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CM - Séance 2 – Partie A
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Data Compression

• String compression

– There are extensive theories and well-tuned algorithms

– Typically lossless

– But only limited manipulation is possible without expansion

• Audio/video compression

– Typically lossy compression, with progressive refinement

– Sometimes small fragments of signal can be reconstructed without 
reconstructing the whole

• Time sequence is not audio

– Typically short and vary slowly with time
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Dimensionality Reduction:
Wavelet Transformation 

• Discrete wavelet transform (DWT): linear signal processing, 
multi-resolution analysis

• Compressed approximation: store only a small fraction of the 
strongest of the wavelet coefficients

• Similar to discrete Fourier transform (DFT), but better lossy 
compression, localized in space

• Method:
– Length, L, must be an integer power of 2 (padding with 0’s, when 

necessary)

– Each transform has 2 functions: smoothing, difference

– Applies to pairs of data, resulting in two set of data of length L/2

– Applies two functions recursively, until reaches the desired length
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Numerosity Reduction

• Reduce data volume by choosing alternative, smaller forms of data 
representation

• Parametric methods

– Assume the data fits some model, estimate model parameters, 
store only the parameters, and discard the data (except possible 
outliers)

– Example: Log-linear models—obtain value at a point in m-D space 
as the product on appropriate marginal subspaces 

• Non-parametric methods 

– Do not assume models

– Major families: histograms, clustering, sampling 
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Data Reduction Method (1): Regression 
and Log-Linear Models

• Linear regression: Data are modeled to fit a straight line

– Often uses the least-square method to fit the line

• Multiple regression: allows a response variable Y to be 

modeled as a linear function of multidimensional feature 

vector

• Log-linear model: approximates discrete 

multidimensional probability distributions
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• Linear regression: Y = w X + b

– Two regression coefficients, w and b, specify the line 
and are to be estimated by using the data at hand

– Using the least squares criterion to the known values 
of Y1, Y2, …, X1, X2, ….

• Multiple regression: Y = b0 + b1 X1 + b2 X2.

– Many nonlinear functions can be transformed into the 
above

• Log-linear models:

– The multi-way table of joint probabilities is 
approximated by a product of lower-order tables

– Probability:  p(a, b, c, d) = ab acad bcd

Regression Analysis and Log-Linear Models



Andrea G. B. Tettamanzi, 2016 10

Data Reduction Method (2): Histograms

• Divide data into buckets and store 

average (sum) for each bucket

• Partitioning rules:

– Equal-width: equal bucket range

– Equal-frequency (or equal-

depth)

– V-optimal: with the least 

histogram variance (weighted 

sum of the original values that 

each bucket represents)

– MaxDiff: set bucket boundary 

between each pair for pairs have 

the β–1 largest differences
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Data Reduction Method (3): Clustering

• Partition data set into clusters based on similarity, and store cluster 

representation (e.g., centroid and diameter) only

• Can be very effective if data is clustered but not if data is “smeared”

• Can have hierarchical clustering and be stored in multi-dimensional 

index tree structures

• There are many choices of clustering definitions and clustering 

algorithms

• Cluster analysis will be studied in depth in Chapter 7
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Data Reduction Method (4): Sampling

• Sampling: obtaining a small sample s to represent the whole data set N

• Allow a mining algorithm to run in complexity that is potentially sub-
linear to the size of the data

• Choose a representative subset of the data

– Simple random sampling may have very poor performance in the 
presence of skew

• Develop adaptive sampling methods

– Stratified sampling: 

• Approximate the percentage of each class (or subpopulation of 
interest) in the overall database 

• Used in conjunction with skewed data

• Note: Sampling may not reduce database I/Os (page at a time)
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Sampling: with or without Replacement

SRSWOR

(simple random

 sample without 

replacement)

SRSWR

Raw Data
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Sampling: Cluster or Stratified Sampling

Raw Data Cluster/Stratified Sample
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Discretization

• Three types of attributes:

– Nominal — values from an unordered set, e.g., color, profession

– Ordinal — values from an ordered set, e.g., military or academic 

rank 

– Continuous — real numbers, e.g., integer or real numbers

• Discretization: 

– Divide the range of a continuous attribute into intervals

– Some classification algorithms only accept categorical attributes.

