
Andrea G. B. Tettamanzi, 2014 1

ParallelismParallelism
Master 1 InternationalMaster 1 International

Andrea G. B. Tettamanzi
Université de Nice Sophia Antipolis

Département Informatique

andrea.tettamanzi@unice.fr



Andrea G. B. Tettamanzi, 2014 2

Lecture 5, Part b

Throughput-Oriented 
Architectures



Andrea G. B. Tettamanzi, 2014 3

Table of Contents

• Introduction

• FPGAs

• GP-GPUs

• NVIDIA GPU Architecture

• CUDA Programming Model

• Throughput-Oriented Programming



Andrea G. B. Tettamanzi, 2014 4

Throughput-Oriented Architectures

• The current trend in CPUs is to go from single-core to multi-core

• Aim: to deliver higher performance by exploiting modestly parallel 
workloads arising from the execution of

– multiple independent programs

– individual programs consisting of multiple parallel tasks

• A related architectural trend is the growing prominence of 
throughput-oriented microprocessor architectures.

– Field-programmable gate arrays (FPGAs) 

– Sun's Niagara

– NVIDIA's graphics processing units (GPUs)

• When executing (massively) parallel workloads, focus on 
maximizing total throughput at the cost of serial performance



Andrea G. B. Tettamanzi, 2014 5

Improving Total Throughput

• Trade-off in (parallel) computing:

– Increase total throughput (i.e., amount of work done/unit time)

– Decrease latency for a single task (i.e., time elapsed)

• Therefore, we have:

– Latency-oriented designs: traditional CPUs

– Throughput-oriented designs

• Applications: any problem where parallelism abounds

– Real-time computer graphics (e.g., gaming, virtual reality)

– Video processing

– Medical-image analysis

– Molecular dynamics, astrophysical simulation

– Gene sequencing



Andrea G. B. Tettamanzi, 2014 6

Field-Programmable Gate Arrays

• Two big players: Xilinx and Altera

• Semiconductor devices based around a matrix of configurable 
logic blocks (CLBs) connected via programmable interconnects

• Can be reprogrammed after manufacturing

• An alternative to Application-Specific Integrated Circuits (ASICs)

• Two types of FPGAs:

– One-time programmable (OTP) FPGAs

– SRAM-based FPGAs: can be reprogrammed at will – the 
dominant type



Andrea G. B. Tettamanzi, 2014 7

FPGA Applications

• Aerospace & Defense: image & signal proc., reconfiguration

• ASIC prototyping

• Audio, Video, Image processing, and Broadcast

• Automotive

• Industrial, scientific, and medical applications

• Consumer electronics

• Networking: high-badwidth, low latency devices for data centers

• Wired and wireless communication

• High-performance computing and data storage



Andrea G. B. Tettamanzi, 2014 8

FPGA Block Structure



Andrea G. B. Tettamanzi, 2014 9

Configurable Logic Block



Andrea G. B. Tettamanzi, 2014 10

FPGA Programming

• Vendors provide integrated design suites (e.g., Xilinx ISE)

• FPGA “programs” take the form of register-transfer levels (RTLs)

• An RTL is a design abstraction which models a circuit in terms of

– flow of data between registers

– logical operations performed on those data

• The de facto standard for RTL is VHDL

D <= not Q;
 
process(clk)
begin
    if rising_edge(clk) then
        Q <= D;
    end if;
end process;



Andrea G. B. Tettamanzi, 2014 11

GP-GPUs

• Graphics Processing Units (GPUs), aka graphics accelerators:

– The leading exemplars of modern throughput-oriented 
architectures

– Produced in high volumes, their price is accessible

• General-Purpose GPUs (GP-GPUs)

– Primarily designed for graphics processing

– Suitable for other tasks as well

– Example: NVIDIA Tesla GPUs



Andrea G. B. Tettamanzi, 2014 12

NVIDIA GPU Architecture

• Beginning with the G80 processor released in late 2006, NVIDIA 
GPUs support the CUDA architecture for parallel computing

• Array of processors, called “streaming multiprocessors” (SM)

• Each SM

– Supports on the order of 1000 co-resident threads

– Is equipped with a large register file

– Contains many scalar processing elements that execute the 
instructions issued by the running threads

– Contains high-bandwidth, low-latency on-chip shared memory

– Provides direct read/write access to off-chip DRAM

• Single-instruction, multiple-thread (SIMT) execution model

– Threads executed in groups (“warps”), in a SIMD fashion



Andrea G. B. Tettamanzi, 2014 13

NVIDIA GPU Architecture

PCI Bus

GPU Off-chip memory

H
os

t 
In

te
r f

a c
e

T
h r

e a
d  

S
ch

ed
ul

i n
g SM

SIMT Control

On-chip memory

Processing
Elements

M
e m

or
y 

I n
te

rf
ac

eSM
SIMT Control

On-chip memory

Processing
Elements

SM
SIMT Control

On-chip memory

Processing
Elements

…

Global Level-2 Cache

Interconnection Network

DRAM

DRAM

DRAM

…



Andrea G. B. Tettamanzi, 2014 14

CUDA Programming Model

• Minimalist set of abstractions for parallel programming on 
massively multithreaded architectures

• A CUDA program is organized into

– one or more threads executing on a host processor (CPU)

– one or more parallel kernels that can be executed by the host 
thread(s) on a parallel device (GPU)

• Kernels run a sequential program across a set of parallel threads.

