
Andrea G. B. Tettamanzi, 2014 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2014 2

Lecture 7, Part a

Languages and Libraries,
Performance Measures

Andrea G. B. Tettamanzi, 2014 3

Table of Contents

• Introduction: languages or libraries?

• Languages

• Libraries

• Performance Measures

Andrea G. B. Tettamanzi, 2014 4

Languages or Libraries?

• To write concurrent or parallel programs, there are two options:

– Use a programming language specifically designed for that

– Use a standard library which extends the functionality of a
sequential programming language

• Why concurrent languages?

– Concurrent languages are designed around a theoretical
model of concurrency

– They lead to clean, well-structured, and efficient coding

• Why libraries?

– You don't have to learn a new language

Andrea G. B. Tettamanzi, 2014 5

Concurrent Languages

• A large number of programming languages have been proposed
to support concurrent programming natively

• I have personally counted more than 80 of them, but probably
there are more than 100

• Most of these language never got a large user base

– Some of them are research prototypes based on a particular
theoretical model

– Some are proprietary/domain-specific languages, developed
within industry or publicly funded research projects

• Most of them extend a popular sequential programming language
by adding parallel and concurrent constructs

• A few are built from scratch, but inspired by existing languages

Andrea G. B. Tettamanzi, 2014 6

An (Incomplete) Chart

SR JR

Java

Clojure

Erlang

Scala

Lisp

Linda Go

GoogleActor Model SALSA

Ateji PX

CSP

Pascal

SuperPascal

ConcurrentPascal

C

Ease

Fortran

FortranM

Limbo

Joyce

Occam

π-Calculus

Occam-π

XCSystemJ

E

Dataflow
Joule

SISAL

ParC

Ericsson

AT&T

HPF

C*
Charm++

Eiffel

SCOOP

Oz

CUDA

Andrea G. B. Tettamanzi, 2014 7

Brief Overview of Some Languages

• It would be impossible to cover all these languages

• We will give a brief overview of a handful of them

– Go, because it is backed by Google Inc.

– Ateji PX, because it is an extension of Java made in France

– Clojure, functional, based on JVM, with a Lisp-like syntax

– C*, of historical interest, but also useful as an introduction to
contemporary languages for GP-GPUs

• Of course, this is an arbitrary selection

• You are welcome to explore, discover, and try out other
languages, following your taste and inclination

Andrea G. B. Tettamanzi, 2014 8

Go

• Go has been designed for Google Inc. by R. Griesemer, Rob
Pike, and Ken Thompson since 2007; announced in 2009.

• Syntax of Go broadly similar to that of C:

– blocks of code are surrounded with curly braces;

– control flow structures: for, switch, if.

• Unlike C,

– line-ending semicolons are optional,

– variable declarations are different and usually optional

– type conversions must be explicit,

– New concurrent control keywords: go, select

• New types: maps, UTF-8 strings, array slices, channels

Andrea G. B. Tettamanzi, 2014 9

Concurrency in Go

• Go provides “goroutines” (an allusion to coroutines)

• Goroutines = small lightweight threads

• Created from functions with the go statement

• Goroutines are executed in parallel

• Groups of goroutines are multiplexed over multiple threads

Andrea G. B. Tettamanzi, 2014 10

Ateji PX

• An extension of Java to facilitate parallel computing on multi-core
processors, GPUs, Grids and the Cloud

• Introduces the new construct ||, which introduces a parallel
branch

• Data parallelism is obtained by || followed by a quantification

– e.g.: || (int i : array.length) array[i]++;

• Communication among parallel branches:

– Through shared variables

– Explicit, through named channels (à la pi-calculus)

• <channel> ! <expr> (send a value on a channel)

• <channel> ? <expr> (receive a value from a channel)

Andrea G. B. Tettamanzi, 2014 11

Ateji PX: Example 1

int fib(int n) {
if(n <= 1) return 1;
int fib1, fib2;
// recursively create parallel branches
[

|| fib1 = fib(n-1);
|| fib2 = fib(n-2);

]
return fib1 + fib2;

}

Andrea G. B. Tettamanzi, 2014 12

Ateji PX: Example 2
(demonstrating data flow programming)

void adder(Chan<Integer> in1, Chan<Integer> in2, Chan<Integer> out) {
for(; ;) {

int value1, value2;
[in1 ? value1; || in2 ? Value2;];
out ! value1 + value2;

