
Andrea G. B. Tettamanzi, 2016 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2016 2

Lecture 4

Theoretical Models

Andrea G. B. Tettamanzi, 2016 3

Table of Contents

• Introduction

• Petri Nets

• Actor Model Theory

• Traces and Trace Theory

• Lamport's TLA+ Logic

• Process Calculi:

– Calculus of Communicating Systems (CCS)

– Communicating Sequential Processes (CSP)

– π-Calculus

Andrea G. B. Tettamanzi, 2016 4

Introduction

• Fundamental problems:

– Primary: establishing the equivalence of programs

– Secondary: proving other interesting properties

• A model provides an abstract view in which the “irrelevant” details
are ignored in establishing the equivalence of systems

• A denotational model is one in which the meaning of a system
can be derived from its constituent parts (compositionality)

• For sequential programming, computer scientists have been
successful in building denotational models of programs which
abstract away the operational details

• For concurrent programming, it is harder to come up with such
models, mainly due to interleaving

Andrea G. B. Tettamanzi, 2016 5

Petri Nets

• Introduced by Carl Adam Petri

• A mathematical modeling language for the description of
distributed systems

• A bipartite graph consisting of places, transitions, and arcs

• Places contain a discrete number of tokens.

• A distribution of tokens over the places is called a marking.

• A transition may fire whenever its input places contain sufficient
tokens.

• Firing is atomic. Upon firing, a transition

– consumes tokens in its input places

– places tokens in its output places.

• Execution of Petri nets is nondeterministic

Andrea G. B. Tettamanzi, 2016 6

Petri Nets: Typical Interpretations

Input Places Transition Output Places

Preconditions Event Postcondition

Input data Computation step Output data

Input signals Signal processor Output signal

Resources needed Task or job Resources released

Conditions Logical clause Conclusion(s)

Buffers Processor Buffers

Andrea G. B. Tettamanzi, 2016 7

Petri Net: Formal Definition

• A Petri net is a 5-tuple PN = (P, T, F, W, M
0
) where:

– P = {p
1
, p

2
, …, p

m
} is a finite set of places,

– T = {t
1
, t

2
, …, t

m
} is a finite set of transitions,

– F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),

– W : F → {1, 2, 3, …} is a weigh function,

– M
0
 : P → {0, 1, 2, 3, …} is the initial marking,

– P ∩ T = ∅ and P ∪ T ≠ ∅.

• A Petri net structure N = (P, T, F, W) without any specific initial
marking is denoted by N

• A Petri net structure N with marking M is denoted (N, M)

Andrea G. B. Tettamanzi, 2016 8

Petri Nets: Behavioral Properties

• Reachability: M is reachable iff ∃ σ : M
0
 [σ > M

– R(M
0
) is the set of reachable markings

– Reachability problem: decidable, but EXPSPACE

• Boundedness: no. of tokens in each place is bounded for any
reachable marking; k-bounded: ≤ k; 1-bounded = safe

• Liveness: at any marking M, any transition may eventually fire

– A transition is Lk-live if it may fire in k time steps (weaker)

• Reversibility: from any M it is possible to reach a home state M'

• Synchronic Distance between two transitions:

– d(t
1
, t

2
) = max

σ
 | N

σ
(t

1
) – N

σ
(t

2
) |, where N

σ
(t) = firings of t in σ

Andrea G. B. Tettamanzi, 2016 9

Actor Model

• A mathematical model of concurrent computation

• Proposed by Carl Hewitt in 1973

• Studied by Gul Agha in his PhD Thesis at MIT (1985)

• Actors are the universal primitives of parallel computation

• Actors = Processes

• Actors exchange messages asynchronously and create other
actors

• Abstract actor machine with a minimal programming language

• To send a communication, an actor specifies the target

• Communications are buffered and eventually delivered

• Denotational semantics based on transitions

Andrea G. B. Tettamanzi, 2016 10

Simple Actor Language (SAL)

• <behavior definition> ::=
def <beh name> (<acquaintance list>) [<communication list>]

<command>*
end def

• <parameter list> ::= {id | <var list> } | {, id | , <var list> } | ε

• <var list> ::= case <tag field> of <variant>+ end case

• <variant> ::= <label> : <parameter list>

• <command> ::= if <condition> then <command>
{ else <command> } fi |

become <expression> | send <msg> to <target> |
<let bindings> “{“ <command> “}” |
<behavior definition> | <command>*