– Reduce data size by discretization

– Prepare for further analysis
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Discretization and Concept Hierarchy 
Generation for Numeric Data

• Typical methods: All the methods can be applied recursively

– Binning (covered above)

• Top-down split, unsupervised, 

– Histogram analysis (covered above)

• Top-down split, unsupervised

– Clustering analysis (covered above)

• Either top-down split or bottom-up merge, unsupervised

– Entropy-based discretization: supervised, top-down split

– Interval merging by 2 Analysis: unsupervised, bottom-up merge

– Segmentation by natural partitioning: top-down split, unsupervised
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Entropy-Based Discretization

• Given a set of samples S, if S is partitioned into two intervals S1 and S2 

using boundary T, the information gain after partitioning is

• Entropy is calculated based on class distribution of the samples in the 

set.  Given m classes, the entropy of S1 is

where pi  is the probability of class i in S1

• The boundary that minimizes the entropy function over all possible 

boundaries is selected as a binary discretization

• The process is recursively applied to partitions obtained until some 

stopping criterion is met

• Such a boundary may reduce data size and improve classification 

accuracy
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Interval Merge by 2 Analysis

• Merging-based (bottom-up) vs. splitting-based methods

• Merge: Find the best neighboring intervals and merge them to form 

larger intervals recursively

• ChiMerge [Kerber AAAI 1992, See also Liu et al. DMKD 2002]

– Initially, each distinct value of a numerical attr. A is considered to be 

one interval

– 2 tests are performed for every pair of adjacent intervals

– Adjacent intervals with the least 2 values are merged together, since 

low 2 values for a pair indicate similar class distributions

– This merge process proceeds recursively until a predefined stopping 

criterion is met (such as significance level, max-interval, max 

inconsistency, etc.)  
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Segmentation by Natural Partitioning

• A simple 3-4-5 rule can be used to segment numeric data into relatively 
uniform, “natural” intervals.

– If an interval covers 3, 6, 7 or 9 distinct values at the most significant 
digit, partition the range into 3 equi-width intervals

– If it covers 2, 4, or 8 distinct values at the most significant digit, 
partition the range into 4 intervals

– If it covers 1, 5, or 10 distinct values at the most significant digit, 
partition the range into 5 intervals
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Automatic Concept Hierarchy Generation

• Some hierarchies can be automatically generated based on 
the analysis of the number of distinct values per attribute in 
the data set 
– The attribute with the most distinct values is placed at the 

lowest level of the hierarchy
– Exceptions, e.g., weekday, month, quarter, year

country

province_or_ state

city

street

15 distinct values

365 distinct 
values

3567 distinct values

674,339 distinct values



Andrea G. B. Tettamanzi, 2016 21

CM - Séance 2 – Partie B

Entrepôts de données
et

OLAP
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What is Data Warehouse?

• Defined in many different ways, but not rigorously.

– A decision support database that is maintained separately from 

the organization’s operational database

– Support information processing by providing a solid platform of 

consolidated, historical data for analysis.

• “A data warehouse is a subject-oriented, integrated, time-variant, 

and nonvolatile collection of data in support of management’s 

decision-making process.”—W. H. Inmon

• Data warehousing:

– The process of constructing and using data warehouses
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Data Warehouse—Subject-Oriented

• Organized around major subjects, such as customer, 

product, sales

• Focusing on the modeling and analysis of data for 

decision makers, not on daily operations or transaction 

processing

• Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in the 

decision support process
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Data Warehouse—Integrated

• Constructed by integrating multiple, heterogeneous data 
sources

– relational databases, flat files, on-line transaction 
records

• Data cleaning and data integration techniques are 
applied.

– Ensure consistency in naming conventions, encoding 
structures, attribute measures, etc. among different 
data sources

• E.g., Hotel price: currency, tax, breakfast covered, etc.

– When data is moved to the warehouse, it is 
converted.  
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Data Warehouse—Time Variant

• The time horizon for the data warehouse is significantly 

longer than that of operational systems

– Operational database: current value data

– Data warehouse data: provide information from a 

historical perspective (e.g., past 5-10 years)

• Every key structure in the data warehouse

– Contains an element of time, explicitly or implicitly

– But the key of operational data may or may not 

contain “time element”
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Data Warehouse—Nonvolatile

• A physically separate store of data transformed from the 

operational environment

• Operational update of data does not occur in the data 

warehouse environment

– Does not require transaction processing, recovery, 

and concurrency control mechanisms

– Requires only two operations in data accessing: 

• initial loading of data and access of data
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Data Warehouse vs. Heterogeneous 
DBMS

• Traditional heterogeneous DB integration: A query driven approach

– Build wrappers/mediators on top of heterogeneous databases 

– When a query is posed to a client site, a meta-dictionary is used 

to translate the query into queries appropriate for individual 

heterogeneous sites involved, and the results are integrated into 

a global answer set

– Complex information filtering, compete for resources

• Data warehouse: update-driven, high performance

– Information from heterogeneous sources is integrated in advance 

and stored in warehouses for direct query and analysis



Andrea G. B. Tettamanzi, 2016 28

Data Warehouse vs. Operational DBMS

• OLTP (on-line transaction processing)

– Major task of traditional relational DBMS

– Day-to-day operations: purchasing, inventory, banking, 
manufacturing, payroll, registration, accounting, etc.