}
}

// …

[
|| source(c1); // generates values on c1
|| source(c2); // generates values on c2
|| adder(c1, c2, c3);
|| sink(c3); // read values from c3

]

Andrea G. B. Tettamanzi, 2014 13

Clojure

• A dialect of Lisp created by Rich Hickey

• Runs on the JVM, the Common Language Runtime, and the
JavaScript interpreter

• Purely functional; immutable core data structures

• Offers various mechanisms to coordinate the concurrent
execution of threads:

– Software transactional memory (synchronous state sharing)

• Keywords: dosync, ref, set, alter, …

– An agent system (asynchronous independent state sharing)

– An atoms system (synchronous independent state sharing)

– A dynamic var system (isolating changing state)

• Keywords: def, binding, …

Andrea G. B. Tettamanzi, 2014 14

Clojure Refs and Dynamic Vars

• Refs are mutable references to objects

– They can be ref-set or altered to refer to different objects
within a transaction

– Transactions are delimited by “dosync” blocks

– Reads of refs provide a snapshot at a particular point in time

• Dynamic vars are also mutable references to objects

– They have a thread-shared root binding

– Any modification to those bindings are scoped to local thread

– Nested bindings obey a stack protocol and unwind as control
exits the binding block

Andrea G. B. Tettamanzi, 2014 15

C*

• C* is an OO superset of ANSI C with synchronous semantics

• Developed by Thinking Machines Corporation, 1987–1993

• A C* program can consist of:

– Standard sequential C code

– C* code

– Header files

– Calls to the CM timing utility, library functions, and CM Fortran
subroutines

• Source file extension: *.cs

Andrea G. B. Tettamanzi, 2014 16

C* New Features

• A method for describing the size and shape of parallel data and
for creating parallel variables

• New operators and expressions for parallel data

• New meanings for standard operators that allow them to work
with parallel data

• Methods for choosing the parallel variables, and the specific data
points within them, upon which C* code is to act

• Pointers to parallel data and to shapes

• Changes to the way functions work, so that, eg., parallel variables
can be used as arguments

• Methods for communication among parallel variables

Andrea G. B. Tettamanzi, 2014 17

Example

shape [2][32768]ShapeA; // shape declaration

int:ShapeA p1, p2, p3; // declaration of parallel variables

int sum = 0;

main() {
with(ShapeA) {

p1 = 1; p2 = 2; // parallel assignments
p3 = p1 + p2; // parallel sum
printf(“The sum in one element is %d.\n”, [0][1]p3);
sum += p3; // reduction assignment
printf(“The sum of all elements is %d.\n”, sum);

}
}

Andrea G. B. Tettamanzi, 2014 18

Libraries

• As there are plenty of concurrent programming languages, there
are plenty of libraries that support concurrency and parallelism

• Some time-honored parallel libraries, like

– PVM

– MPI

• More recent libraries, to tap into the power of multicore CPUs,
GP-GPUs, grids, and the Cloud, like

– GPars, a library for Groovy

– SystemC, an event-driven simulation kernel in C++

– C++ AMP and OpenCL

– …

Andrea G. B. Tettamanzi, 2014 19

PVM

• Parallel Virtual Machine, released in 1989

• Designed to allow a network of heterogeneous machines to be
used as a single distributed parallel processor

• Very portable, open source, mature and stable

• PVM consists of

– a run-time environment

– A library for message-passing, task and resource
management, and fault notification

• Supports the C, C++, and Fortran programming languages

• Supports broadcasting and multicasting, in addition to
process-to-process message passing

Andrea G. B. Tettamanzi, 2014 20

PVM: Some Primitives

• pvm_mytid(): gets the id of the calling process

• pvm_send(): sends a message to the process with the given id

• pvm_probe(): checks whether a message has arrived

• pvm_recv(): receives a message from the process w/ the given id

• pvm_bcast(): broadcasts a message to a group of processes

• pvm_joingroup(): enrolls the calling process in a group

• pvm_lvgroup(): leaves the specified group

• pvm_insert(): stores data into the PVMD database

• pvm_lookup(): retrieves data from the PVMD database

• pvm_exit(): terminates local process

• …

Andrea G. B. Tettamanzi, 2014 21

MPI

• Message-Passing Interface, version 1.0 released in 1995

• Both a library and a standard

• The MPI standard defines the syntax and semantics of a core of
library routines useful to write portable message-passing
programs in Fortran and C

• MPI supports both point-to-point and collective communication

• MPI-1 had no shared memory support; MPI-2 has a limited one

Andrea G. B. Tettamanzi, 2014 22

Pthreads and OpenMP

• Threaded shared memory programming models

• Pthreads = POSIX Threads

– Defines an API for creating and manipulating threads

– Available on all POSIX-conformant operating systems

• OpenMP = Open Multiprocessing

– API supports multi-platform shared memory multiprocessing
programming in C, C++, and Fortran

– Core elements of OpenMP: constructs for thread creation,
workload distribution (work sharing), data-environment
management, thread synchronization, user-level runtime
routines and environment variables

Andrea G. B. Tettamanzi, 2014 23

ProActive

• A Java grid middleware for parallel, distributed, and
multi-threaded computing.