Andrea G. B. Tettamanzi, 2016 11

Denotational Semantics (1)

• Tasks: communications which are still pending (not yet accepted)
task = (tag, target, msg = [value

1
, value

2
, …, value

n
])

• Local states function l : target → behavior

• configuration of an actor system: c = (local states fn, tasks)

• Behavior : msg → (new tasks, new actors, replacement behavior)

• Actor = (mail address (= to be used as target), behavior)

• The behavior of an actor whose mail address is m is a function
(tag, m, msg) → (set of tasks, set of actors, replacement actor)

• Depending on the incoming communication (tag, m, [v
1
, …, v

n
]),

send communications to specified targets (1) creating new actors
and (2) specifying a replacement actor machine

Andrea G. B. Tettamanzi, 2016 12

Denotational Semantics (2)

Transition:

Subsequent transition:

 c c'
τ

Task τ = (t, m, k)

Configurations

 c c'
τ

τ ∈ tasks(c)
states(c)(m) = β, where β(t, m, k) = (T, A, γ)
tasks(c') = (tasks(c) – {tau}) ∪ T
states(c') = (states(c') – {(m, β)}) ∪ A ∪ {γ}

τ ∈ tasks(c) ∧ c →* c' ∧ τ ∉ tasks(c') ∧
∄c”(τ ∉ tasks(c”) ∧ c →* c” ∧ c” →* c')

Andrea G. B. Tettamanzi, 2016 13

Actor Model

• The Actor Model provides solution to three central problems in
distributed computing:

– Divergence (= infinite loops), thanks to the “guarantee of mail
delivery”

– Deadlock (cf. “the five dining philosophers”)

• No syntactic (= low-level) deadlock possible

• Semantic deadlocks are possible, but may be detected

• Solve detected deadlock by negotiation

– Mutual exclusion: not really a problem for actors

• An actor can be “accessed” only by sending it some mail

• An actor accepts just one mail and specifies a
replacement that will accept the next mail in queue

Andrea G. B. Tettamanzi, 2016 14

Problems of the Actor Model

• No direct notion of inheritance or hierarchy (not OO)

• Actors encompass the ideas of modularity and encapsulation
though, because an actor is self contained and atomic

• The ability to create other actors can dramatically change the
state of the system

• Behavior replacement: dynamic, hard to perform using a static
language.

• Guarantee of delivery means unbounded mailboxes

• Asynchronous message passing may cause problems for certain
algorithms/data structures (e.g., stack)

• Insensitive actors (waiting a reply before processing other msg's)
hard to implement

Andrea G. B. Tettamanzi, 2016 15

Trace Theory

• Finite automata are a convenient model of sequential programs

• Automata admit powerful analysis tools

– Structural properties: underlying graph-like model

– Behavioral properties: formal language theory

• Basic idea: use well-developed tools from formal language theory
for the analysis of concurrent systems

• A concurrent system is understood as in the theory of Petri nets

• The algebra of dependency graphs (such as Petri nets) is
isomorphic to that of trace monoids

• Alternative to concurrency as interleaving non-determinism

• First formulated by Antoni Mazurkiewicz in the 1970s

Andrea G. B. Tettamanzi, 2016 16

Traces

• Loosely speaking, a trace is an equivalence class of strings which
differ only in the ordering of adjacent independent symbols

• Dependency relation D: if a D b, then b D a and a D a;
a ≡

D
 b iff ¬(a D b): symbols a and b are independent

• The set Σ* of strings on alphabet Σ is a monoid w.r.t. the
operation ∙ of concatenation

• The trace monoid M(D) is the quotient monoid Σ*
D
 / ≡

D
.

• Given a string w, [w]
D
 is the trace represented by string w

• A dependency graph G(D) ia graphical representations of
dependency relation D. G(D) is isomorphic to M(D).

