
Andrea G. B. Tettamanzi, 2014 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2014 2

Lecture 1

Introduction

Andrea G. B. Tettamanzi, 2014 3

About This Class

Web Page:
● http://www.i3s.unice.fr/~tettaman/Classes/ConcPar

/
Workload:
• 6 ECTS

Grading:
● Written Intermediate Test (weight: 30%)
● Written Final Test (weight: 30%)
● Project (weight: 40%)

http://www.i3s.unice.fr/~tettaman/Classes/ConcPar/
http://www.i3s.unice.fr/~tettaman/Classes/ConcPar/

Andrea G. B. Tettamanzi, 2014 4

Aims

Familiarize ourselves with the main concepts and techniques of:

• Concurrency

– Multithreading

– Concurrent programming

• Parallelism

– Designing massively parallel algorithms

– Parallel programming

• Distribution

– Designing distributed systems

– Distributed programming

Andrea G. B. Tettamanzi, 2014 5

What is Concurrency?

• One physical machine (single- or multi-core)

• Multiple processes (or execution threads)

– Single-core CPU → time sharing

– Multi-core CPU → simultaneous execution

• Designing and implementing concurrent software systems

• Concurrency = property of a system in which computations are

– executing simultaneously

– potentially interacting with each other

• Mathematical models

– Petri Nets

– Process calculi

Andrea G. B. Tettamanzi, 2014 6

What is Parallelism?

• Also known as “Parallel Computing”

• Parallel and Massively parallel machines

– Multiple (= potentially a large number of) processing units

– Communication via dedicated high-speed bus/network

– Shared memory

• Design and implementation of algorithms

– Decompose large problems in smaller ones

– Solve them in parallel

– Minimize communication

• Parallel Programming Languages

• Aim: obtain maximum speed-up

Andrea G. B. Tettamanzi, 2014 7

What is Distribution?

• Also known as “Distributed Computing”

• Distributed systems:

– components physically located on distinct machines

– connected through a network (usually the Internet)

– often in geographically distinct locations

• Distributed programming

• Problems:

– Communication

– Synchronization

– Architectures (layered, data-centered, event-based, P2P)

– Consistency and Replication, Security

Andrea G. B. Tettamanzi, 2014 8

Common Background

• Three slightly different programming contexts

• Need to abandon programming determinism

• Address problems such as

– Synchronization

– Latency

– Indeterministic execution order

– Consistency

– Scalability and Speed-Up, etc.

• Principled approach to programming

– Develop and use appropriate theoretical models

• Need for specific languages, libraries, and frameworks.

Andrea G. B. Tettamanzi, 2014 9

History and Motivation

• Recurring Cycles:

– The first computers were strictly sequential

– Then came multi-tasking OSs, and concurrent programming

– Supercomputers and parallel programming

– Clusters, the Internet, and the Web: distributed programming

– GPUs: parallel programming strikes back

• Why are Concurrency, Parallelism, and Distribution important?

– Inherent speed limits of sequential processors

– Many interesting problems are hard

– Need to harness the power of parallel and networked h/w

Andrea G. B. Tettamanzi, 2014 10

Plan

1) Introduction [conc + distr + par]
Processes and Threads [conc]

2) Communication: basic concepts, RPC, message-based and
stream-based communication, multicast [conc + distr]

3) Naming [distr]
Synchronization [conc + distr]

4) Distributed architectures [distr]
Consistency and replication [distr]

5) Intermediate Test. Description formalisms [distr + par]

6) Theoretical Models [par]

7) Languages and libraries [distr + par]
Throughput-Oriented Architectures [par]

Andrea G. B. Tettamanzi, 2014 11

Bibliography

• Mordechai Ben-Ari. Principles of Concurrent and Distributed
Programming (2nd Edition). Addison-Wesley, 2006.

• Andrew S. Tannenbaum and Maarten van Steen. Distributed
Systems: Principles and Paradigms (2nd Edition). Prentice Hall,
2007.

• Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta.
Introduction to Parallel Computing (2nd Edition). Addison-Wesley,
2003.

Andrea G. B. Tettamanzi, 2014 12

Lecture 1

Processes and Threads

Andrea G. B. Tettamanzi, 2014 13

Introduction to Threads

Basic idea

We build virtual processors in software, on top of physical
processors:

• Processor: Provides a set of instructions along with the capability
of automatically executing a series of those instructions.

• Thread: A minimal software processor in whose context a series
of instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

• Process: A software processor in whose context one or more
threads may be executed. Executing a thread, means executing a
series of instructions in the context of that thread.