• Developed by the OW2 Consortium, including INRIA, CNRS,
University of Nice Sophia Antipolis, and ActiveEon.

• Open-source software released under the GPL license.

• Comprehensive framework and parallel programming model for

– multi-core processors

– distributed on Local Area Network (LAN)

– on clusters and data centers

– on intranets

– on Internet grids

• Programming model: Active Objects

Andrea G. B. Tettamanzi, 2014 24

The Active Objects Model

• Active object ↔ thread

• A thread may contain zero or more passive objects

• Only references to active objects are shared in the system

• Passive objects are referenced only inside their thread

• In RMI

– active objects are passed by reference

– Passive objects are passed by deep copy

• All RMI are made asynchronous whenever possible

• They immediately return “future objects”

• Future object: a placeholder for an object still to come

• As long as future objects are not invoked, a process doesn't block

Andrea G. B. Tettamanzi, 2014 25

Performance Measures

• Motivation and Introduction

Andrea G. B. Tettamanzi, 2014 26

Speedup

• How much a parallel algorithm is faster than a corresponding
sequential algorithm.

• Defined as the ratio:

where:

– T
1
 is the execution time of the sequential algorithm (i.e., the

algorithm executed by 1 processor)

– T
n
 is the execution time of the parallel algorithm, executed by

n processors

• The linear (or ideal) speedup is n;

• A ratio greater than n is called “superlinear speedup”

Sn=
T1

T n

Andrea G. B. Tettamanzi, 2014 27

Amdahl's Law

• Amdahl's Law states that potential program speedup is defined by
the fraction of code (P) that can be parallelized:

• If none of the code can be parallelized, P = 0 and the speedup =
1 (no speedup).

• If all of the code is parallelized, P = 1 and the speedup is infinite
(in theory).

• If 50% of the code can be parallelized, maximum speedup = 2,
meaning the code will run twice as fast.

• Note: hypothesis of infinitely many processors available!

Smax=
1

1−P

Andrea G. B. Tettamanzi, 2014 28

Amdahl's Law

Andrea G. B. Tettamanzi, 2014 29

Amdahl's Law Revisited

• Introducing the number of processors, n, available for performing
the parallel fraction of work, the relationship can be modeled by:

where S = 1 – P is the sequential fraction of code.

• It is quite obvious that there are limits to the scalability of
parallelism

Smax=
1

P
n

+S

Andrea G. B. Tettamanzi, 2014 30

Amdahl's Law Revisited

Andrea G. B. Tettamanzi, 2014 31

Amdahl's Law and Scalability

• Certain problems demonstrate increased performance by
increasing the problem size. For example:

– 2D Grid Calculations: 85 seconds 85%

– Serial fraction S: 15 seconds 15%

• We can increase the problem size by doubling the grid
dimensions and halving the time step.

• This results in four times the number of grid points and twice the
number of time steps. The timings then may look like:

– 2D Grid Calculations 680 seconds 97.84%

– Serial fraction S: 15 seconds 2.16%

• Problems that increase the percentage P of parallel time with their
size are more scalable than problems with a fixed P.

Andrea G. B. Tettamanzi, 2014 32

Efficiency and Cost

• Efficiency: E = Speedup/n

– The efficiency in case of linear speedup would be E = 1

• Processing units do not come for free

• Idea: let's weigh the performance by the cost of processing
equipment (in processor cost units: cost of one processor = 1)

• Cost: C
n
 = n T

n

• Cost-optimal formulation of a parallel algorithm

– Given speedup S
n
, C

n
 = n T

1
/S

n

– Find best compromise between speedup and cost

– In the case of linear speedup, T
n
 = T

1
/n: therefore, C

n
 = T

1
, i.e.,

adding more processing units comes for free!

Andrea G. B. Tettamanzi, 2014 33

Thank you for your attention

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

