
Andrea G. B. Tettamanzi, 2012 1

ConcurrencyConcurrency
and Parallelismand Parallelism

Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2012 2

Lecture 2

Communication and
Synchronization

Andrea G. B. Tettamanzi, 2012 3

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the call
to read

b) The stack while the called procedure is active

Andrea G. B. Tettamanzi, 2012 4

Client and Server Stubs

Principle of RPC between a client and server program.

Andrea G. B. Tettamanzi, 2012 5

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Andrea G. B. Tettamanzi, 2012 6

Passing Value Parameters (1)

Steps involved in doing remote computation through RPC

2-8

Andrea G. B. Tettamanzi, 2012 7

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in

boxes indicate the address of each byte

Andrea G. B. Tettamanzi, 2012 8

Parameter Specification and Stub
Generation

a) A procedure
b) The corresponding message.

Andrea G. B. Tettamanzi, 2012 9

Doors

The principle of using doors as IPC mechanism.

Andrea G. B. Tettamanzi, 2012 10

Asynchronous RPC (1)

a) The interconnection between client and server in a traditional
RPC

b) The interaction using asynchronous RPC

2-12

Andrea G. B. Tettamanzi, 2012 11

Asynchronous RPC (2)

A client and server interacting through two asynchronous RPCs

2-13

Andrea G. B. Tettamanzi, 2012 12

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

2-14

Andrea G. B. Tettamanzi, 2012 13

Binding a Client to a Server

Client-to-server binding in DCE.

2-15

Andrea G. B. Tettamanzi, 2012 14

Distributed Objects

Common organization of a remote object with client-side proxy.

2-16

Andrea G. B. Tettamanzi, 2012 15

Parameter Passing

The situation when passing an object by reference or by value.

2-18

Andrea G. B. Tettamanzi, 2012 16

Persistence and Synchronicity in Communication
(1)

General organization of a communication system in which hosts
are connected through a network

2-20

Andrea G. B. Tettamanzi, 2012 17

Persistence and Synchronicity in Communication
(2)

Persistent communication of letters back in the days of the
Pony Express.

Andrea G. B. Tettamanzi, 2012 18

Persistence and Synchronicity in Communication
(3)

a) Persistent asynchronous communication
b) Persistent synchronous communication

2-22.1

Andrea G. B. Tettamanzi, 2012 19

Persistence and Synchronicity in Communication
(4)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

2-22.2

Andrea G. B. Tettamanzi, 2012 20

Persistence and Synchronicity in Communication
(5)

e) Delivery-based transient synchronous communication at
message delivery

f) Response-based transient synchronous communication

Andrea G. B. Tettamanzi, 2012 21

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Andrea G. B. Tettamanzi, 2012 22

Berkeley Sockets (2)

Connection-oriented communication pattern using sockets.

Andrea G. B. Tettamanzi, 2012 23

The Message-Passing Interface (MPI)

Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Andrea G. B. Tettamanzi, 2012 24

Message-Queuing Model (1)

Four combinations for loosely-coupled communications using
queues.

2-26

Andrea G. B. Tettamanzi, 2012 25

Message-Queuing Model (2)

Basic interface to a queue in a message-queuing system.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified
queue.

Andrea G. B. Tettamanzi, 2012 26

General Architecture of a Message-Queuing System (1)

 The relationship between queue-level addressing and
network-level addressing.

Andrea G. B. Tettamanzi, 2012 27

General Architecture of a Message-Queuing System (2)

The general organization of a message-queuing system with
routers.

2-29

Andrea G. B. Tettamanzi, 2012 28

Message Brokers

The general organization of a message broker in a message-
queuing system.

2-30

Andrea G. B. Tettamanzi, 2012 29

Lamport's Logical Clocks

• Relation →

– If a and b are events in the same thread and a comes before
b, then a → b

– If a is the sending of a message by a thread and b is the
receipt of the same message by a different thread, then a → b

• Clock Condition: for any events, a and b,

– If a → b then C(a) < C(b)

• Implementation

– Each thread increments its clock between any two successive
events

– A massage contains C(a) as its timestamp; upon receiving it,
the receiving thread sets its clock to max{clock, C(a) + 1}

•

Andrea G. B. Tettamanzi, 2012 30

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical
region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator,
when then replies to 2

Andrea G. B. Tettamanzi, 2012 31

A Decentralized Algorithm

• For each resource, n coordinators

• Access granted with m > n/2 authorizations

• Let p = prob that a coordinator resets in Δt,

• P[k] = k coordinators reset

P [k]=(mk)p
k
(1−p)m−k

Andrea G. B. Tettamanzi, 2012 32

A Distributed Algorithm

a) Two processes want to enter the same critical region at the
same moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can

now enter the critical region.

Andrea G. B. Tettamanzi, 2012 33

A Token Ring Algorithm

a) An unordered group of processes on a
network.

b) A logical ring constructed in software.

Andrea G. B. Tettamanzi, 2012 34

Comparison

A comparison of three mutual exclusion algorithms.

Algorithm
Messages per

entry/exit
Delay before entry
(in message times)

Problems

Centralized 3 2 Coordinator crash

Distributed 2 (n – 1) 2 (n – 1)
Crash of any
process

Token ring 1 to 0 to n – 1
Lost token,
process crash

Andrea G. B. Tettamanzi, 2012 35

Election Algorithms

• How is coordinator to be selected dynamically?

• N.B.: in some systems, chosen by hand (e.g., file server) → single
point of failure

•

• Questions:

Centralized or decentralized?

Which is more robust?

Andrea G. B. Tettamanzi, 2012 36

The Bully Algorithm (1)

The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

Andrea G. B. Tettamanzi, 2012 37

The Bully Algorithm (2)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

Andrea G. B. Tettamanzi, 2012 38

A Ring Algorithm

Election algorithm using a ring.

Andrea G. B. Tettamanzi, 2012 39

Thank you for your attention

	Titolo
	Slide 2
	Conventional Procedure Call
	Client and Server Stubs
	Steps of a Remote Procedure Call
	Passing Value Parameters (1)
	Passing Value Parameters (2)
	Parameter Specification and Stub Generation
	Doors
	Asynchronous RPC (1)
	Asynchronous RPC (2)
	Writing a Client and a Server
	Binding a Client to a Server
	Distributed Objects
	Parameter Passing
	Persistence and Synchronicity in Communication (1)
	Persistence and Synchronicity in Communication (2)
	Persistence and Synchronicity in Communication (3)
	Persistence and Synchronicity in Communication (4)
	Persistence and Synchronicity in Communication (5)
	Berkeley Sockets (1)
	Berkeley Sockets (2)
	The Message-Passing Interface (MPI)
	Message-Queuing Model (1)
	Message-Queuing Model (2)
	General Architecture of a Message-Queuing System (1)
	General Architecture of a Message-Queuing System (2)
	Message Brokers
	Slide 29
	Mutual Exclusion: A Centralized Algorithm
	Slide 31
	A Distributed Algorithm
	A Toke Ring Algorithm
	Comparison
	Slide 35
	The Bully Algorithm (1)
	Global State (3)
	A Ring Algorithm
	Slide 39

