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Throughput-Oriented Architectures

• The current trend in CPUs is to go from single-core to multi-core

• Aim: to deliver higher performance by exploiting modestly parallel 
workloads arising from the execution of

– multiple independent programs

– individual programs consisting of multiple parallel tasks

• A related architectural trend is the growing prominence of 
throughput-oriented microprocessor architectures.

– Field-programmable gate arrays (FPGAs) 

– Sun's Niagara

– NVIDIA's graphics processing units (GPUs)

• When executing (massively) parallel workloads, focus on 
maximizing total throughput at the cost of serial performance
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Improving Total Throughput

• Trade-off in (parallel) computing:

– Increase total throughput (i.e., amount of work done/unit time)

– Decrease latency for a single task (i.e., time elapsed)

• Therefore, we have:

– Latency-oriented designs: traditional CPUs

– Throughput-oriented designs

• Applications: any problem where parallelism abounds

– Real-time computer graphics (e.g., gaming, virtual reality)

– Video processing

– Medical-image analysis

– Molecular dynamics, astrophysical simulation

– Gene sequencing



Andrea G. B. Tettamanzi, 2014 6

Field-Programmable Gate Arrays

• Two big players: Xilinx and Altera

• Semiconductor devices based around a matrix of configurable 
logic blocks (CLBs) connected via programmable interconnects

• Can be reprogrammed after manufacturing

• An alternative to Application-Specific Integrated Circuits (ASICs)

• Two types of FPGAs:

– One-time programmable (OTP) FPGAs

– SRAM-based FPGAs: can be reprogrammed at will – the 
dominant type
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FPGA Applications

• Aerospace & Defense: image & signal proc., reconfiguration

• ASIC prototyping

• Audio, Video, Image processing, and Broadcast

• Automotive

• Industrial, scientific, and medical applications

• Consumer electronics

• Networking: high-badwidth, low latency devices for data centers

• Wired and wireless communication

• High-performance computing and data storage
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FPGA Block Structure
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Configurable Logic Block
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FPGA Programming

• Vendors provide integrated design suites (e.g., Xilinx ISE)

• FPGA “programs” take the form of register-transfer levels (RTLs)

• An RTL is a design abstraction which models a circuit in terms of

– flow of data between registers

– logical operations performed on those data

• The de facto standard for RTL is VHDL

D <= not Q;
 
process(clk)
begin
    if rising_edge(clk) then
        Q <= D;
    end if;
end process;
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GP-GPUs

• Graphics Processing Units (GPUs), aka graphics accelerators:

– The leading exemplars of modern throughput-oriented 
architectures

– Produced in high volumes, their price is accessible

• General-Purpose GPUs (GP-GPUs)

– Primarily designed for graphics processing

– Suitable for other tasks as well

– Example: NVIDIA Tesla GPUs
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NVIDIA GPU Architecture

• Beginning with the G80 processor released in late 2006, NVIDIA 
GPUs support the CUDA architecture for parallel computing

• Array of processors, called “streaming multiprocessors” (SM)

• Each SM

– Supports on the order of 1000 co-resident threads

– Is equipped with a large register file

– Contains many scalar processing elements that execute the 
instructions issued by the running threads

– Contains high-bandwidth, low-latency on-chip shared memory

– Provides direct read/write access to off-chip DRAM

• Single-instruction, multiple-thread (SIMT) execution model

– Threads executed in groups (“warps”), in a SIMD fashion
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NVIDIA GPU Architecture
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CUDA Programming Model

• Minimalist set of abstractions for parallel programming on 
massively multithreaded architectures

• A CUDA program is organized into

– one or more threads executing on a host processor (CPU)

– one or more parallel kernels that can be executed by the host 
thread(s) on a parallel device (GPU)

• Kernels run a sequential program across a set of parallel threads.

