local
variables

(a) (b)
a) Parameter passing in a local procedure call: the stack before the call
to read

b) The stack while the called procedure is active
Andrea G. B. Tettamanzi, 2012 3

Client and Server Stubs

Wait for result

Client e—————
A S
Call remote Return
procedure from call
Request Reply

Call local procedure Time ——»
and return results

Principle of RPC between a client and server program.

Andrea G. B. Tettamanzi, 2012

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server
6

I4

8

9.

1

Server does work, returns result to the stub
Server stub packs it in message, calls local OS
Server's OS sends message to client's OS
Client's OS gives message to client stub

0. Stub unpacks result, returns to client

Andrea G. B. Tettamanzi, 2012 5

Passing Value Parameters (1)

Client machine Server machine
Client process . Server process
1. Client call to .
procedure Implementation 6. Stub makes
of add local call to "add"
EETir N Server stub T
L k=addi) — . Client stub \—{ =addii)
proc: "add" A proc: "add"
int:__ val(i) 2. Stub builds int_ val() 5. Stub unpacks
int: val(j) message int: val(j) message
A
. proc: "add" 4. Server OS
Client OS5 |nt val(i) Server OS5 hands message
_ int: __ val() j to server stub

3. Message is sent
across the network

Steps involved in doing remote computation through RPC

Andrea G. B. Tettamanzi, 2012 6

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC

c) The message after being inverted. The little numbers in
boxes indicate the address of each byte

Andrea G. B. Tettamanzi, 2012 7

Parameter Specification and Stub

Generation
foobqr's local

a) A procedure ariables -
b) The corresponding message. y

5

Z[0]

Z[1]
foobar(char x; float y; int z[5]) Z[2]
{ Z[3]
- Z[4)

(@) (0)

Andrea G. B. Tettamanzi, 2012

Doors

Computer
Client process Server process
server_door(...) €—— —|
{
66or_return(...); —
main() _
{ Enam()
Edo:rogzlr;((filjoor_)r.mame,) Register door | {4 = door_create(...):
> .. TN fattach(fd, door_name, ...);
} -

Operating system
- Pl)

Invoke registered door f _
at other process Return to calling process

The principle of using doors as IPC mechanism.

Andrea G. B. Tettamanzi, 2012

Asynchronous RPC (1)

Client Wait for result Client Walit for acceptance
s * A 3
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —m Server Call local procedure Time —»™

and return results

(a) (b)

a) The interconnection between client and server in a traditional
RPC

b) The interaction using asynchronous RPC

Andrea G. B. Tettamanzi, 2012 10

Asynchronous RPC (2)

Whait for Interrupt client
acceptance *

A >

Client

Call remote Return et
d from call eturn
ProcEaHIe results Acknowledge
Accept
Request request
Server ---——----—-———--- S
Call local procedure Time —»
Call client with
ohe-way RPC

A client and server interacting through two asynchronous RPCs

Andrea G. B. Tettamanzi, 2012 11

Writing a Client and a Server

Uuidgen |

Interface
definition file

IDL compiler

Client stub Header ‘ Server stub Server code

Client code

#include #include

C compiler

C compiler C compiler

Client Client stub Server stub Server
object file object file object file object file
Runtime Runtime AV
Linker library I|brary L|nuer
4 4

Client Server
binary binary

The'steps-inwritiig a client and a server in DCE RPC. 2

Binding a Client to a Server

Directory machine

Directory
sever : :
2. Register service

Server machine

3. Look up server

Client machine

__f__igﬂc______ﬁ Server || 1. Register endpoint
Client >
\ "
4. Ask for endpoint DCE
daemon Endpoint
table

Client-to-server binding in DCE.

Andrea G. B. Tettamanzi, 2012 13

Distributed Objects

Client machine Server machine
Object
Client Server e
D{ State
‘ Same
Client interface D D D< Method
| as object

invokes

|
a method { / Skeleton A D

FE vokes ——11 [~ Interface
Proxy same method Skeleton

at object A
Client OS Server OS

- J

Network \

Marshalled invocation
is passed across network

Common organization of a remote object with client-side proxy.

Andrea G. B. Tettamanzi, 2012

Parameter Passing

Machine A Machine B
Local ‘ Local oblect J [Remote object
f L1 01 Remote 02
reference L1 [—ad reference R1 B / >

Client code with
RMI to server at C

(proxy)

Newv local
reference [CopyofO‘lJ S

Remote \‘f‘)

invocation with ﬁ ° o]

L1 and R1 as < Copy of R1 to O2
parameters [~ Server code

Machine C (method implementation)

The situation when passing an object by reference or by value.