• OLAP (on-line analytical processing)

– Major task of data warehouse system

– Data analysis and decision making

• Distinct features (OLTP vs. OLAP):

– User and system orientation: customer vs. market

– Data contents: current, detailed vs. historical, consolidated

– Database design: ER + application vs. star + subject

– View: current, local vs. evolutionary, integrated

– Access patterns: update vs. read-only but complex queries
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OLTP vs. OLAP

 OLTP OLAP 

users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 
detailed, flat relational 
isolated 

historical,  
summarized, multidimensional 
integrated, consolidated 

usage repetitive ad-hoc 

access read/write 
index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records accessed tens millions 

#users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
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Why Separate Data Warehouse?

• High performance for both systems

– DBMS— tuned for OLTP: access methods, indexing, concurrency 
control, recovery

– Warehouse—tuned for OLAP: complex OLAP queries, 
multidimensional view, consolidation

• Different functions and different data:

– missing data: Decision support requires historical data which 
operational DBs do not typically maintain

– data consolidation:  DS requires consolidation (aggregation, 
summarization) of data from heterogeneous sources

– data quality: different sources typically use inconsistent data 
representations, codes and formats which have to be reconciled

• Note: There are more and more systems which perform OLAP 
analysis directly on relational databases
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From Tables and Spreadsheets to Data 
Cubes

• A data warehouse is based on a multidimensional data model which 

views data in the form of a data cube

• A data cube, such as sales, allows data to be modeled and viewed in 

multiple dimensions

– Dimension tables, such as item (item_name, brand, type), or 

time(day, week, month, quarter, year) 

– Fact table contains measures (such as dollars_sold) and keys to 

each of the related dimension tables

• In data warehousing literature, an n-D base cube is called a base 

cuboid. The top most 0-D cuboid, which holds the highest-level of 

summarization, is called the apex cuboid.  The lattice of cuboids 

forms a data cube.
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Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid
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Conceptual Modeling of Data Warehouses

• Modeling data warehouses: dimensions & measures

– Star schema: A fact table in the middle connected to a 

set of dimension tables 

– Snowflake schema:  A refinement of star schema 

where some dimensional hierarchy is normalized into a 

set of smaller dimension tables, forming a shape 

similar to snowflake

– Fact constellations:  Multiple fact tables share 

dimension tables, viewed as a collection of stars, 

therefore called galaxy schema or fact constellation 
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            item_key

Example of Star Schema

   time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
state_or_province
country

location

Sales Fact Table

           time_key

        branch_key

       location_key

         units_sold

      dollars_sold

          avg_sales

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch
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Example of Snowflake Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city_key

location

Sales Fact Table

           time_key

          item_key

       branch_key

     location_key

        units_sold

     dollars_sold

        avg_sales

Measures

item_key
item_name
brand
type
supplier_key

item

branch_key
branch_name
branch_type

branch

supplier_key
supplier_type

supplier

city_key
city
state_or_province
country

city
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Example of Fact Constellation

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_state
country

location

Sales Fact Table

time_key

   item_key

 branch_key

location_key

    units_sold

dollars_sold

     avg_sales

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch

Shipping Fact Table

time_key

    item_key

 shipper_key

from_location

  to_location

 dollars_cost

units_shipped

shipper_key
shipper_name
location_key
shipper_type

shipper
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Measures of Data Cube: Three Categories

• Distributive: if the result derived by applying the function to 
n aggregate values is the same as that derived by applying 
the function on all the data without partitioning

• E.g., count(), sum(), min(), max()

• Algebraic: if it can be computed by an algebraic function 
with M arguments (where M is a bounded integer), each of 
which is obtained by applying a distributive aggregate 
function

• E.g.,  avg(), min_N(), standard_deviation()

• Holistic: if there is no constant bound on the storage size 
needed to describe a subaggregate.  

• E.g., median(), mode(), rank()
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A Concept Hierarchy: Dimension 
(location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity
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Multidimensional Data

• Sales volume as a function of product, month, and region

P
ro

du
ct

Reg
io

n

Month

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

                   Office         Day
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A Sample Data Cube

Total annual sales
of  TV in U.S.A.Date

Pro
du

ct

C
ou

n
tr

y

sum

sum 
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

All, All, All
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Cuboids Corresponding to the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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Typical OLAP Operations

• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction
• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed 
data, or introducing new dimensions

• Slice and dice: project and select 
• Pivot (rotate): 

– reorient the cube, visualization, 3D to series of 2D planes
• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-
end relational tables (using SQL)
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Merci de votre attention
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