• The programmer specifies for each kernel launch:

– the number of blocks

– The number of threads per block

• CUDA kernels are thus similar in style to a blocked form of the 
familiar SPMD paradigm, but somewhat more flexible
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CUDA Threads

• Parallel portions of an application are executed on the device as 
kernels

– One kernel is executed at a time

– Many threads execute each kernel

• Differences between CUDA and CPU threads

– CUDA threads are extremely lightweight

• Very little creation overhead

• Instant switching

– CUDA uses 1000s of threads to achieve efficiency

• Multi-core CPUs can use only a few
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Thread Blocks and the Grid

• Threads and blocks have IDs

– So each thread can decide 
what data to work on

• Block ID: 1D or 2D

• Thread ID: 1D, 2D, or 3D

• Simplifies memory addressing 
when processing 
multidimensional data

– Image processing

– Solving PDEs on volumes
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Memory Spaces

• Each thread can:

– Read/write per-thread registers

– Read/write per-thread local memory

– Read/write per-block shared memory

– Read/write per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory

• The host can read/write global, constant, and texture memory 
(stored in DRAM)
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Execution Model

• Kernels are launched in grids

– One kernel executes at a time

• A block executes on one multiprocessor

– Does not migrate

• Several blocks can execute concurrently on one multiprocessor

– Control limitations:

• At most 8 concurrent blocks per SM

• At most 768 concurrent threads per SM

– Number is limited further by SM resources

• Register file is partitioned among the threads

• Shared memory is partitioned among the blocks
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CUDA Programming Model in C

• Functions are declared either

– As a kernel entry point, using the __global__ modifier

• May be called from the host only, executes on the device

• Must return void

– As a normal C function, using the __host__ modifier

• May be called from the host only, executes on the host

– As a kernel-only function, using the __device__ modifier

• May be called from the device only, executes on device

• A few restrictions for functions executed on the device:

– No recursion

– No static variable declarations inside the function

– No variable number of arguments
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CUDA Programming Model in C

• The host program launches kernels using the function-call-like 
syntax fn_name<<<B, T>>>(arguments)

– B: number of blocks

– T: number of threads per block

• Kernels may use a set of special variables:

– gridDim.x, gridDim.y: the dimension of the MS grid

– blockIdx.x, blockIdx.y: the 2D index of the thread block

– threadIdx.x, threadIdx.y, threadIdx.z: 3D index of thread

– blockDim.x, blockDim.y, blockDim.z: dimension of the block
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CUDA Programming Model in C

• Shared variables are declared using the __shared__ modifier

– Scope and lifetime: a thread block

• Global variables are declared using the __global__ modifier

– Scope: a grid; lifetime: the application

• Constants are declared using the __constant__ modifier

– Scope: a grid; lifetime: the application

• Automatic variables without any qualifier reside in registers

– Except for large structures that reside in local memory

• Pointers can point to memory in either global or shared memory:

– Global memory: allocated in the host and passed to the 
kernel, obtained as the address of a global variable

– Shared memory: statically allocated during the call
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CUDA Programming Model in C

• Explicit GPU memory allocation

– cudaMalloc(), cudaFree()

• Memory copy from host to device, etc.

– cudaMemcpy(), cudaMemcpy2D(), … 

• Runtime library split into:

– A common component providing built-in vector types and a 
subset of the C runtime library supported in both host and 
device codes

– A host component to control and access one or more devices 
from the host

– A device component providing device-specific functions
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CUDA Programming: An example

__global__ void increment(float *x, int n)
{
    // Each thread will process 1 element, which
    // is determined from the thread’s index.
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if( i<n )
        x[i] = x[i] + 1;
}
__host__ void parallel_increment(float *x, int n)
{
    // Launch increment() kernel with 1 thread
    // per element, grouped into ⎡n/256⎤ blocks
    // of 256 threads each.
    increment<<<ceil(n/256), 256>>>(x, n);
}
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Throughput-Oriented Programming

• Scalability should be the programmer's central concern

• Techniques suitable for 4 parallel threads may be completely 
unsuitable for 4000 parallel threads

• Must expose substantial amounts of fine-grained parallelism, 
fulfilling the expectations of the architecture

• The maximal parallelism is often the best performer

• Example: sparse matrix-vector multiplication y = Ax

– Moderate parallelism: 1 thread per matrix row

– Intermediate parallelism: several threads per row

– Maximal parallelism: 1 thread for each non-zero element

• Calculation is much cheaper than memory transfer

– Preferable to locally recompute values than to store them 
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Thank you for your attention
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