
Andrea G. B. Tettamanzi, 2016 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2016 2

Lecture 7 – Part a

Distributed Computing
and Data Base Systems

for the Big Data

Andrea G. B. Tettamanzi, 2016 3

Plan

• NoSQL Databases

• Hadoop and MapReduce

• Apache Spark

• Document-based DBs: MongoDB

• Graph-based DBs

• RDF, triple stores, and SPARQL (→ MOOC)

• The CAP Theorem

Andrea G. B. Tettamanzi, 2016 4

• Apache Hadoop is a software library

• Framework for the distributed processing of large data sets

• Designed to

– scale up from single servers to 1000s of machines

– detect and handle failures at the application layer

• Four modules (components)

– Hadoop Common: file-system and OS-level abstractions

– Hadoop distributed file system (HDFS)

– Hadoop YARN: job scheduling and cluster resource mgmt

– MapReduce: parallel processing of large data sets

• Related projects: Cassandra, HBase, Spark, and several others

Andrea G. B. Tettamanzi, 2016 5

Hadoop Architecture

Location awareness:
Rack (= switch) name

JRE 1.6 or higher

SSH

Andrea G. B. Tettamanzi, 2016 6

HDFS

• Distributed, scalable, and portable file-system written in Java

• A Hadoop cluster has nominally a single namenode plus a cluster
of datanodes, although redundancy options are available

• Each datanode serves up blocks of data over the network using a
block protocol specific to HDFS.

• TCP/IP sockets used for communication

• Clients use RPC to communicate with one another

• Large files stored across multiple machines

• Reliability achieved through replication (cf. Part b of this lecture)

Andrea G. B. Tettamanzi, 2016 7

MapReduce (1)

• A programming model for processing parallelizable problems on
huge datasets using a large number of computers (nodes)

• Inspired by map and reduce functions in functional programming

• Originally a proprietary Google technology

• MapReduce libraries have been written in many programming
languages

• A popular open-source implementation is part of Apache Hadoop

• Key contributions of the MapReduce framework are

– Scalability (optimized distributed shuffle operation)

– Fault-tolerance

Andrea G. B. Tettamanzi, 2016 8

MapReduce (2)

Three-Step Parallel and Distributed Computation:

• "Map" operation: Each worker node applies the “map(key,
value)” function to the local data, and writes the output to a
temporary storage. A master node ensures that only one copy of
redundant input data is processed.

• "Shuffle" operation: Worker nodes redistribute data based on
the output keys (produced by the “map()” function), such that all
data belonging to one key is located on the same worker node.

• "Reduce" operation: Worker nodes apply the “reduce(key, list of
values)” to each group of output data, per key, in parallel.

Andrea G. B. Tettamanzi, 2016 9

MapReduce: Example

function map(String name, String document):
 // name: document name
 // document: document contents
 for each word w in document:
 emit (w, 1)

function reduce(String word, Iterator partialCounts):
 // word: a word
 // partialCounts: a list of aggregated partial counts
 sum = 0
 for each pc in partialCounts:
 sum += pc
 emit (word, sum)

Andrea G. B. Tettamanzi, 2016 10

Apache Spark

• The Spark project was started by Matel Zaharia at UC Berkeley to
provide programming tools for big data volumes that are easy to
use and versatile as those for single machines

• Main motivation: overcome limitations in the MapReduce model

• It has language-integrated APIs in Python, Java, R, and Scala

• Supports streaming, batch, and interactive computations

• Open source (donated to the Apache Software Foundation)

• Implicit data parallelism and fault-tolerance

• Spark requires:

– cluster manager (e.g., native Spark or Apache YARN),

– distributed storage system (e.g., HDFS, Cassandra, …)

Andrea G. B. Tettamanzi, 2016 11

NoSQL Databases

• Storage and retrieval of data modeled in means other than the
tabular relations used in relational databases

• Non-relational databases have existed since the 1960s

• However, real NoSQL (“not only SQL”) databases appeared as a
solution for the needs of Web 2.0 companies such as Google,
Facebook, and Amazon.

• Increasingly used in big data and real-time web applications

• Motivations include:

– simplicity of design

– simpler horizontal scaling to clusters of machines

– finer control over availability.

