
Andrea G. B. Tettamanzi, 2014 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2014 2

Lecture 2

Communication

Andrea G. B. Tettamanzi, 2014 3

Layered Protocols: the ISO/OSI Stack

Application

Presentation

Session

Transport

Network

Data-link

Physical

Network

7

6

5

4

3

2

1

Application Protocol

Presentation Protocol

Session Protocol

Transport Protocol

Network Protocol

Data-Link Protocol

Physical Protocol

Andrea G. B. Tettamanzi, 2014 4

Layered Protocols: Messages

A typical message as it appears on the network.

2-2

Andrea G. B. Tettamanzi, 2014 5

Data Link Layer

2-3

Andrea G. B. Tettamanzi, 2014 6

Client-Server TCP

2-4

a) Normal operation of TCP. b) Transactional TCP.

Andrea G. B. Tettamanzi, 2014 7

Middleware Protocols:
An adaptation of the ISO/OSI Stack

Application

Middleware

Transport

Network

Data-link

Physical

Network

7

5 + 6

4

3

2

1

Application Protocol

Middleware Protocol

Transport Protocol

Network Protocol

Data-Link Protocol

Physical Protocol

Andrea G. B. Tettamanzi, 2014 8

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the call

b) The stack while the called procedure is active

Andrea G. B. Tettamanzi, 2014 9

Client and Server Stubs

Principle of RPC between a client and server program.

Andrea G. B. Tettamanzi, 2014 10

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Andrea G. B. Tettamanzi, 2014 11

Passing Value Parameters (1)

Steps involved in doing remote computation through RPC

2-8

Andrea G. B. Tettamanzi, 2014 12

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in

boxes indicate the address of each byte

Andrea G. B. Tettamanzi, 2014 13

Parameter Specification and Stub
Generation

a) A procedure
b) The corresponding message.

Andrea G. B. Tettamanzi, 2014 14

Doors

The principle of using doors as IPC mechanism.

Andrea G. B. Tettamanzi, 2014 15

Asynchronous RPC (1)

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12

Andrea G. B. Tettamanzi, 2014 16

Asynchronous RPC (2)

A client and server interacting through two asynchronous RPCs

2-13

Andrea G. B. Tettamanzi, 2014 17

DCE

• DCE = Distributed Computing Environment

• Developed in the early '90 by a consortium of Apollo Computer
(later acquired by HP), IBM, DEC, and others

• DCE supplies a framework for client/server applications

• The framework includes :

– DCE/RPC, a remote procedure call mechanism

– A naming service

– A time service

– An authentication service

– DCE/DFS, a distributed file system

• Now OpenDCE: http://www.opengroup.org/dce/

Andrea G. B. Tettamanzi, 2014 18

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

2-14

Andrea G. B. Tettamanzi, 2014 19

Binding a Client to a Server

Client-to-server binding in DCE.

2-15

Andrea G. B. Tettamanzi, 2014 20

Distributed Objects

Common organization of a remote object with client-side proxy.

2-16

Andrea G. B. Tettamanzi, 2014 21

Parameter Passing

The situation when passing an object by reference or by value.

2-18

Andrea G. B. Tettamanzi, 2014 22

Persistence and Synchronicity (1)

General organization of a communication system in which hosts
are connected through a network

Andrea G. B. Tettamanzi, 2014 23

Persistence and Synchronicity (2)

Persistent communication in the days of the Pony Express.

Andrea G. B. Tettamanzi, 2014 24

Persistence and Synchronicity (3)

a) Persistent asynchronous communication
b) Persistent synchronous communication

Andrea G. B. Tettamanzi, 2014 25

Persistence and Synchronicity (4)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

Andrea G. B. Tettamanzi, 2014 26

Persistence and Synchronicity (5)

e) Delivery-based transient synchronous communication at
message delivery

f) Response-based transient synchronous communication

Andrea G. B. Tettamanzi, 2014 27

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept
connections

Accept Block caller until a connection request
arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Andrea G. B. Tettamanzi, 2014 28

Berkeley Sockets (2)

Connection-oriented communication pattern using sockets.

