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Lecture 3, Part a

Parallel Architectures
Source: Yan Solihin, Fundamentals of Parallel Computer Architecture, 2008 
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Plan

• Parallel Architectures

– Instruction-Level Parallelism vs. Multiprocessors

– Historical Perspective

– Models of Parallelism
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Key Points

• Increasingly more and more components can be integrated on a 
single chip

• Speed of integration tracks Moore’s law: doubling every 18–24 
months. 

• Performance tracks speed of integration up until recently 

• At the architecture level, there are two techniques

– Instruction-Level Parallelism

– Cache Memory

• Performance gain from uniprocessor system so significant that 
making multiprocessor systems is not profitable
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Illustration

• 100-processor system with perfect speedup vs. single CPU

– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few years!

• Even worse

– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable
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Why Did Uniprocessor Performance
Grow so Fast?

• ~½  from circuit improvement (smaller transistors, faster clock, 
etc.)

• ~½  from architecture/organization:

• Instruction-Level Parallelism (ILP)

– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out of order execution

• Memory hierarchy (Caches)

– Exploiting spatial and temporal locality

– Multiple cache levels
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Uniproc. Performance Growth is Stalling

• Source of uniprocessor performance growth: instruction level 
parallelism (ILP)
– Parallel execution of independent instructions from a single 

thread

• ILP growth has slowed abruptly
– Memory wall: Processor speed grows at 55%/year, memory 

speed grows at 7% per year
– ILP wall: achieving higher ILP requires quadratically 

increasing complexity (and power)

• Power efficiency
• Thermal packaging limit vs. cost
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Why Instr-Level Parallelism is Slowing

• Branch prediction accuracy is already > 90%

– Hard to improve it even more

• Number of pipeline stages is already deep (~20-30 stages)

– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Processor width is already high

– Quadratically increasing complexity to increase the width 

• Cache size

– Effective, but also shows diminishing returns

– In general, the size must be doubled to reduce miss rate by 
a half
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Current Trend: Multicore and Manycore

Aspects Intel 
Clovertown

AMD 
Barcelona

IBM Cell

# cores 4 4 8+1

Clock Freq 2.66 GHz 2.3 GHz 3.2 GHz

Core type OOO 
Superscalar

OOO 
Superscalar

2-issue SIMD

Caches 2x4MB L2 512KB L2 
(private), 2MB 
L3 (shd)

256KB local 
store

Chip power 120 Watts 95 Watts 100 Watts
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Historical Perspective

“If the automobile industry advanced as rapidly as the 
semiconductor industry, a Rolls Royce would get ½ million 
miles per gallon and it would be cheaper to throw it away 
than to park it.”

Gordon Moore,

Intel Corporation
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Historical Perspective

• 80s: Prime Time for parallel architecture research

• 90s: emergence of distributed (vs. parallel) machines

– Progress in network technologies

– Connects cheap uniprocessor systems into a large 
distributed machine: Clusters, Grid

• 00s: parallel architectures are back

– Transistors per chip >> microproc transistors 

– Harder to get more performance from a uniprocessor

– SMT (Simultaneous multithreading), CMP (Chip Multi-
Processor), ultimately Massive CMP
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What is a Parallel Architecture?

• A parallel computer is a collection of processing elements 
that can communicate and cooperate to solve a large 
problem fast. [Almasi & Gottlieb]

• “collection of processing elements”
– How many? How powerful each? Scalability?
– Few very powerful vs. many small ones

• “that can communicate”
– Shared memory vs. message passing
– Interconnection network (bus, multistage, crossbar, …)
– Evaluation criteria: cost, latency, throughput, scalability, and 

fault tolerance
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What is a Parallel Architecture?

• “cooperate”

– Issues: granularity, synchronization, and autonomy

– Synchronization allows sequencing of operations to ensure 
correctness

– Granularity up => parallelism down, communication down, 
overhead down

– Autonomy

• SIMD (single instruction stream) vs. MIMD (multiple 
instruction streams)



Andrea G. B. Tettamanzi, 2015 14

What is a Parallel Architecture?

• “solve a large problem fast”

– General- vs. special-purpose machine?

– Any machine can solve certain problems well

What domains?

– Highly (embarassingly) parallel applications

• Many scientific codes

– Medium parallel apps

• Many engineering apps (finite-elements, VLSI-CAD)

– Non-parallel applications

• Compilers, editors (do we care?)
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Why Parallel Computers?

• Absolute performance: Can we afford to wait?

