
Master 1 international, Université de Nice Sophia-Antipolis 

31/03/2014

Formal Models of Computation for 
Concurrency

Discussion sections
Marked Graph, Synchronous Data Flow and KRG

By Jean-Vivien Millo

Marked graph (Petri Net)

Marked graphs (MG) are a sub-class of Petri Net (PN) where places have 
exactly one incoming and one outgoing arc. Thanks to this restriction, MGs 
are conflict free.

Q1/ Draw a PN which is not a MG.

Q2/ Draw an MG which is i) not live, ii) live.

Q3/ Draw an MG which is not safe. 

Q4/ Run the MG of Q3 with an ASAP scheduling. What do you see? How 
can you change the behavior so that the capacity of every place will be 
bounded?



Q5/ Draw an MG with a throughput 3/5.

Q6/ Consider the following MG and each of the four possible markings. 

-Run the MG from M1 to M2.
-Run the MG from M1 to M3.
-Could you run the MG from M3 to M1 and M3 to M2?
-Could you run the MG from M3 to M4?
-Is there any invariant through the execution of these MGs? 

Q7/ Run M1, M2, M3, and M4 with an ASAP scheduling until you reach the 
initial marking.  While doing it, write the activation sequence (schedule) of 
each transition as a binary words (1=activity, 0=inactivity).

-What can you say about the obtained binary words?
-What can you say about the schedule of two successive transitions?
-What can you say about the schedules of M3? And M4?

Q8/ Consider that the application described by the marked graph given in 
Q6-M1 is executed on a quad core's architecture with shared memory.

-What is the best allocation of tasks (transitions) onto cores so that 
the throughput is maximized.

-How can you refine the marked graph in order to represents this 
allocation? And a specific schedule? 

M4M3M2M1



Synchronous Data Flow (SDF)
SDF  is  used  to  analyze  data  flow  applications  where  the  size  of  the 
computed data varies. For example: cryptography, error correcting code, 
audio and video processing…

SDF is a generalization of the MG model where the transitions consume 
and produce a fix amount of tokens. For example, each time a transition 
fires, it consumes three tokens on its left input, two on its right input and 
then produces four tokens on its output.

If the ratios are not correctly set up, the execution will lead to starvation 
or buffer overflow. Consequently, an SDF is considered as valid if and only 
if the ratios are balanced.

One can verify that an SDF graph is correct by building and solving the 
balance equations.

Q9/ Draw an SDF graph composed of four transitions with at least a cycle.

Q10/ Abstract this SDF graph in its topology matrix. Is it balanced? If not, 
modify it such that it is.

Q11/ How many times each transition should be fired such that each of 
them computes the same amount of data? How to compute these values?

Q12/ What is the necessary and sufficient condition to make your SDF 
live? Where one should put the tokens? How many?

-To think about this question, it is useful to transform the SDF graph 
in  a  homogeneous  SDF  graph  (where  each  transition  consumes  and 
produces the same amount of token).  Why is it useful?



K-periodic  Routing  Graph 
(KRG)
The  KRG  model  is  used  to  refine  the  SDF model  by  introduction 
deterministic  choice  using  the  select  and  merge  node.  The  idea  is  to 
represent a larger set of applications specifically when data flows are split 
and/or  merged.  This  is  useful  to  represent  bus  based  or  NoC  based 
communication, explicit parallelism, or even specific algorithmic details.

Similarly to SDF, KRG graphs are subject to starvation or buffer overflow in 
case of unbalanced ratio. In KRG this is also to the select and merge node. 
For example, if a select node sends twice more data on the left branch 
than the right one. The same ratio should be respected while merging the 
two flows. 

Q15/ Draw a KRG composed of at least one select node, one merge node.

Q16/ Abstract the KRG in an SDF and check if it is well balanced

Q17/ Initialize the KRG such that it is live. 

Q18/ Assume four tasks (A, B, C, D, and E), each task is allocated on its 
own core. The tasks communicate through a one-way ring bus. At every 
step, A sends a data to C and B sends a data to D. After ten steps, B and D 
send  a  data  each  to  E  while  A  and  C  stall.  This  pattern  is  repeated 
infinitely. We assume the places on the ring are delay free

-Represent the application using a KRG.
-Compute the switch condition of each of the merge and select 

node.
-Compute the schedule of each transition.