Andrea G. B. Tettamanzi, 2012

Persistence and Synchronicity in Communication

Messaging interface
Sending host Communication server Communication server Receiving host
Buffer independent
o Routing of communicating Routin L
Application orogram hosts prograr?'l Application
i - i |
A Y | Toother (remote) | | L
:J L: H communication :J :J —
— — 1= server \ — — —\
0S5 0s N 0s T \OS

-«

N J v|Y

B sl
Local buffer Local network Internetwork o Local buffer

Incoming message

General organization of a communication system in which hosts
are connected through a network

Andrea G. B. Tettamanzi, 2012 16

Persistence and Synchronicity in Communication

(2)

Pony and rider

Post # Post
office | ___*__ " ___ p | office |
-m | Post i__,,
Mail stored and sorted, to office | -.
'

be sent out depending on destination
and when pony and rider available

Post |~
office | - >
/.fv *

Persistent communication of letters back in the days of the
Pony Express.

Andrea G. B. Tettamanzi, 2012 17

Persistence and Synchronicity in Communication

(3)

A sends message A sends message A <tobped
and continues ?u ﬁ:ﬁﬁped and waits until accepted runnirﬁ)g
A A
Message is stored
at B's location for Accepted
later delivery \ Time
- —p
| B starts and B is not B starts and
Bis not receives running receives
running message message

(@) (b)

a) Persistent asynchronous communication
b) Persistent synchronous communication

Andrea G. B. Tettamanzi, 2012 18

Persistence and Synchronicity in Communication

A sends message
and continues

A Message can be
sentonly f B is
running

Time

B

————— _
¥ |
B receives
message

()

(4)

Send request and wait
until received

A
Request
IS received :
Time
T NI >
Running, but doing Process
something else request

(d)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

Andrea G. B. Tettamanzi, 2012

19

Persistence and Synchronicity in Communication

Send request and wait until

accepted f

A — — .

Request

is received Accepted _

Time
R I —— g
\-\-____—"‘v v

Running, but doing Process
something else request

©)

(9)

Send request
and wait for reply

N — A
Request Accepted
Is received _
Time
N \ —»
L S—
Running, but doing Process
something else request
(f)

e) Delivery-based transient synchronous communication at

message delivery

f) Response-based transient synchronous communication

Andrea G. B. Tettamanzi, 2012

20

Berkeley Sockets (1)

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Socket primitives for TCP/IP.

Andrea G. B. Tettamanzi, 2012

21

Berkeley Sockets (2)

Server T
socket F 9 bind 9 listen »@;@—\ﬁ rjad —>|_ wiite)—PE
Synchronization point —Pi ;’ Communication 1“1
Y ! A
socket Pconnect-™ write ——®» read ™ close

Client L/,/)

Connection-oriented communication pattern using sockets.

Andrea G. B. Tettamanzi, 2012 22

The Message-Passing Interface (MPI)

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI.

Andrea G. B. Tettamanzi, 2012 23

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

e

Receiver Receiver Receiver Receiver
running passive running passive
(=) (b) (€) (d)

Four combinations for loosely-coupled communications using
q%aég?ttamanzi, 2012 24

Message-Queuing Model (2)

Primitive Meaning

Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify ;Zsetsg.a handler to be called when a message is put into the specified

Basic interface to a queue in a message-queuing system.

Andrea G. B. Tettamanzi, 2012 25

General Architecture of a Message-Queuing System (1)

Look-up
- transport-level Receiver

/ address of queue

Sender

Queuing Queue-level fﬂfﬁ Queuing
layer ! address 1 layer
Local OS Address look-up Local OS ?\
database
‘ k J ‘ Transport-level
Network address

The relationship between queue-level addressing and
network-level addressing.

Andrea G. B. Tettamanzi, 2012 26

General Architecture of a Message-Queuing System (2)

Sender A

Application

Application
CRecei\/e
queue
IR = R 7] J
<»| [T

Message
L I
Send queue \ g :
@ 111 [

Application
e
R1 e »] J
/ F\IE - Receiver B
el b [N
Application

Router

The general organization of a message-queuing system with
FOER@FSettamanzi, 2012 .

Message Brokers

Database with
Source client Message broker conversion rules Destination client

\ ! y

Broker
program

- Q ElE EHQ“?::;%

OS 0S

OS

]

Network

The general organization of a message broker in a message-
gueuing system.