Andrea G. B. Tettamanzi, 2016 17

Histories

• Given n processes, each with its own alphabet Σ
i

• An elementary history π(a) is an n-tuple consisting of one-symbol
strings a in positions where a ∈ Σ

i
, the empty string ε elsewhere

• A history is a concatenation of elementary histories

• The monoid of histories H(Σ
1
, Σ

2
, …, Σ

n
) is isomorphic with the

monoid of traces over dependency Σ
1

2 ∪ Σ
2

2 ∪ … ∪ Σ
n

2.

• An ordering of events may be established given a history

Andrea G. B. Tettamanzi, 2016 18

Trace Languages

• Trace language over D: any set of traces over D

• Trace projection of trace t onto dependency C: π
C
(t)

• The synchronization of string language L
1
 over Σ

1
 with the string

language L
2
 over Σ

2
 is defined as (L

1
 || L

2
) over (Σ

1
 || Σ

2
), such that

w ∈ (L
1
 || L

2
) iff π

Σ1
(w) ∈ L

1
 and π

Σ2
(w) ∈ L

2
.

Andrea G. B. Tettamanzi, 2016 19

TLA+ Logic

• Temporal Logic of Actions, developed by Leslie Lamport

• TLA+ combines temporal logic with a logic of actions

• TLA+ formulas describe the behavior of a system

• Temporal aspect: primed and non-primed variables:

– Non primed, x, means “the current value of x”

– Primed, x', means “the value of x at the next step”

• Action: a Boolean formula containing constants, variables, and
primed variables

• State function: an expression containing constants and non-
primed variables only

• Action A is enabled in state s iff there exists a state t such that
(old-state s, new state t) satisfies A

Andrea G. B. Tettamanzi, 2016 20

TLA Syntax

• P: satisfied iff true for the initial state

• [A]
f
: satisfied iff every step satisfies A or leaves f unchanged

• □F: satisfied if F is always true

• WF
f
(A): weak fairness of A: if A ∧ (f' ≠ f) ever becomes enabled

and remains enabled forever, then infinitely many A ∧ (f' ≠ f) steps
occur

• SF
f
(A): strong fairness of A: if A ∧ (f' ≠ f) is enabled infinitely often,

then infinitely many A ∧ (f' ≠ f) steps occur

• F →+ G: G is true for at least as long as F is

• ◊F: F is eventually true, equivalent to ¬□¬F

• F ~ G: F leads to G: whenever F, eventually G: □(F ⇒ ◊G)

Andrea G. B. Tettamanzi, 2016 21

Process Calculi

• A process calculus or process algebra is a tool for the formal
modeling of a concurrent system

• A process calculus comprises

– tools for the high-level description of interactions,
communications, and synchronizations between processes

– algebraic laws that allow to manipulate descriptions and prove
equivalences between processes

• Three very influential process calculi:

– Calculus of Communicating Systems (CCS)

– Communicating Sequential Processes (CSP)

– π-Calculus

Andrea G. B. Tettamanzi, 2016 22

Calculus of Communicating Systems

• Introduced by Robin Milner around 1980

• Syntax: P ::= ∅ | a.P
1
 | A | P

1
 + P

2
 | P

1
|P

2
 | P

1
[b/a] | P

1
\a

• ∅ is the empty process

• Process a.P can perform action a and continue as P

• A = P defines identifier A that refers to process P

• P
1
 + P

2
 is the non-deterministic choice between and P

1
 and P

2

• P
1
|P

2
 means the two processes are executed concurrently

• P[b/a] is process P with all actions a replaced by b

• P\a is process P without action a

Andrea G. B. Tettamanzi, 2016 23

Communicating Sequential Processes

• Introduced by Sir C. A. R Hoare in 1978

• Originally designed as a concurrent programming language

• Then refined into an algebraic theory

• Used for specification and verification of concurrent systems

• Has enjoyed some success in industrial applications

• Focus on dependable and safety-critical systems

• CSP describes systems in terms of component processes that

– Operate independently

– Interact through message passing

• Processes may be defined both as sequential processes or as
the parallel composition of more primitive processes

Andrea G. B. Tettamanzi, 2016 24

CSP Primitives

• Events: communications or interactions:

– Atomic names (e.g., on, off)

– Compound names (e.g., valve.open, valve.close)

– Input events, ? = “reads” (e.g., mouse?xy)

– Output events, ! = “writes” (e.g., terminal!message)

