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Modeélisation

prediction

z = M(x, y)

Variables connues

M est la loi qui lie les variables x, y et z.
Etant donné un échantillon de n-uplets (x, y, z),
on cherche la loi qui les “explique”.
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Classification vs. Prediction

« Classification
— predicts categorical class labels (discrete or nominal)

— classifies data (constructs a model) based on the training set and the
values (class labels) in a classifying attribute and uses it in classifying new
data

 Prediction

— models continuous-valued functions, i.e., predicts unknown or missing
values

« Typical applications
— Credit approval
— Target marketing
— Medical diagnosis
— Fraud detection

Andrea G. B. Tettamanzi, 2017



Step 1: Model Construction

Y
~_
Training /
Data
NAME RANK YEARS| TENURED
Mike |Assistant Prof 3 no
Mary |Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave |Assistant Prof 6 no
Anne |Associate Prof 3 no
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IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’




Step 2: Using the Model in Prediction
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’ Classifier \
T -~
S o
: >
Testing
Data Unseen Data
.
/ Jeff, Professor, 4)
Tom |Assistant Prof 2 Tenured?l
Merlisa |Associate Prof| 7 no ,
George |Professor 5 yes Y@Sj
Joseph |Assistant Prof 7 yes
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Supervised vs. Unsupervised Learning

« Supervised learning (classification)

— Supervision: The training data (observations, measurements, etc.) are
accompanied by labels indicating the class of the observations

— New data is classified based on the training set

« Unsupervised learning (clustering)
— The class labels of training data is unknown

— Given a set of measurements, observations, etc. with the aim of
establishing the existence of classes or clusters in the data
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Evaluating Classification Methods

Accuracy

— classifier accuracy: predicting class label

— predictor accuracy: guessing value of predicted attributes

— More sophisticated measures: Confusion matrix, ROC curve
Speed

— time to construct the model (training time)

— time to use the model (classification/prediction time)
Robustness: handling noise and missing values
Scalabllity: efficiency in disk-resident databases
Interpretability

— understanding and insight provided by the model

Other measures, e.g., goodness of rules, such as decision tree size or
compactness of classification rules
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Classifier Accuracy Measures

C, True positive

C, False positive

1N
G,

False negative

True negative

classes buy computer = yes | buy computer = no | total recognition(%)
buy computer = yes 6954 46 7000 99.34
buy computer = no 412 2588 3000 86.27
total 7366 2634 10000 95.52

Accuracy of a classifier M, acc(M): percentage of test set tuples that are correctly
classified by the model M

— Error rate (misclassification rate) of M = 1 — acc(M)
— Given m classes, CMU,, an entry in a confusion matrix, indicates # of tuples in class i that
are labeled by the classifier as class |

Alternative accuracy measures (e.g., for cancer diagnosis)
— sensitivity = t-pos/pos [* true positive recognition rate */
— specificity = t-neg/neg [* true negative recognition rate */
— precision = t-pos/(t-pos + f-pos)
— accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)
— This model can also be used for cost-benefit analysis
Andrea G. B. Tettamanzi, 2017



Predictor Error Measures

Measure predictor accuracy: measure how far off the predicted value is
from the actual known value

Loss function: measures the error b/w y, and the predicted value y;

— Absolute error: Iyz — yﬁl
— Squared error: (y; — y})?
Test error (generalization error): the average loss over the test set

d

d
1 p 1 N2
— Mean abs error: ~ ; lyi — y;| Mean squared error: ~ ;(yq; — ;)
d ]
Z’Ldzl i yf' Relative sq error:
Zi:l i — 9| Zi:l(yi )

— Relative abs error:

The mean squared-error exaggerates the presence of outliers
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Evaluating the Accuracy of a Classifier or **
Predictor (1)

Holdout method
— Given data is randomly partitioned into two independent sets
« Training set (e.g., 2/3) for model construction
« Test set (e.g., 1/3) for accuracy estimation
— Random sampling: a variation of holdout
« Repeat holdout k times, accuracy = avg. of the accuracies obtained

Cross-validation (k-fold, where k = 10 is most popular)

— Randomly partition the data into k mutually exclusive subsets, each
approximately equal size

— Ati-th iteration, use Di as test set and others as training set
— Leave-one-out: k folds where k = # of tuples, for small sized data

— Stratified cross-validation: folds are stratified so that class distribution in
each fold is approx. the same as that in the initial data
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Evaluating the Accuracy of a Classifier or ' *°

Predictor (1)

* Bootstrap
— Works well with small data sets
— Samples the given training tuples uniformly with replacement

* |.e., each time a tuple is selected, it is equally likely to be
selected again and re-added to the training set

* Several boostrap methods, and a common one is .632 boostrap

— Suppose we are given a data set of d tuples. The data set is sampled d
times, with replacement, resulting in a training set of d samples. The data
tuples that did not make it into the training set end up forming the test set.
About 63.2% of the original data will end up in the bootstrap, and the
remaining 36.8% will form the test set (since (1 — 1/d)? = e! = 0.368)

— Repeat the sampling procedue k times, overall accuracy of the

model: :
acc(M) :Z (0.632 Xacc(M,)

i=1

+0.368 Xacc(M,)

test _set train_set)
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Model Selection: ROC Curves -