• Data structures: key-value, wide column, graph, document

Andrea G. B. Tettamanzi, 2016 12

Document-Oriented Databases

• Document Stores

• Documents encapsulate and encode data (or information) in
some standard formats or encodings:

– XML

– JSON

– Etc.

• Documents contain both the data and the metadata (think of an
XML document!)

• One of the most popular document-oriented databases is
nowadays MongoDB

Andrea G. B. Tettamanzi, 2016 13

MongoDB

• MongoDB is a scalable, high-performance, open-source, schema-
free, document-oriented DB based on BSON (= binary JSON)

• Documents are organized in collections (~ DB tables)

• Performance: no joins, no complex transactions

• Scalability: sharding (= horizontal data distribution)

• Rich JavaScript-based query syntax

– Allows deep nested queries:
 db.order.find({ shipping : { carrier : “DHL” } })

– Documents are just JSON objects that Mongo stores in binary

– Queries return a cursor (= a result set iterator): more efficient

– Cursor methods: hasNext(), forEach()

Andrea G. B. Tettamanzi, 2016 14

MongoDB's Features

• Capped collections: fixed-sized, ldt-operation, auto-LRU age-out

– Fixed insertion order

– Super fast, ideal for logging and caching

• Sharding: a method for storing data across multiple machines

– Horizontal vs. Vertical Scaling:

• Vertical: add more CPUs and RAM/disks

• Horizontal: divide the dataset and distribute over multiple
servers (shards).

– Each shard is an independent DB

– Collectively, the shards make up a single logical DB

– MongoDB supports sharding through the configuration of a
sharded cluster

Andrea G. B. Tettamanzi, 2016 15

MongoDB Sharded Cluster

Query
routers

Cluster's
metadata

Shard keys are used to
assign documents
to shards

Range-based partitioning vs. hash-based partitioning

Andrea G. B. Tettamanzi, 2016 16

Apache Cassandra

• An open-source distributed DB management system

– handles large amounts of data across many servers

– provides high availability with no single point of failure

– asynchronous masterless replication

• Initially developed at Facebook by Avinash Lakshman

• Based on DHTs

• Borrows many elements from Amazon's Dynamo

• Hybrid data model: key-value, column-oriented, row-partitioned

• Cassanda Query Language (CQL)

– Syntax similar to SQL

– Alternative to RPC-based interface

Andrea G. B. Tettamanzi, 2016 17

Graph-Oriented Databases

• A graph database is database that uses graph structures for
semantic queries with nodes, edges and properties to represent
and store data

• Most graph databases store their data in a key-value store or
document-oriented database

• The two most popular graph databases are OpenLink Virtuoso
and AllegroGraph

• One particularly influential graph model used by these databases
is RDF (the resource description framework)

Andrea G. B. Tettamanzi, 2016 18

RDF

• The data model of the Semantic Web

– Published as a W3C recommendation in 1999

– Initially a model for metadata

– Now used to represents all sorts of data and knowledge

• Resource Description Framework

– Resource: anything that can have an URI, a node of the graph

– Decription: attributes, features, and relations of the resources

– Framework: model, languages and their syntax and semantics

• Based on triples of the form (subj pred obj)

– Subj and obj are resources (= nodes); obj can be a literal

– Pred is an arc label

Andrea G. B. Tettamanzi, 2016 19

RDF Data Model

RDF graph =
collection of RDF triples

http://example.org/org/1

Acme Ltd

hasLegalName

http://example.org/person/1hasCEO

January 01, 1970

DOB

Andrea G. B. Tettamanzi, 2016 20

RDF Syntax

• RDF/XML
<rdf:RDF xmlns:voc=“http://example.org/vocabulary”>
 <voc:RegisteredOrganization rdf:about=“http://example.org/org/1”>
 <voc:hasLegalName> “Acme Ltd” </voc:hasLegalName>
 <voc:hasCEO rdf:resource=“http://example.org.person/1”/>
 </voc:RegisteredOrganization>
 <voc:Person rdf:about=“http://example.org.person/1”>
 <voc:DOB>January 1, 1970</voc:DOB>
 </voc:Person>
</rdf:RDF>