– Folding of a single protein takes years to simulate on the 
most advanced microprocessor. It only takes days on a 
parallel computer

– Weather forecast: timeliness is crucial

• Cost/performance

– Harder to improve performance on a single processor

– Bigger monolithic processor vs. many, simple processors

• Power/performance
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Loop-Level Parallelism

• Each iteration can be computed independently

• Each iteration cannot be computed independently, thus does not 
have loop level parallelism

+ Very high parallelism > 1K

+ Often easy to achieve load balance

- Some loops are not parallel

- Some applications do not have many loops

for (i=0; i<8; i++)
  a[i] = b[i] + c[i];

for (i=0; i<8; i++)
  a[i] = b[i] + a[i-1];
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Task-Level Parallelism

• Arbitrary code segments in a single program

• Across loops: 

• Subroutines: 

• Threads: e.g. editor: GUI, printing, parsing

+ Larger granularity => low overhead, communication

- Low degree of parallelism

- Hard to balance

…
for (i=0; i<n; i++)   
  sum = sum + a[i];
for (i=0; i<n; i++)
  prod = prod * a[i];
…

Cost = getCost();
A = computeSum();
B = A + Cost;
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Program-Level Parallelism

• Various independent programs execute together

• gmake: 

– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ no communication

- Hard to balance

- Few opportunities
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The Flynn taxonomy:

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine (Most desktops, laptops)
– Only one instruction fetch stream

– Most of today’s workstations or desktops

Control 
unit

Instruction
stream

Data
stream

ALU

Taxonomy of Parallel Computers
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SIMD

• Examples: Vector processors, SIMD extensions (MMX)

• A single instruction operates on multiple data items. 

• Pseudo-SIMD popular for multimedia extension

SISD: 
for (i=0; i<8; i++)
  a[i] = b[i] + c[i];

SIMD: 
a = b + c;  // vector addition
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• Example: CMU Warp

• Systolic arrays

 

Control 
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Instruction  
stream 1 

stream 2 

stream  
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Data 
stream 

Instruction  

Instruction  

Control 
unit 1 

Control 
unit    n 

MISD Machine
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MIMD Machine

• Independent processors connected together to form a 
multiprocessor system.

• Physical organization: which memory hierarchy level is shared

• Programming abstraction:

– Shared Memory:

• On a chip: Chip Multiprocessor (CMP)

• Bus interconnection: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared 
Memory (DSM)

– Distributed Memory:

• Clusters, Grid
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P

caches

M

P
Shared Cache Architecture: 
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium4 chip, IBM Power4 chip, SUN 
  Niagara, Pentium D, etc.
- Implies shared memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access) 
Shared Memory : 
- Pentium Pro Quad, Sun Enterprise, 
   etc.
- What interconnection network? 

- Bus
- Multistage
- Crossbar 
- etc.

- Implies shared memory hardware

MIMD Physical Organization
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MIMD Physical Organization

P

caches

M
…

Network

P

caches

M

NUMA (Non-Uniform Memory Access) 
Shared Memory : 
- SGI Origin, Altix, IBM p690, 
  AMD Hammer-based system
- What interconnection network? 

- Crossbar 
- Mesh
- Hypercube
- etc.

- Also referred to as Distributed 
Shared Memory
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MIMD Physical Organization

P

caches

M

Network

P

caches

M

I/O I/O

Distributed System/Memory:
- Also called clusters, grid 
- Don’t confuse it with distributed 
shared memory
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Cost

size

Parallel comp

Distrib comp
Perf

size

Parallel comp

Distrib comp

• Small scale machines: parallel system cheaper 
• Large scale machines: distributed system cheaper

• Performance: parallel system better (but more expensive)
• System size: parallel system limited, and cost grows fast

• However, must also consider software cost

Parallel vs. Distributed Computers
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Programming Models: Shared Memory

• Shared Memory / Shared Address Space:

– Each processor can see the entire memory

– Programming model = thread programming in uniprocessor 
systems 

P P P...

Shared Memory
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• Distributed Memory / Message Passing / Multiple Address Space:
– a processor can only directly access its own local memory. All 

communication happens by explicit messages. 

P

M

P

M

P

M

P

M

Programming Models: Distributed Memory
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+ Can easily be automated (parallelizing compiler, OpenMP)

+ Shared vars are not communicated, but must be guarded

– How to provide shared memory? Complex hardware

– Synchronization overhead grows fast with more processors

± Difficult to debug, not intuitive for users

Shared Mem compared to Msg Passing
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Top 500 Supercomputers

http://www.top500.org

http://www.top500.org/
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Thank you for your attention
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