Andrea G. B. Tettamanzi, 2014 14

Context Switching

Contexts

• Processor context: The minimal collection of values stored in the

registers of a processor used for the execution of a series of
instructions (e.g., stack pointer, addressing registers, program

counter).

• Thread context: The minimal collection of values stored in

registers and memory, used for the execution of a series of

instructions (i.e., processor context, state).

• Process context: The minimal collection of values stored in

registers and memory, used for the execution of a thread (i.e.,

thread context, but now also at least MMU register values).

Andrea G. B. Tettamanzi, 2014 15

Thread Usage in Nondistributed
Systems

Context switching as the result of IPC

Andrea G. B. Tettamanzi, 2014 16

Context Switching : Observations

• Threads share the same address space. Thread context
switching can be done entirely independent of the operating
system.

• Process switching is generally more expensive as it involves

getting the OS in the loop, i.e., trapping to the kernel.

• Creating and destroying threads is much cheaper than doing so

for processes.

Andrea G. B. Tettamanzi, 2014 17

Threads and Operating Systems

• Main issue : Should an OS kernel provide threads, or should they
be implemented as user-level packages?

• User-space solution

– All operations can be completely handled within a single
process implementations can be extremely efficient.⇒

– All services provided by the kernel are done on behalf of the
process in which a thread resides if the kernel decides to ⇒
block a thread, the entire process will be blocked.

– Threads are used when there are lots of external events:
threads block on a per-event basis if the kernel can’t ⇒
distinguish threads, how can it support signaling events to
them?

Andrea G. B. Tettamanzi, 2014 18

Threads and Operating Systems

• Kernel solution : The whole idea is to have the kernel contain the
implementation of a thread package. This means that all
operations return as system calls

– Operations that block a thread are no longer a problem: the
kernel schedules another available thread within the same
process.

– Handling external events is simple: the kernel (which catches
all events) schedules the thread associated with the event.

– The big problem is the loss of efficiency due to the fact that
each thread operation requires a trap to the kernel.

• Conclusion: Try to mix user-level and kernel-level threads into a
single concept.

Andrea G. B. Tettamanzi, 2014 19

Solaris Threads

Combining kernel-level lightweight processes and user-level
threads.

Andrea G. B. Tettamanzi, 2014 20

Solaris Thread Operation

• User-level thread does system call the LWP that is executing ⇒
that thread, blocks. The thread remains bound to the LWP.

• The kernel can schedule another LWP having a runnable thread
bound to it. Note: this thread can switch to any other runnable
thread currently in user space.

• A thread calls a blocking user-level operation do context switch ⇒
to a runnable thread, (then bound to the same LWP).

• When there are no threads to schedule, an LWP may remain idle,
and may even be removed (destroyed) by the kernel.

• Note: This concept has been virtually abandoned – it’s just either
user-level or kernel-level threads.

Andrea G. B. Tettamanzi, 2014 21

Java Threads

• The Java platform supports concurrent programming natively

• Since v. 5.0, it includes high-level concurrency APIs

– Package: java.util.concurrent

• Basic concurrency support:

– The Thread class:

• A constructor which takes a runnable object

• Methods: start(), interrupt(), join()

– The Runnable interface: void run();

• Two “idioms” to create a new thread:

– Call the constructor while providing a runnable object;

– Subclass Thread and override run() – simpler but less general

Andrea G. B. Tettamanzi, 2014 22

Sleeping, Yielding and Interrupts

• Static method Thread.sleep() pauses the calling thread

• Method t.join() waits for thread t to terminate

• A thread is interrupted by a call to its interrupt() method

• InterruptedException is thrown by sleep(), join() if interrupted

• Method interrupted() checks if an interrupt has been received

• Static method Thread.yield() yields processor use to scheduler

Andrea G. B. Tettamanzi, 2014 23

Synchronization

• Two basic synchronization idioms:

– Synchronized methods

– Synchronized statements

• Monitor lock: every object has a monitor

– A thread that needs exclusive access acquires the monitor

– Requests queued and the first executed on monitor release

• A method may be declared as “synchronized”

– The calling thread automatically acquires the monitor

• A code block may acquire the monitor of object o with construct
synchronized(o) { <statement> }

• More on this subject in a forthcoming lecture...

Andrea G. B. Tettamanzi, 2014 24

Threads in Distributed Systems

Multithreaded Web client

Hiding network latencies:

• Web browser scans an incoming HTML page, and finds that more
files need to be fetched.

• Each file is fetched by a separate thread, each doing a (blocking)
HTTP request.

• As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

• A client does several calls at the same time, each one by a
different thread.

• It then waits until all results have been returned.

Note: if calls are to different servers, we may have linear speed-up.