• Turtle
@prefix voc: <http://example.org/vocabulary/>
<http://example.org/org/1> rdf:type voc:RegisterdOrganization ;
 voc:hasLegalName “Acme Ltd” ;
 voc:hasCEO <http://example.org.person/1> .
<http://example.org.person/1> rdf:type voc:Person ;
 voc:DOB “January 1, 1970” .

http://example.org/org/1
http://example.org.person/1
http://example.org.person/1
http://example.org/vocabulary/
http://example.org/org/1
http://example.org.person/1
http://example.org.person/1

Andrea G. B. Tettamanzi, 2016 21

SPARQL

• SPARQL = SPARQL Protocol And RDF Query Language

• SPARQL is the query language for RDF

– Based on the RDF data model (triples/graph)

– Main idea: pattern matching

– Declarative: describe subgraphs of the queried RDF graph

– Graph patterns (= RDF graphs with variables

• SPARQL is a Protocol

– Transmission of SPARQL queries and results

– SPARQL Endpoint: a Web service implementing the protocol

• W3C standard since January 2008

Andrea G. B. Tettamanzi, 2016 22

SPARQL Query Types

• SELECT ?x ?y … WHERE graph-pattern(?x, ?y, …)

– Return a table of all x, y, … matching the description of the
graph contained in the graph pattern.

• CONSTRUCT {?s ?p ?o} WHERE graph-pattern(?s, ?p, ?o)

– Find all x, y, … satisfying the given conditions and replace
them in the given triple templates to create a new RDF graph
from them

• DESCRIBE ?x WHERE graph-pattern(?x)

– Find all declarations providing information about the given
resource(s) matching the given graph conditions

• ASK WHERE graph-pattern(?x, ?y, …)

– Check whether there exist x, y, … matching the description

Andrea G. B. Tettamanzi, 2016 23

SPARQL: Example

• SELECT ?companyName
WHERE {
 ?company voc:hasLegalName ?companyName .
 ?company voc:hasCEO ?ceo .
 ?ceo voc:DOB “January 1, 1970” .
}

• Returns:

companyName
…
“ACME Ltd”
…

Andrea G. B. Tettamanzi, 2016 24

Semantic Web and Linked Data

• To learn more about RDF, SPARQL, and other Semantic Web
related technologies...

• If you can understand French:

– MOOC “Web sémantique et Web de données”

– www.fun-mooc.fr/courses/inria/41002S02/session02/about

• Otherwise:

– MOOC “Knowledge Engineering with Semantic Web
Technologies”, 2015 edition

– https://open.hpi.de/courses/semanticweb2015

http://www.fun-mooc.fr/courses/inria/41002S02/session02/about
https://open.hpi.de/courses/semanticweb2015

Andrea G. B. Tettamanzi, 2016 25

The CAP Theorem

• Probably the must cited distributed systems theorem these days

• Stated by Eric Brewer, 2000, proved by Gilbert and Lynch, 2002

• Relates the following 3 properties

– C: Consistency

• Cf. Part b of this lecture

– A: Availability

• Every client’s request is served (receives a response)
unless a client fails (despite a strict subset of server nodes
failing)

– P: Partition-tolerance

• System functions properly even if the network is allowed to
lose arbitrarily many messages

Andrea G. B. Tettamanzi, 2016 26

CAP Theorem

C
A

P

AC

CP AP

C, A, P: pick two!

Andrea G. B. Tettamanzi, 2016 27

CAP Theorem: an Illustration

0

0 0
1

Add item

OK

Check out
?

Andrea G. B. Tettamanzi, 2016 28

The CAP Theorem in Practice

• In practical distributed systems

– Partitions may occur

– This is not under your control (as a system designer)

• Designer’s choice

– You choose whether you want your system in C or A when/if
(temporary) partitions occur

– Note: You may choose neither of C or A, but this is not a very
smart option

• Bottom line

– Practical distributed systems are either in CP (e.g.: MongoDB,
RDBMs) or in AP (e.g.: Cassandra)

Andrea G. B. Tettamanzi, 2016 29

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