• The programmer specifies for each kernel launch:

– the number of blocks

– The number of threads per block

• CUDA kernels are thus similar in style to a blocked form of the 
familiar SPMD paradigm, but somewhat more flexible



Andrea G. B. Tettamanzi, 2014 15

CUDA Threads

• Parallel portions of an application are executed on the device as 
kernels

– One kernel is executed at a time

– Many threads execute each kernel

• Differences between CUDA and CPU threads

– CUDA threads are extremely lightweight

• Very little creation overhead

• Instant switching

– CUDA uses 1000s of threads to achieve efficiency

• Multi-core CPUs can use only a few



Andrea G. B. Tettamanzi, 2014 16

Host Device

Grid 2
Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block
(3, 0)

Block
(3, 1)

Grid 1

Block (1, 1)

Thread Blocks and the Grid

• A kernel is executed as a

grid of thread blocks

• A thread block is a batch of 
threads that can cooperate 
with each other by:

– Sharing data through 
shared memory

– Synchronizing their 
execution

• Threads from different blocks 
cannot cooperate!

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Kernel 1

Kernel 2



Andrea G. B. Tettamanzi, 2014 17

Device

Grid 2
Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block
(3, 0)

Block
(3, 1)

Grid 1

Block (1, 1)

Thread Blocks and the Grid

• Threads and blocks have IDs

– So each thread can decide 
what data to work on

• Block ID: 1D or 2D

• Thread ID: 1D, 2D, or 3D

• Simplifies memory addressing 
when processing 
multidimensional data

– Image processing

– Solving PDEs on volumes

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)



Andrea G. B. Tettamanzi, 2014 18

Memory Spaces

• Each thread can:

– Read/write per-thread registers

– Read/write per-thread local memory

– Read/write per-block shared memory

– Read/write per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory

• The host can read/write global, constant, and texture memory 
(stored in DRAM)



Andrea G. B. Tettamanzi, 2014 19

Execution Model

• Kernels are launched in grids

– One kernel executes at a time

• A block executes on one multiprocessor

– Does not migrate

• Several blocks can execute concurrently on one multiprocessor

– Control limitations:

• At most 8 concurrent blocks per SM

• At most 768 concurrent threads per SM

– Number is limited further by SM resources

• Register file is partitioned among the threads

• Shared memory is partitioned among the blocks



Andrea G. B. Tettamanzi, 2014 20

CUDA Programming Model in C

• Functions are declared either

– As a kernel entry point, using the __global__ modifier

• May be called from the host only, executes on the device

• Must return void

– As a normal C function, using the __host__ modifier

• May be called from the host only, executes on the host

– As a kernel-only function, using the __device__ modifier

• May be called from the device only, executes on device

• A few restrictions for functions executed on the device:

– No recursion

– No static variable declarations inside the function

– No variable number of arguments



Andrea G. B. Tettamanzi, 2014 21

CUDA Programming Model in C

• The host program launches kernels using the function-call-like 
syntax fn_name<<<B, T>>>(arguments)

– B: number of blocks

– T: number of threads per block

• Kernels may use a set of special variables:

– gridDim.x, gridDim.y: the dimension of the MS grid

– blockIdx.x, blockIdx.y: the 2D index of the thread block

– threadIdx.x, threadIdx.y, threadIdx.z: 3D index of thread

– blockDim.x, blockDim.y, blockDim.z: dimension of the block



Andrea G. B. Tettamanzi, 2014 22

CUDA Programming Model in C

• Shared variables are declared using the __shared__ modifier

– Scope and lifetime: a thread block

• Global variables are declared using the __global__ modifier

– Scope: a grid; lifetime: the application

• Constants are declared using the __constant__ modifier

– Scope: a grid; lifetime: the application

• Automatic variables without any qualifier reside in registers

– Except for large structures that reside in local memory

• Pointers can point to memory in either global or shared memory:

– Global memory: allocated in the host and passed to the 
kernel, obtained as the address of a global variable

– Shared memory: statically allocated during the call



Andrea G. B. Tettamanzi, 2014 23

CUDA Programming Model in C

• Explicit GPU memory allocation

– cudaMalloc(), cudaFree()

• Memory copy from host to device, etc.

– cudaMemcpy(), cudaMemcpy2D(), … 

• Runtime library split into:

– A common component providing built-in vector types and a 
subset of the C runtime library supported in both host and 
device codes

– A host component to control and access one or more devices 
from the host

– A device component providing device-specific functions



Andrea G. B. Tettamanzi, 2014 24

CUDA Programming: An example

__global__ void increment(float *x, int n)
{
    // Each thread will process 1 element, which
    // is determined from the thread’s index.
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if( i<n )
        x[i] = x[i] + 1;
}
__host__ void parallel_increment(float *x, int n)
{
    // Launch increment() kernel with 1 thread
    // per element, grouped into ⎡n/256⎤ blocks
    // of 256 threads each.
    increment<<<ceil(n/256), 256>>>(x, n);
}



Andrea G. B. Tettamanzi, 2014 25

Throughput-Oriented Programming

• Scalability should be the programmer's central concern

• Techniques suitable for 4 parallel threads may be completely 
unsuitable for 4000 parallel threads

• Must expose substantial amounts of fine-grained parallelism, 
fulfilling the expectations of the architecture

• The maximal parallelism is often the best performer

• Example: sparse matrix-vector multiplication y = Ax

– Moderate parallelism: 1 thread per matrix row

– Intermediate parallelism: several threads per row

– Maximal parallelism: 1 thread for each non-zero element

• Calculation is much cheaper than memory transfer

– Preferable to locally recompute values than to store them 



Andrea G. B. Tettamanzi, 2014 26

Thank you for your attention


	Titolo
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

