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Data Flow

• A model of computation

• Computing nodes execute whenever input data is available

• Nodes are connected by “data paths”

• A special class of algorithms can be modeled as synchronous 
data flow (SDF) graphs

• A data flow graph is based on data dependencies

• A node can in turn represent another data flow graph (abstraction)

• A node may be implemented as a sequential program
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Data-Flow Diagrams

• A time-honored modeling tool in Computer Science

• Graphical representation of the flow of data through an 
information system

• A DFD shows tasks with their inputs and outputs

• Four graphical elements:

Function

File/Database

Input/Output

Flow
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Synchronous Data-Flow Graphs

• A special class of algorithms can be modeled as synchronous 
data flow (SDF) graphs for which efficient implementation 
methods exist

• An SDF graph is a special case of data flow

• Data are assumed to be made up of “tokens”

• A node is said to be synchronous if the number of input tokens 
that are consumed on each input and the number of output 
tokens that are produced on each output can be specified a priori.

• Nodes are free from side effects

• Nodes may have a state, but this state does not influence the 
number of tokens consumed and produced in each cycle

• Originally proposed for signal processing
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SDF Graphs
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SDF Graphs: Control Nodes

• The “switch” and “select” functions cannot be represented as an 
SDF node because the number of tokens produced (switch) or 
consumed (select) cannot be decided a priori

• However, the coarse-grained data flow can still be represented as 
an SDF graph
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SDF Graphs: Properties

• Compared to data flow, synchronous data flow has the following 
nice properties:

– In contrast to data flow graphs scheduling does not have to be 
done at runtime, but can be done at compile time

– If a periodic admissible parallel schedule can be found, the 
memory for buffers is bounded

– Mathematical methods to derive a schedule exist

• Compiling an SDF graph:

– find a periodic admissible parallel schedule (PAPS)



Andrea G. B. Tettamanzi, 2014 10

Activity Diagrams

• They are essentially an extension of flow charts

• Part of the UML

• Model the dynamical aspects of a system

• Describe the flow of control from an activity (= task) to another

• Activity

– Sequence of atomic computations

– Ends up in an action

• Transition

– Transfer of control from an activity to another

• Object

– Result of some activities



Andrea G. B. Tettamanzi, 2014 11

Activity Diagrams: Graphical Elements

Initial state Final state

Description Activity Decision

Transition Fork/Join

Object flow

Name : Class Object
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Activity Diagram: Example

Product request

o : Order

Order processing

[not available]

Retrieve

Send

Receipt Invoicing
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Petri Nets

• Two interesting features

– Formal definition, allowing formal verification

– Intuitive graphical representation

• Two types of Petri Nets

– Place-transition

– State-event
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Petri Nets: Graphical Elements

condition

event

token

flow
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State-Event Petri Nets

Firing of a
transition conflict synchronization
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Place-Transition Petri Nets

Firing of a
transition

2 1

2

2 1
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Actor Event Diagrams

• Based on the Actor model

– A mathematical model of concurrent computation

– Actors are the universal primitives of parallel computation

– Actors = Processes

– Actors exchange messages

– Inspired by Physics, including general relativity and quantum 
mechanics

– Asynchronous communication

– Control structures as message passing patterns

• Actor Event Diagrams remind Feynman Diagrams.
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Feynman Diagrams
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Actor Event Diagrams

D
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Actor Event Diagrams

receivesend
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EOD loop
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Algorithmic Skeletons

• Also known as Parallelism Patterns

• Take advantage of common programming patterns to provide an 
abstract description of parallel and distributed applications

• Some important skeleton patterns:

– FARM, PIPE, FOR, MAP, D&C, WHILE, IF, SEQ

• Many libraries implement algorithmic skeletons
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Algorithmic Skeletons

• FARM (or master-slave): task replication and execution in parallel

• PIPE: staged computation, different tasks performed in parallel on 
different stages of the pipe

• FOR: fixed iteration

• WHILE: conditional iteration

• IF: conditional branching

• MAP: split task into subtask, execute in parallel, and merge

• D&C (divide & conquer): task recursively subdivided

• SEQ: tasks are executed sequentially
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Design of Parallel Algorithms

• Is there a principled way to design parallel algorithms?

• Ian Foster proposed a design process in 4 stages

– Partitioning

– Communication

– Agglomeration

– Mapping

• Partitioning and communication focus on concurrency and 
scalability

• Agglomeration and mapping focus on locality and performance
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Partitioning

• Decompose the computation and the data into several small tasks

• Data

– Domain/Data Decomposition

– Partition data into smaller units that can be distributed

• Algorithm

– Functional Decomposition

– Partition the algorithm into tasks that can be performed in 
parallel/concurrently
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Communication

• Focus on the flow of information and coordination among the 
tasks

• Four design dimensions/decisions:

– Local vs Global

– Structured vs Unstructured

– Static vs Dynamic

– Synchronous vs Asynchronous
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Agglomeration and Mapping

• Agglomeration

– Group small tasks into larger tasks to improve performance

• Mapping

– Assign tasks to processors

– Minimize communication cost
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Thank you for your attention
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