• Primitive processes, representing fundamental behaviors

– STOP, the deadlock process

– SKIP, successful termination

Andrea G. B. Tettamanzi, 2016 25

CSP Algebraic Operators

• a → P [prefix] Wait for event a, then proceed as P

• (a → P)□(b → Q) [deterministic choice]

– if event a then P, else, if event b then Q

• (a → P)π(b → Q) [nondeterministic choice]

– either a → P or b → Q

• P ||| Q [interleaving] P and Q in parallel with interleaving

• P|[X]|Q [interface parallel]

– P and Q can proceed only after they both accept the same
event in X

• P\X [hiding]

– execute P after removing any occurrence of the events in X

Andrea G. B. Tettamanzi, 2016 26

CSP Syntax

• Proc ::= STOP | SKIP
| e → Proc (prefixing)
| Proc □ Proc (external choice)
| Proc π Proc (nondeterministic choice)
| Proc ||| Proc (interleaving)
| Proc |[X]| Proc (interface parallel)
| Proc \ X (hiding)
| Proc ; Proc (sequential composition)
| if b then Proc else Proc (Boolean conditional)
| Proc ▹ Proc (timeout)
| Proc △ Proc (interrupt)

Andrea G. B. Tettamanzi, 2016 27

Semantics

• The CSP syntax may be given several different formal semantics

• Operational Semantics: meaning given in terms of operations

• Algebraic semantics

• Denotational semantics

– Traces model, based on trace theory

– Stable failures model

– Failures/divergence model

Andrea G. B. Tettamanzi, 2016 28

π-Calculus

• May be regarded as a continuation of CCS

• Parallel counterpart of λ-calculus

• The syntax of π-calculus allows one to represent

– parallel composition of processes,

– synchronous communication between processes through
channels,

– creation of new channels,

– replication of processes

– nondeterminism.

• Process: an abstraction of an independent thread of control

• Channel: an abstraction of a communication link b/w processes

Andrea G. B. Tettamanzi, 2016 29

Syntax of π-Calculus

Let P and Q denote processes. Then

• P | Q denotes a process composed of P and Q running in parallel

• a(x).P denotes a process that waits to read a value x from the
channel a and then, having received it, behaves like P

• a<x>.P denotes a process that first waits to send the value x
along the channel a and then, after x has been accepted by some
input process, behaves like P

• (νa)P ensures that a is a new channel in P

• !P denotes an infinite number of copies of P, all running in parallel.

• P + Q denotes a process that behaves like either P or Q

• 0 denotes the inert process that does nothing

Andrea G. B. Tettamanzi, 2016 30

π-Calculus Example

Client-server communication:

!incr(a, x).a<x+1> | (ν res)(incr<res, 17> | res(y))

Infinite copies of a server accept messages on a channel called
“incr” containing a channel name a and a number x, then send on
channel a the result of computing x + 1.

In parallel, a client creates a new channel called “res” and sends a
message containing channel name “res” and 17 to the channel
called “incr”; at the same time, it accepts messages containing the
result, y, on channel “res”

Andrea G. B. Tettamanzi, 2016 31

Congruence

Structural congruence is the least equivalence relation preserved by
the process constructs and satisfying:

• P ≡ Q, if Q can be obtained from P by renaming bound names

• P | Q ≡ Q | P

• P + Q ≡ Q + P

• (P | Q) | R ≡ P | (Q | R)

• P | 0 ≡ P

• (νx)(νy)P ≡ (νy)(νx)P

• (νx)0 ≡ 0

• !P ≡ P | !P

• (νx)(P | Q) ≡ (νx)P | Q, if x is not a free name in Q

Andrea G. B. Tettamanzi, 2016 32

Reduction Semantics

Reduction relation: P → P' means P can become P' after performing
a computation step.

→ is defined as the least relation closed under the rules:

• a<x>.P | a(y).Q → P | Q[x/y]

• If P → Q, then also P | R → Q | R

• If P → P' and Q → Q', then also P + Q → P' and P + Q → Q'

• If P → Q, then also (νx)P → (νx)Q

• If P ≡ P' and P' → Q' and Q' ≡ Q, then P → Q

Andrea G. B. Tettamanzi, 2016 33

Thank you for your attention

	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