Andrea G. B. Tettamanzi, 2012

Lamport's Logical Clocks

« Relation —

— If a and b are events in the same thread and a comes before
b,thena — b

— If ais the sending of a message by a thread and b is the
receipt of the same message by a different thread, thena — b

« Clock Condition: for any events, a and b,
— Ifa — b then C(a) < C(b)
* |Implementation

— Each thread increments its clock between any two successive
events

— A massage contains C(a) as its timestamp; upon receiving it,
the receiving thread sets its clock to max{clock, C(a) + 1}

*Andrea G. B. Tettamanzi, 2012 29

Mutual Exclusion:
A Centralized Algorithm

o) (1) (2] o) (1) (2] o) (1) (2]

Request Release

OK

Request H /4 OK
No reply

: o
@ Queue is Q E

_ ﬂ empty
Coordinator

(@) (b) (c)

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical
region. The coordinator does not reply.

c)drea Whenprocess 1 exits the critical region, it tells the coordinator,*°
when then replies to 2

A Decentralized Algorithm

For each resource, n coordinators

Access granted with m > n/2 authorizations
Let p = prob that a coordinator resets in At,
P[k] = k coordinators reset

Andrea G. B. Tettamanzi, 2012

31

A Distributed Algorithm

Enters
critical
region

0 0 0
8 '\12 OK OK OK
8 r—. Enters

P

2 w @ critical
region

12
(b) (c)

1S 5 \2 oK

Two processes want to enter the same critical region at the

same moment.
b) Process 0 has the lowest timestamp, so it wins.

) I When process 0 is done, it sends an OK also, so 2 can
now enter the critical region.

a)

32

A Token Ring Algorithm

PPPPPPPPDG

(a) (b)

a) An unordered group of processes on a
network.

33

Andrea G. Bb'l'jttamiaii, fgzglCal rlng ConStrUCted In SOftware

Comparison

Algorithm Messages per I_)elay before gntry Problems
entry/exit (in message times)
Centralized 3 2 Coordinator crash
Distributed 2(n=1) 2(n-1) Crash of any
process
: Lost token,
Token ring 1to Oton-1 orocess crash

A comparison of three mutual exclusion algorithms.

Andrea G. B. Tettamanzi, 2012

34

Election Algorithms

« How is coordinator to be selected dynamically?

« N.B.:in some systems, chosen by hand (e.g., file server) — single
point of failure

« Questions:
Centralized or decentralized?
Which is more robust?

Andrea G. B. Tettamanzi, 2012

35

The Bully Algorithm (1)

o o %0e

y Q
@ Election ’U v OK @ @
OO OO

Previous coordinator
has crashed

(@) (b) (©)

The bully election algorithm
. Process 4 holds an election
. Process 5 and 6 respond, telling 4 to stop

. Now 5 and 6 each hold an election
Andrea G. B. Tettamanzi, 2012 36

The Bully Algorithm (2)

(d) (e)

d) Process 6 tells 5 to stop
Andrea G. B. Tett:@dnz, 2PrO0CE€SS 6 wins and tells everyone 37

A Ring Algorithm

[5,6,0] 1
T Election message

L0) 2) &

A [2]
Previous coordinator T
has crashed [5,6] @
>
Y [2,3]

No response | 6

[5] 12

Election algorithm using a ring.

Andrea G. B. Tettamanzi, 2012 38

Thank you for your attention

Andrea G. B. Tettamanzi, 2012

39

	Titolo
	Slide 2
	Conventional Procedure Call
	Client and Server Stubs
	Steps of a Remote Procedure Call
	Passing Value Parameters (1)
	Passing Value Parameters (2)
	Parameter Specification and Stub Generation
	Doors
	Asynchronous RPC (1)
	Asynchronous RPC (2)
	Writing a Client and a Server
	Binding a Client to a Server
	Distributed Objects
	Parameter Passing
	Persistence and Synchronicity in Communication (1)
	Persistence and Synchronicity in Communication (2)
	Persistence and Synchronicity in Communication (3)
	Persistence and Synchronicity in Communication (4)
	Persistence and Synchronicity in Communication (5)
	Berkeley Sockets (1)
	Berkeley Sockets (2)
	The Message-Passing Interface (MPI)
	Message-Queuing Model (1)
	Message-Queuing Model (2)
	General Architecture of a Message-Queuing System (1)
	General Architecture of a Message-Queuing System (2)
	Message Brokers
	Slide 29
	Mutual Exclusion: A Centralized Algorithm
	Slide 31
	A Distributed Algorithm
	A Toke Ring Algorithm
	Comparison
	Slide 35
	The Bully Algorithm (1)
	Global State (3)
	A Ring Algorithm
	Slide 39

