
Andrea G. B. Tettamanzi, 2014 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr



Andrea G. B. Tettamanzi, 2014 2

Lecture 6, Part a

Describing Concurrent 
and Parallel Algorithms 



Andrea G. B. Tettamanzi, 2014 3

Table of Contents

• “Informal” Modeling Tools (Formal tools will be presented later):

– Data-Flow Diagrams

– Synchronous Data Flow (SDF) Graphs

– Activity Diagrams

– Petri Nets

– Actor Event Diagrams

– Algorithmic Skeletons

• Methodical Design of Parallel Algorithms



Andrea G. B. Tettamanzi, 2014 4

Data Flow

• A model of computation

• Computing nodes execute whenever input data is available

• Nodes are connected by “data paths”

• A special class of algorithms can be modeled as synchronous 
data flow (SDF) graphs

• A data flow graph is based on data dependencies

• A node can in turn represent another data flow graph (abstraction)

• A node may be implemented as a sequential program



Andrea G. B. Tettamanzi, 2014 5

Data-Flow Diagrams

• A time-honored modeling tool in Computer Science

• Graphical representation of the flow of data through an 
information system

• A DFD shows tasks with their inputs and outputs

• Four graphical elements:

Function

File/Database

Input/Output

Flow



Andrea G. B. Tettamanzi, 2014 6

Synchronous Data-Flow Graphs

• A special class of algorithms can be modeled as synchronous 
data flow (SDF) graphs for which efficient implementation 
methods exist

• An SDF graph is a special case of data flow

• Data are assumed to be made up of “tokens”

• A node is said to be synchronous if the number of input tokens 
that are consumed on each input and the number of output 
tokens that are produced on each output can be specified a priori.

• Nodes are free from side effects

• Nodes may have a state, but this state does not influence the 
number of tokens consumed and produced in each cycle

• Originally proposed for signal processing



Andrea G. B. Tettamanzi, 2014 7

SDF Graphs

A

B

C

a

b

c

d

e
i

h

g

f



Andrea G. B. Tettamanzi, 2014 8

SDF Graphs: Control Nodes

• The “switch” and “select” functions cannot be represented as an 
SDF node because the number of tokens produced (switch) or 
consumed (select) cannot be decided a priori

• However, the coarse-grained data flow can still be represented as 
an SDF graph

T
F

T
F

A

B

1

(0, 1)

(0, 1)(0, 1)

(0, 1)

1

(0, 1) (0, 1)

(0, 1)(0, 1)



Andrea G. B. Tettamanzi, 2014 9

SDF Graphs: Properties

• Compared to data flow, synchronous data flow has the following 
nice properties:

– In contrast to data flow graphs scheduling does not have to be 
done at runtime, but can be done at compile time

– If a periodic admissible parallel schedule can be found, the 
memory for buffers is bounded

– Mathematical methods to derive a schedule exist

• Compiling an SDF graph:

– find a periodic admissible parallel schedule (PAPS)



Andrea G. B. Tettamanzi, 2014 10

Activity Diagrams

• They are essentially an extension of flow charts

• Part of the UML

• Model the dynamical aspects of a system

• Describe the flow of control from an activity (= task) to another

• Activity

– Sequence of atomic computations

– Ends up in an action

• Transition

– Transfer of control from an activity to another

• Object

– Result of some activities



Andrea G. B. Tettamanzi, 2014 11

Activity Diagrams: Graphical Elements

Initial state Final state

Description Activity Decision

Transition Fork/Join

Object flow

Name : Class Object



Andrea G. B. Tettamanzi, 2014 12

Activity Diagram: Example

Product request

o : Order

Order processing

[not available]

Retrieve

Send

Receipt Invoicing



Andrea G. B. Tettamanzi, 2014 13

Petri Nets

• Two interesting features

– Formal definition, allowing formal verification

– Intuitive graphical representation

• Two types of Petri Nets

– Place-transition

– State-event



Andrea G. B. Tettamanzi, 2014 14

Petri Nets: Graphical Elements

condition

event

token

flow



Andrea G. B. Tettamanzi, 2014 15

State-Event Petri Nets

Firing of a
transition conflict synchronization



Andrea G. B. Tettamanzi, 2014 16

Place-Transition Petri Nets

Firing of a
transition

2 1

2

2 1

2



Andrea G. B. Tettamanzi, 2014 17

Actor Event Diagrams

• Based on the Actor model

– A mathematical model of concurrent computation

– Actors are the universal primitives of parallel computation

– Actors = Processes

– Actors exchange messages

– Inspired by Physics, including general relativity and quantum 
mechanics

– Asynchronous communication

– Control structures as message passing patterns

• Actor Event Diagrams remind Feynman Diagrams.



Andrea G. B. Tettamanzi, 2014 18

Feynman Diagrams



Andrea G. B. Tettamanzi, 2014 19

Actor Event Diagrams

D

D

sequence parallel choice fork skip

D D D… … D D D… … D D

D = diagram



Andrea G. B. Tettamanzi, 2014 20

Actor Event Diagrams

receivesend

M

EOD loop

D

D = diagram



Andrea G. B. Tettamanzi, 2014 21

Algorithmic Skeletons

• Also known as Parallelism Patterns

• Take advantage of common programming patterns to provide an 
abstract description of parallel and distributed applications

• Some important skeleton patterns:

– FARM, PIPE, FOR, MAP, D&C, WHILE, IF, SEQ

• Many libraries implement algorithmic skeletons



Andrea G. B. Tettamanzi, 2014 22

Algorithmic Skeletons

• FARM (or master-slave): task replication and execution in parallel

• PIPE: staged computation, different tasks performed in parallel on 
different stages of the pipe

• FOR: fixed iteration

• WHILE: conditional iteration

• IF: conditional branching

• MAP: split task into subtask, execute in parallel, and merge

• D&C (divide & conquer): task recursively subdivided

• SEQ: tasks are executed sequentially



Andrea G. B. Tettamanzi, 2014 23

Design of Parallel Algorithms

• Is there a principled way to design parallel algorithms?

• Ian Foster proposed a design process in 4 stages

– Partitioning

– Communication

– Agglomeration

– Mapping

• Partitioning and communication focus on concurrency and 
scalability

• Agglomeration and mapping focus on locality and performance



Andrea G. B. Tettamanzi, 2014 24

Partitioning

• Decompose the computation and the data into several small tasks

• Data

– Domain/Data Decomposition

– Partition data into smaller units that can be distributed

• Algorithm

– Functional Decomposition

– Partition the algorithm into tasks that can be performed in 
parallel/concurrently



Andrea G. B. Tettamanzi, 2014 25

Communication

• Focus on the flow of information and coordination among the 
tasks

• Four design dimensions/decisions:

– Local vs Global

– Structured vs Unstructured

– Static vs Dynamic

– Synchronous vs Asynchronous



Andrea G. B. Tettamanzi, 2014 26

Agglomeration and Mapping

• Agglomeration

– Group small tasks into larger tasks to improve performance

• Mapping

– Assign tasks to processors

– Minimize communication cost



Andrea G. B. Tettamanzi, 2014 27

Thank you for your attention


	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