Andrea G. B. Tettamanzi, 2014 25

Threads in Distributed Systems

• Improve performance

– Starting a thread is much cheaper than starting a new
process.

– Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.

– As with clients: hide network latency by reacting to next
request while previous one is being replied.

• Better structure

– Most servers have high I/O demands. Using simple,
well-understood blocking calls simplifies the overall structure.

– Multithreaded programs tend to be smaller and easier to
understand due to simplified flow of control.

Andrea G. B. Tettamanzi, 2014 26

Multithreaded Servers (1)

A multithreaded server organized in a dispatcher/worker model.

Andrea G. B. Tettamanzi, 2014 27

Multithreaded Servers (2)

Three ways to construct a server.

Model Characteristics

Threads Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls

Andrea G. B. Tettamanzi, 2014 28

Virtualization

• Virtualization is becoming increasingly important:

– Hardware changes faster than software

– Ease of portability and code migration

– Isolation of failing or attacked components

Andrea G. B. Tettamanzi, 2014 29

APPLICATION

LIBRARY

Architecture of Virtual Machines

OS

HARDWARE

API

System Calls

General InstructionsPrivileged Instructions

Andrea G. B. Tettamanzi, 2014 30

Types of Virtual Machines

Process Virtual Machine

•One VM per process

•Runtime system

•Interpreted or emulated
instructions

Virtual Machine Monitor

•One VM for more
processes

•Layer that completely
encapsulates the original
h/w

•Interface to a virtual h/w

Andrea G. B. Tettamanzi, 2014 31

VM MONITOR

Process VMs vs. VM Monitors

APPLICATION

RUNTIME SYSTEM

OS

HARDWARE

API

System Calls

Gen. InstructionsPriv. Instructions

HARDWARE

APPLICATION

LIBRARY

OS

API

System Calls

Gen. InstructionsPriv. Instructions

Gen. InstructionsPriv. Instructions

Andrea G. B. Tettamanzi, 2014 32

VM Monitors on Operating Systems

We’re seeing VMMs run on top of existing operating systems.

• Perform binary translation: while executing an application
oroperating system, translate instructions to that of the underlying

machine.

• Distinguish sensitive instructions: traps to the orginal kernel (think

of system calls, or privileged instructions).

• Sensitive instructions are replaced with calls to the VMM.

Andrea G. B. Tettamanzi, 2014 33

Clients: User Interfaces

The basic organization of the X Window System

Andrea G. B. Tettamanzi, 2014 34

Client-Side Software for Distribution
Transparency

A possible approach to transparent replication of a
remote object using a client-side solution.

Andrea G. B. Tettamanzi, 2014 35

Servers: General Design Issues

a) Client-to-server binding using a daemon as in DCE
b) Client-to-server binding using a superserver as in UNIX

3.7

Andrea G. B. Tettamanzi, 2014 36

Out-of-Band Communication

Issue: Is it possible to interrupt a server once it has accepted (or is
in the process of accepting) a service request?

• Solution 1: Use a separate port for urgent data:

– Server has a separate thread/process for urgent messages

– Urgent message comes in associated request put on hold⇒
– Note: we require OS supports priority-based scheduling

• Solution 2: Use out-of-band communication facilities of the
transport layer:

– Example: TCP allows for urgent messages in same
connection

– Urgent messages can be caught using OS signaling
techniques

Andrea G. B. Tettamanzi, 2014 37

Servers and State

Stateless servers

• Never keep accurate information about the status of a client after
having handled a request:

• Don’t record whether a file has been opened (simply close it
again after access)

• Don’t promise to invalidate a client’s cache

• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent

• State inconsistencies due to client or server crashes are reduced

• Possible loss of performance because, e.g., a server cannot
anticipate client behavior (think of prefetching file blocks)

Andrea G. B. Tettamanzi, 2014 38

Servers and State

Stateful servers: Keep track of the status of their clients:

• Record that a file has been opened, so that prefetching can be

done

• Know which data a client has cached, and allow clients to keep

local copies of shared data

Observation

• The performance of stateful servers can be extremely high,
provided clients are allowed to keep local copies. As it turns out,
reliability is not a major problem.

Andrea G. B. Tettamanzi, 2014 39

Thank you for your attention

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Thread Usage in Nondistributed Systems
	Slide 16
	Slide 17
	Slide 18
	Thread Implementation
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Multithreaded Servers (1)
	Multithreaded Servers (2)
	Slide 28
	Virtualization
	Tipi di Macchine Virtuali
	Architetture delle Macchine Virtuali
	Slide 32
	The X-Window System
	Client-Side Software for Distribution Transparency
	Servers: General Design Issues
	Slide 36
	Slide 37
	Slide 38
	Slide 39

