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Languages or Libraries?

• To write concurrent or parallel programs, there are two options:

– Use a programming language specifically designed for that

– Use a standard library which extends the functionality of a 
sequential programming language

• Why concurrent languages?

– Concurrent languages are designed around a theoretical 
model of concurrency

– They lead to clean, well-structured, and efficient coding 

• Why libraries?

– You don't have to learn a new language
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Concurrent Languages

• A large number of programming languages have been proposed 
to support concurrent programming natively

• I have personally counted more than 80 of them, but probably 
there are more than 100

• Most of these language never got a large user base

– Some of them are research prototypes based on a particular 
theoretical model

– Some are proprietary/domain-specific languages, developed 
within industry or publicly funded research projects

• Most of them extend a popular sequential programming language 
by adding parallel and concurrent constructs

• A few are built from scratch, but inspired by existing languages
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Brief Overview of Some Languages

• It would be impossible to cover all these languages

• We will give a brief overview of a handful of them

– Go, because it is backed by Google Inc.

– Ateji PX, because it is an extension of Java made in France

– Clojure, functional, based on JVM, with a Lisp-like syntax

– C*, of historical interest, but also useful as an introduction to 
contemporary languages for GP-GPUs

• Of course, this is an arbitrary selection

• You are welcome to explore, discover, and try out other 
languages, following your taste and inclination
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Go

• Go has been designed for Google Inc. by R. Griesemer, Rob 
Pike, and Ken Thompson since 2007;  announced in 2009.

• Syntax of Go broadly similar to that of C:

– blocks of code are surrounded with curly braces;

– control flow structures: for, switch, if.

• Unlike C,

– line-ending semicolons are optional,

– variable declarations are different and usually optional

– type conversions must be explicit,

– New concurrent control keywords: go, select

• New types: maps, UTF-8 strings, array slices, channels
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Concurrency in Go

• Go provides “goroutines” (an allusion to coroutines)

• Goroutines = small lightweight threads

• Created from functions with the go statement

• Goroutines are executed in parallel

• Groups of goroutines are multiplexed over multiple threads
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Ateji PX

• An extension of Java to facilitate parallel computing on multi-core 
processors, GPUs, Grids and the Cloud

• Introduces the new construct ||, which introduces a parallel 
branch

• Data parallelism is obtained by || followed by a quantification

– e.g.: || (int i : array.length) array[i]++;

• Communication among parallel branches:

– Through shared variables

– Explicit, through named channels (à la pi-calculus)

• <channel> ! <expr> (send a value on a channel)

• <channel> ? <expr> (receive a value from a channel)
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Ateji PX: Example 1

int fib(int n) {
if(n <= 1) return 1;
int fib1, fib2;
// recursively create parallel branches
[

|| fib1 = fib(n-1);
|| fib2 = fib(n-2);

]
return fib1 + fib2;

}
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Ateji PX: Example 2
(demonstrating data flow programming)

void adder(Chan<Integer> in1, Chan<Integer> in2, Chan<Integer> out) {
for( ; ; ) {

int value1, value2;
[ in1 ? value1; || in2 ? Value2; ];
out ! value1 + value2;

}
}

// …

[
|| source(c1); // generates values on c1
|| source(c2); // generates values on c2
|| adder(c1, c2, c3);
|| sink(c3); // read values from c3

]
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Clojure

• A dialect of Lisp created by Rich Hickey

• Runs on the JVM, the Common Language Runtime, and the 
JavaScript interpreter

• Purely functional; immutable core data structures

• Offers various mechanisms to coordinate the concurrent 
execution of threads:

– Software transactional memory (synchronous state sharing)

• Keywords: dosync, ref, set, alter, …

– An agent system (asynchronous independent state sharing)

– An atoms system (synchronous independent state sharing)

– A dynamic var system (isolating changing state)

• Keywords: def, binding, …
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Clojure Refs and Dynamic Vars

• Refs are mutable references to objects

– They can be ref-set or altered to refer to different objects 
within a transaction

– Transactions are delimited by “dosync” blocks

– Reads of refs provide a snapshot at a particular point in time

• Dynamic vars are also mutable references to objects

– They have a thread-shared root binding

– Any modification to those bindings are scoped to local thread

– Nested bindings obey a stack protocol and unwind as control 
exits the binding block



Andrea G. B. Tettamanzi, 2014 15

C*

• C* is an OO superset of ANSI C with synchronous semantics

• Developed by Thinking Machines Corporation, 1987–1993

• A C* program can consist of:

– Standard sequential C code

– C* code

– Header files

– Calls to the CM timing utility, library functions, and CM Fortran 
subroutines

• Source file extension: *.cs
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C* New Features

• A method for describing the size and shape of parallel data and 
for creating parallel variables

• New operators and expressions for parallel data

• New meanings for standard operators that allow them to work 
with parallel data

• Methods for choosing the parallel variables, and the specific data 
points within them, upon which C* code is to act

• Pointers to parallel data and to shapes

• Changes to the way functions work, so that, eg., parallel variables 
can be used as arguments 

• Methods for communication among parallel variables



Andrea G. B. Tettamanzi, 2014 17

Example

shape [2][32768]ShapeA; // shape declaration

int:ShapeA p1, p2, p3; // declaration of parallel variables

int sum = 0;

main() {
with(ShapeA) {

p1 = 1; p2 = 2; // parallel assignments
p3 = p1 + p2; // parallel sum
printf(“The sum in one element is %d.\n”, [0][1]p3);
sum += p3; // reduction assignment
printf(“The sum of all elements is %d.\n”, sum);

}
}
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Libraries

• As there are plenty of concurrent programming languages, there 
are plenty of libraries that support concurrency and parallelism