Andrea G. B. Tettamanzi, 2014 29

The Message-Passing Interface (MPI)

Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send
Send a message and wait until copied to local or remote
buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt
starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Andrea G. B. Tettamanzi, 2014 30

Message-Queuing Model (1)

4 combinations for loosely-coupled communications w/ queues

2-26

Andrea G. B. Tettamanzi, 2014 31

Message-Queuing Model (2)

Basic interface to a queue in a message-queuing system.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first
message

Poll
Check a specified queue for messages, and remove the first.
Never block.

Notify
Install a handler to be called when a message is put into the
specified queue.

Andrea G. B. Tettamanzi, 2014 32

General Architecture of a Message-Queuing System (1)

 The relationship between queue-level addressing and
network-level addressing.

Andrea G. B. Tettamanzi, 2014 33

General Architecture of a Message-Queuing System (2)

The general organization of a message-queuing system with routers.

2-29

Andrea G. B. Tettamanzi, 2014 34

Message Brokers

The general organization of a message broker in a message-queuing
system.

2-30

Andrea G. B. Tettamanzi, 2014 35

Example: IBM MQSeries

General organization of IBM's MQSeries message-queuing
system.

2-31

Andrea G. B. Tettamanzi, 2014 36

Channels

Some attributes associated with message channel agents.

Attribute Description

Transport type Determines the transport protocol to be used

FIFO delivery Indicates that messages are to be delivered in the order they
are sent

Message
length

Maximum length of a single message

Setup retry
count

Specifies maximum number of retries to start up the remote
MCA

Delivery
retries

Maximum times MCA will try to put received message into
queue

Andrea G. B. Tettamanzi, 2014 37

Message Transfer (1)

The general organization of an MQSeries queuing network
using routing tables and aliases.

Andrea G. B. Tettamanzi, 2014 38

Message Transfer (2)

Primitives available in an IBM MQSeries MQI

Primitive Description

MQopen Open a (possibly remote) queue

MQclose Close a queue

MQput Put a message into an opened queue

MQget Get a message from a (local) queue

Andrea G. B. Tettamanzi, 2014 39

Data Stream (1)

Setting up a stream between two processes across a network.

Andrea G. B. Tettamanzi, 2014 40

Data Stream (2)

Setting up a stream directly between two devices.

2-35.2

Andrea G. B. Tettamanzi, 2014 41

Data Stream (3)

An example of multicasting a stream to several receivers.

Andrea G. B. Tettamanzi, 2014 42

Specifying QoS (1)

A flow specification.

Characteristics of the Input Service Required

•maximum data unit size
(bytes)
•Token bucket rate (bytes/sec)
•Toke bucket size (bytes)
•Maximum transmission rate
(bytes/sec)

•Loss sensitivity (bytes)

•Loss interval (µsec)

•Burst loss sensitivity (data
units)

•Minimum delay noticed (µsec)

•Maximum delay variation
(µsec)

•Quality of guarantee

Andrea G. B. Tettamanzi, 2014 43

Specifying QoS (2)

The principle of a token bucket algorithm.

Andrea G. B. Tettamanzi, 2014 44

Setting Up a Stream

The basic organization of RSVP for resource reservation in a
distributed system.

Andrea G. B. Tettamanzi, 2014 45

Synchronization Mechanisms (1)

The principle of explicit synchronization on the level data units.

Andrea G. B. Tettamanzi, 2014 46

Synchronization Mechanisms (2)

The principle of synchronization as supported by high-level
interfaces.

2-41

Andrea G. B. Tettamanzi, 2014 47

Multicasting

Transport or application level

Distribution trees

Gossip

Andrea G. B. Tettamanzi, 2014 48

Level

Multicast in Network Protocols:

– Creating communication paths

– Enormous management effort

– ISP reluctant to implement

Multicast at the Application Level

– Has become possible in the age of P2P

– Communication paths as overlay networks

– Two techniques:

• explicit communication paths

• gossiping

Andrea G. B. Tettamanzi, 2014 49

Application-Level Multicasting

Basic idea: nodes organized in an overlay network

N.B.: routers are not part of the overlay network!

