
Andrea G. B. Tettamanzi, 2015 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr

Andrea G. B. Tettamanzi, 2015 2

Lecture 3, Part a

Parallel Architectures
Source: Yan Solihin, Fundamentals of Parallel Computer Architecture, 2008

Andrea G. B. Tettamanzi, 2015 3

Plan

• Parallel Architectures

– Instruction-Level Parallelism vs. Multiprocessors

– Historical Perspective

– Models of Parallelism

Andrea G. B. Tettamanzi, 2015 4

Key Points

• Increasingly more and more components can be integrated on a
single chip

• Speed of integration tracks Moore’s law: doubling every 18–24
months.

• Performance tracks speed of integration up until recently

• At the architecture level, there are two techniques

– Instruction-Level Parallelism

– Cache Memory

• Performance gain from uniprocessor system so significant that
making multiprocessor systems is not profitable

Andrea G. B. Tettamanzi, 2015 5

Illustration

• 100-processor system with perfect speedup vs. single CPU

– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few years!

• Even worse

– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable

Andrea G. B. Tettamanzi, 2015 6

Why Did Uniprocessor Performance
Grow so Fast?

• ~½ from circuit improvement (smaller transistors, faster clock,
etc.)

• ~½ from architecture/organization:

• Instruction-Level Parallelism (ILP)

– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out of order execution

• Memory hierarchy (Caches)

– Exploiting spatial and temporal locality

– Multiple cache levels

Andrea G. B. Tettamanzi, 2015 7

Uniproc. Performance Growth is Stalling

• Source of uniprocessor performance growth: instruction level
parallelism (ILP)
– Parallel execution of independent instructions from a single

thread

• ILP growth has slowed abruptly
– Memory wall: Processor speed grows at 55%/year, memory

speed grows at 7% per year
– ILP wall: achieving higher ILP requires quadratically

increasing complexity (and power)

• Power efficiency
• Thermal packaging limit vs. cost

Andrea G. B. Tettamanzi, 2015 8

Why Instr-Level Parallelism is Slowing

• Branch prediction accuracy is already > 90%

– Hard to improve it even more

• Number of pipeline stages is already deep (~20-30 stages)

– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Processor width is already high

– Quadratically increasing complexity to increase the width

• Cache size

– Effective, but also shows diminishing returns

– In general, the size must be doubled to reduce miss rate by
a half

Andrea G. B. Tettamanzi, 2015 9

Current Trend: Multicore and Manycore

Aspects Intel
Clovertown

AMD
Barcelona

IBM Cell

cores 4 4 8+1

Clock Freq 2.66 GHz 2.3 GHz 3.2 GHz

Core type OOO
Superscalar

OOO
Superscalar

2-issue SIMD

Caches 2x4MB L2 512KB L2
(private), 2MB
L3 (shd)

256KB local
store

Chip power 120 Watts 95 Watts 100 Watts

Andrea G. B. Tettamanzi, 2015 10

Historical Perspective

“If the automobile industry advanced as rapidly as the
semiconductor industry, a Rolls Royce would get ½ million
miles per gallon and it would be cheaper to throw it away
than to park it.”

Gordon Moore,

Intel Corporation

Andrea G. B. Tettamanzi, 2015 11

Historical Perspective

• 80s: Prime Time for parallel architecture research

• 90s: emergence of distributed (vs. parallel) machines

– Progress in network technologies

– Connects cheap uniprocessor systems into a large
distributed machine: Clusters, Grid

• 00s: parallel architectures are back

– Transistors per chip >> microproc transistors

– Harder to get more performance from a uniprocessor

– SMT (Simultaneous multithreading), CMP (Chip Multi-
Processor), ultimately Massive CMP

Andrea G. B. Tettamanzi, 2015 12

What is a Parallel Architecture?

• A parallel computer is a collection of processing elements
that can communicate and cooperate to solve a large
problem fast. [Almasi & Gottlieb]

• “collection of processing elements”
– How many? How powerful each? Scalability?
– Few very powerful vs. many small ones

• “that can communicate”
– Shared memory vs. message passing
– Interconnection network (bus, multistage, crossbar, …)
– Evaluation criteria: cost, latency, throughput, scalability, and

fault tolerance

Andrea G. B. Tettamanzi, 2015 13

What is a Parallel Architecture?

• “cooperate”

– Issues: granularity, synchronization, and autonomy

– Synchronization allows sequencing of operations to ensure
correctness

– Granularity up => parallelism down, communication down,
overhead down

– Autonomy

• SIMD (single instruction stream) vs. MIMD (multiple
instruction streams)

Andrea G. B. Tettamanzi, 2015 14

What is a Parallel Architecture?

• “solve a large problem fast”

– General- vs. special-purpose machine?

– Any machine can solve certain problems well

What domains?

– Highly (embarassingly) parallel applications

• Many scientific codes

– Medium parallel apps

• Many engineering apps (finite-elements, VLSI-CAD)

– Non-parallel applications

• Compilers, editors (do we care?)

Andrea G. B. Tettamanzi, 2015 15

Why Parallel Computers?

• Absolute performance: Can we afford to wait?