• Some time-honored parallel libraries, like

– PVM

– MPI

• More recent libraries, to tap into the power of multicore CPUs, 
GP-GPUs, grids, and the Cloud, like

– GPars, a library for Groovy

– SystemC, an event-driven simulation kernel in C++

– C++ AMP and OpenCL

– …
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PVM

• Parallel Virtual Machine, released in 1989

• Designed to allow a network of heterogeneous machines to be 
used as a single distributed parallel processor

• Very portable, open source, mature and stable

• PVM consists of

– a run-time environment

– A library for message-passing, task and resource 
management, and fault notification

• Supports the C, C++, and Fortran programming languages

• Supports broadcasting and multicasting, in addition to 
process-to-process message passing
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PVM: Some Primitives

• pvm_mytid(): gets the id of the calling process

• pvm_send(): sends a message to the process with the given id

• pvm_probe(): checks whether a message has arrived

• pvm_recv(): receives a message from the process w/ the given id

• pvm_bcast(): broadcasts a message to a group of processes

• pvm_joingroup(): enrolls the calling process in a group

• pvm_lvgroup(): leaves the specified group

• pvm_insert(): stores data into the PVMD database

• pvm_lookup(): retrieves data from the PVMD database

• pvm_exit(): terminates local process

• … 
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MPI

• Message-Passing Interface, version 1.0 released in 1995

• Both a library and a standard

• The MPI standard defines the syntax and semantics of a core of 
library routines useful to write portable message-passing 
programs in Fortran and C

• MPI supports both point-to-point and collective communication

• MPI-1 had no shared memory support; MPI-2 has a limited one
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Pthreads and OpenMP

• Threaded shared memory programming models

• Pthreads = POSIX Threads

– Defines an API for creating and manipulating threads

– Available on all POSIX-conformant operating systems

• OpenMP = Open Multiprocessing

– API supports multi-platform shared memory multiprocessing 
programming in C, C++, and Fortran

– Core elements of OpenMP: constructs for thread creation, 
workload distribution (work sharing), data-environment 
management, thread synchronization, user-level runtime 
routines and environment variables
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ProActive

• A Java grid middleware for parallel, distributed, and 
multi-threaded computing.

• Developed by the OW2 Consortium, including INRIA, CNRS, 
University of Nice Sophia Antipolis, and ActiveEon.

• Open-source software released under the GPL license.

• Comprehensive framework and parallel programming model for

– multi-core processors

– distributed on Local Area Network (LAN)

– on clusters and data centers

– on intranets

– on Internet grids

• Programming model: Active Objects
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The Active Objects Model

• Active object ↔ thread

• A thread may contain zero or more passive objects

• Only references to active objects are shared in the system

• Passive objects are referenced only inside their thread

• In RMI

– active objects are passed by reference

– Passive objects are passed by deep copy

• All RMI are made asynchronous whenever possible

• They immediately return “future objects”

• Future object: a placeholder for an object still to come

• As long as future objects are not invoked, a process doesn't block



Andrea G. B. Tettamanzi, 2014 25

Performance Measures

• Motivation and Introduction
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Speedup

• How much a parallel algorithm is faster than a corresponding 
sequential algorithm.

• Defined as the ratio:

where:

– T
1
 is the execution time of the sequential algorithm (i.e., the 

algorithm executed by 1 processor)

– T
n
 is the execution time of the parallel algorithm, executed by 

n processors

• The linear (or ideal) speedup is n;

• A ratio greater than n is called “superlinear speedup” 

Sn=
T1

T n
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Amdahl's Law

• Amdahl's Law states that potential program speedup is defined by 
the fraction of code (P) that can be parallelized:

• If none of the code can be parallelized, P = 0 and the speedup = 
1 (no speedup).

• If all of the code is parallelized, P = 1 and the speedup is infinite 
(in theory).

• If 50% of the code can be parallelized, maximum speedup = 2, 
meaning the code will run twice as fast.

• Note: hypothesis of infinitely many processors available! 

Smax=
1

1−P



Andrea G. B. Tettamanzi, 2014 28

Amdahl's Law
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Amdahl's Law Revisited

• Introducing the number of processors, n, available for performing 
the parallel fraction of work, the relationship can be modeled by:

where S = 1 – P is the sequential fraction of code.

• It is quite obvious that there are limits to the scalability of 
parallelism

Smax=
1

P
n

+S
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Amdahl's Law Revisited
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Amdahl's Law and Scalability

• Certain problems demonstrate increased performance by 
increasing the problem size. For example:

– 2D Grid Calculations: 85 seconds   85%

– Serial fraction S: 15 seconds   15%

• We can increase the problem size by doubling the grid 
dimensions and halving the time step.

• This results in four times the number of grid points and twice the 
number of time steps. The timings then may look like:

– 2D Grid Calculations 680 seconds   97.84%

– Serial fraction S: 15 seconds       2.16%

• Problems that increase the percentage P of parallel time with their 
size are more scalable than problems with a fixed P.
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Efficiency and Cost

• Efficiency: E = Speedup/n

– The efficiency in case of linear speedup would be E = 1

• Processing units do not come for free

• Idea: let's weigh the performance by the cost of processing 
equipment (in processor cost units: cost of one processor = 1)

• Cost: C
n
 = n T

n

• Cost-optimal formulation of a parallel algorithm

– Given speedup S
n
, C

n
 = n T

1
/S

n

– Find best compromise between speedup and cost

– In the case of linear speedup, T
n
 = T

1
/n: therefore, C

n
 = T

1
, i.e., 

adding more processing units comes for free!
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Thank you for your attention
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