Basic design element: overlay network construction

Two approaches are possible:

– Distribution tree layout

– Mesh layout (multiple paths are possible)

Andrea G. B. Tettamanzi, 2014 50

Multicast Tree Construction

Method used in the CHORD system (DHT):

– The node that initiates a multicast session generates a 160 bit random
identifier, mid;

– Look succ(mid) up and make it the tree root;

– If a node P wishes to “register” to the tree, it sends a message to
succ(mid), which will go through other nodes

– The nodes traversed either are already in the tree, or they become
forwarders on behalf of P.

Andrea G. B. Tettamanzi, 2014 51

Multicast Tree Construction

Source

succ(mid)
LOOKUP(mid)

P

LOOKUP(mid)

LOOKUP(mid)

Andrea G. B. Tettamanzi, 2014 52

Quality of a Multicast Tree

Link Stress:

– How many times the same packet goes through the same link

Stretch or relative delay penalty (RDP)

– doverlay(A, B)/dphis(A, B) ≥ 1

Cost of the Tree

– A global measure, relevant to controlling the resources used by multicast
communication

Andrea G. B. Tettamanzi, 2014 53

Information Diffusion Models

Epidemic Behavior

Information spreads “by contagion”

– Infected node = has the data that have to be spread

– Susceptible node = does not have the data

– Removed node = has the data but it does not spread them

Fully Local Techniques

Andrea G. B. Tettamanzi, 2014 54

Anti-Entropy

P randomly picks another node Q

Three possible approaches:

1. Push: P sends its data to Q

2. Pull: P requests data from Q

3. Push-Pull: P and Q exchange data

Push approach is inefficient

Push-pull approach is optimal

All nodes get updated in O(logN) “rounds”.

Andrea G. B. Tettamanzi, 2014 55

Gossiping

When node P gets to know some new information, it starts contacting other
arbitrary nodes (random, neighbors, ...) to tell them.

Every time a contacted node turns out to already know, with probability 1/k,
P decides to give up “gossiping” and becomes “removed”.

Problem: the fraction of “susceptible” nodes tends to

s = exp[−(k + 1)(1 – s)]

Andrea G. B. Tettamanzi, 2014 56

Data Elimination

A problem, because, if data are removed, a node becomes again
susceptible

“Deat Certificate” technique

These to have to be eliminated, after a while:

“Inactive Death Certificates”

Andrea G. B. Tettamanzi, 2014 57

Thank you for your attention

	Titolo
	Slide 2
	Slide 3
	Layered Protocols (2)
	Data Link Layer
	Client-Server TCP
	Slide 7
	Conventional Procedure Call
	Client and Server Stubs
	Steps of a Remote Procedure Call
	Passing Value Parameters (1)
	Passing Value Parameters (2)
	Parameter Specification and Stub Generation
	Doors
	Asynchronous RPC (1)
	Asynchronous RPC (2)
	Slide 17
	Writing a Client and a Server
	Binding a Client to a Server
	Distributed Objects
	Parameter Passing
	Persistence and Synchronicity in Communication (1)
	Persistence and Synchronicity in Communication (2)
	Persistence and Synchronicity in Communication (3)
	Persistence and Synchronicity in Communication (4)
	Persistence and Synchronicity in Communication (5)
	Berkeley Sockets (1)
	Berkeley Sockets (2)
	The Message-Passing Interface (MPI)
	Message-Queuing Model (1)
	Message-Queuing Model (2)
	General Architecture of a Message-Queuing System (1)
	General Architecture of a Message-Queuing System (2)
	Message Brokers
	Example: IBM MQSeries
	Channels
	Message Transfer (1)
	Message Transfer (2)
	Data Stream (1)
	Data Stream (2)
	Data Stream (3)
	Specifying QoS (1)
	Specifying QoS (2)
	Setting Up a Stream
	Synchronization Mechanisms (1)
	Synchronization Mechanisms (2)
	Multicasting
	Livello
	Multicasting Applicativo
	Costruzione albero multicast
	Slide 51
	Qualità di un albero multicast
	Modelli di diffusione dell’informazione
	Anti-entropia
	Gossiping
	Eliminazione dei dati
	Slide 57