– Folding of a single protein takes years to simulate on the
most advanced microprocessor. It only takes days on a
parallel computer

– Weather forecast: timeliness is crucial

• Cost/performance

– Harder to improve performance on a single processor

– Bigger monolithic processor vs. many, simple processors

• Power/performance

Andrea G. B. Tettamanzi, 2015 16

Loop-Level Parallelism

• Each iteration can be computed independently

• Each iteration cannot be computed independently, thus does not
have loop level parallelism

+ Very high parallelism > 1K

+ Often easy to achieve load balance

- Some loops are not parallel

- Some applications do not have many loops

for (i=0; i<8; i++)
 a[i] = b[i] + c[i];

for (i=0; i<8; i++)
 a[i] = b[i] + a[i-1];

Andrea G. B. Tettamanzi, 2015 17

Task-Level Parallelism

• Arbitrary code segments in a single program

• Across loops:

• Subroutines:

• Threads: e.g. editor: GUI, printing, parsing

+ Larger granularity => low overhead, communication

- Low degree of parallelism

- Hard to balance

…
for (i=0; i<n; i++)
 sum = sum + a[i];
for (i=0; i<n; i++)
 prod = prod * a[i];
…

Cost = getCost();
A = computeSum();
B = A + Cost;

Andrea G. B. Tettamanzi, 2015 18

Program-Level Parallelism

• Various independent programs execute together

• gmake:

– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ no communication

- Hard to balance

- Few opportunities

Andrea G. B. Tettamanzi, 2015 19

The Flynn taxonomy:

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine (Most desktops, laptops)
– Only one instruction fetch stream

– Most of today’s workstations or desktops

Control
unit

Instruction
stream

Data
stream

ALU

Taxonomy of Parallel Computers

Andrea G. B. Tettamanzi, 2015 20

SIMD

• Examples: Vector processors, SIMD extensions (MMX)

• A single instruction operates on multiple data items.

• Pseudo-SIMD popular for multimedia extension

SISD:
for (i=0; i<8; i++)
 a[i] = b[i] + c[i];

SIMD:
a = b + c; // vector addition

Andrea G. B. Tettamanzi, 2015 21

• Example: CMU Warp

• Systolic arrays

Control
unit 2

ALU 2

ALU 1

ALU

n

Instruction
stream 1

stream 2

stream

n

Data
stream

Instruction

Instruction

Control
unit 1

Control
unit n

MISD Machine

Andrea G. B. Tettamanzi, 2015 22

MIMD Machine

• Independent processors connected together to form a
multiprocessor system.

• Physical organization: which memory hierarchy level is shared

• Programming abstraction:

– Shared Memory:

• On a chip: Chip Multiprocessor (CMP)

• Bus interconnection: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared
Memory (DSM)

– Distributed Memory:

• Clusters, Grid

Andrea G. B. Tettamanzi, 2015 23

P

caches

M

P
Shared Cache Architecture:
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium4 chip, IBM Power4 chip, SUN
 Niagara, Pentium D, etc.
- Implies shared memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access)
Shared Memory :
- Pentium Pro Quad, Sun Enterprise,
 etc.
- What interconnection network?

- Bus
- Multistage
- Crossbar
- etc.

- Implies shared memory hardware

MIMD Physical Organization

Andrea G. B. Tettamanzi, 2015 24

MIMD Physical Organization

P

caches

M
…

Network

P

caches

M

NUMA (Non-Uniform Memory Access)
Shared Memory :
- SGI Origin, Altix, IBM p690,
 AMD Hammer-based system
- What interconnection network?

- Crossbar
- Mesh
- Hypercube
- etc.

- Also referred to as Distributed
Shared Memory

Andrea G. B. Tettamanzi, 2015 25

MIMD Physical Organization

P

caches

M

Network

P

caches

M

I/O I/O

Distributed System/Memory:
- Also called clusters, grid
- Don’t confuse it with distributed
shared memory

Andrea G. B. Tettamanzi, 2015 26

Cost

size

Parallel comp

Distrib comp
Perf

size

Parallel comp

Distrib comp

• Small scale machines: parallel system cheaper
• Large scale machines: distributed system cheaper

• Performance: parallel system better (but more expensive)
• System size: parallel system limited, and cost grows fast

• However, must also consider software cost

Parallel vs. Distributed Computers

Andrea G. B. Tettamanzi, 2015 27

Programming Models: Shared Memory

• Shared Memory / Shared Address Space:

– Each processor can see the entire memory

– Programming model = thread programming in uniprocessor
systems

P P P...

Shared Memory

Andrea G. B. Tettamanzi, 2015 28

• Distributed Memory / Message Passing / Multiple Address Space:
– a processor can only directly access its own local memory. All

communication happens by explicit messages.

P

M

P

M

P

M

P

M

Programming Models: Distributed Memory

Andrea G. B. Tettamanzi, 2015 29

+ Can easily be automated (parallelizing compiler, OpenMP)

+ Shared vars are not communicated, but must be guarded

– How to provide shared memory? Complex hardware

– Synchronization overhead grows fast with more processors

± Difficult to debug, not intuitive for users

Shared Mem compared to Msg Passing

Andrea G. B. Tettamanzi, 2015 30

Top 500 Supercomputers

http://www.top500.org

http://www.top500.org/

Andrea G. B. Tettamanzi, 2015 31

Thank you for your attention

	Titolo
	Slide 2
	Slide 3
	Key Points
	Illustration
	Why did uniproc performance grow so fast?
	But the uniproc perf growth is stalling
	Why ILP is slowing
	Current Trend: Multicore and Manycore
	Slide 10
	Slide 11
	Parallel computers
	Slide 13
	Slide 14
	Why parallel computers?
	Loop level parallelism
	Task level parallelism
	Program level parallelism
	Taxonomy of Parallel Computers
	SIMD
	MISD machine
	MIMD machine
	MIMD Physical Organization
	MIMD Physical Organization (2)
	MIMD Physical Organization (3)
	Parallel vs. Distributed Computers
	Programming Models
	Slide 28
	Shared Mem compared to Msg Passing
	Top 500 Supercomputer
	Slide 31