" ROC (Receiver Operating Characteristics) ¢ “

4 o]

curves: for visual comparison of
classification models

" Oiriginated from signal detection theory

" Shows the trade-off between the true
positive rate and the false positive rate

" The area under the ROC curve is a
measure of the accuracy of the model

" Rank the test tuples in decreasing order:
the one that is most likely to belong to the
positive class appears at the top of the list

" The closer to the diagonal line (i.e., the
closer the area is to 0.5), the less accurate
IS the model

Andrea G. B. Tettamanzi, 2017
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*Vertical axis represents the
true positive rate

*Horizontal axis rep. the false
positive rate

*The plot also shows a
diagonal line

*A model with perfect accuracy
will have an area (AUC) of 1.0
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Decision Tree Induction: Training DatasetL

age | income |student| credit rating |buys computer

Andrea G. B. Tettamanzi, 2017
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Output: A Decision Tree for “buys_computer” L

31..40

no yes

excellent fair

Andrea G. B. Tettamanzi, 2017
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Algorithm for Decision Tree Induction

Basic algorithm (a greedy algorithm)

Tree is constructed in a top-down recursive divide-and-conquer manner
At start, all the training examples are at the root

Attributes are categorical (if continuous-valued, they are discretized in
advance)

Examples are partitioned recursively based on selected attributes

Test attributes are selected on the basis of a heuristic or statistical measure
(e.g., information gain)

Conditions for stopping partitioning
— All samples for a given node belong to the same class
— There are no remaining attributes for further partitioning — majority voting is

employed for classifying the leaf

— There are no samples left

Andrea G. B. Tettamanzi, 2017



Attribute Selection Measure:
Information Gain (ID3/C4.5)

Select the attribute with the highest information gain

Let p; be the probability that an arbitrary tuple in D
belongs to class C, estimated by |C, ,|/|D|

Expected information (entropy) needed to classify a

tuple in D:
= — sz' logs pi
Information needed (after using A to sgllt D into v
partitions) to classify D: Z |Dj|
D

Information gained by branching on attrlbute A:
Gain(A) = H(D) — Ha(D)

Andrea G. B. Tettamanzi, 2017
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Gini index (CART, IBM IntelligentMiner)

If a data set D contains examples from n classes, gini index, gini(D) is
defined as i
. . 2
gini(D) =1 — ij
7=1

where p; is the relative frequency of class jin D
If a data set D is split on A into two subsets D, and D, the gini index
gini(D) i1s defined as

giniy (D) =
Reduction in Impurity:
Agini(A) = gini(D) — gini 4 (D)

D
’ 1‘gini(D1)+‘ 2’gim(DQ)

The attribute provides the smallest gini, (D) (or the largest reduction in
iImpurity) is chosen to split the node

Andrea G. B. Tettamanzi, 2017
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Other Attrlbute SeleCtion Measures

CHAID: a popular decision tree algorithm, measure based on x2 test for
independence

C-SEP: performs better than info. gain and gini index in certain cases
G-statistics: has a close approximation to X2 distribution

MDL (Minimal Description Length) principle (i.e., the simplest solution is
preferred):

— The best tree as the one that requires the fewest # of bits to both (1) encode
the tree, and (2) encode the exceptions to the tree

Multivariate splits (partition based on multiple variable combinations)
— CART: finds multivariate splits based on a linear comb. of attrs.

Which attribute selection measure is the best?
— Most give good results, none is significantly superior than others

Andrea G. B. Tettamanzi, 2017



o
Overfitting and Tree Pruning

Overfitting: An induced tree may overfit the training data
— Too many branches, some may reflect anomalies due to noise or outliers
— Poor accuracy for unseen samples

Two approaches to avoid overfitting

— Prepruning: Halt tree construction early—do not split a node if this would
result in the goodness measure falling below a threshold

« Difficult to choose an appropriate threshold

— Postpruning: Remove branches from a “fully grown” tree—get a sequence of
progressively pruned trees

« Use a set of data different from the training data to decide which is the
“best pruned tree”

Andrea G. B. Tettamanzi, 2017
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Bayesian Classification: Why?

A statistical classifier: performs probabilistic prediction, i.e., predicts
class membership probabilities

Foundation: Based on Bayes’ Theorem.

Performance: A simple Bayesian classifier, naive Bayes classifier, has
comparable performance with decision tree and selected neural
network classifiers

Incremental: Each training example can incrementally
Increase/decrease the probability that a hypothesis is correct — prior
knowledge can be combined with observed data

Standard: Even when Bayesian methods are computationally
Intractable, they can provide a standard of optimal decision making
against which other methods can be measured

Andrea G. B. Tettamanzi, 2017
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Bayes' Theorem: Basics

Let X be a data sample (“evidence”): class label is unknown
Let H be a hypothesis that X belongs to class C

Classification is to determine P(H|X), the probability that the hypothesis
holds given the observed data sample X

P(H) (prior probability), the initial probability
— E.qg., X will buy computer, regardless of age, income, ...
P(X): probability that sample data is observed

P(X|H) (posteriori probability), the probability of observing the sample X,
given that the hypothesis holds

— E.g., Given that X will buy computer, the prob. that X is 31..40, medium
income

Andrea G. B. Tettamanzi, 2017
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Bayes' Theorem

« Given training data X, posterior probability of hypothesis H, P(H|X),
follows Bayes' Theorem

P(X | H)P(H)

P(H | X) = —= S

Informally, this can be written as
posterior = likelihood x prior/evidence
- Predicts X belongs to C. iff the probability P(C |X) is the highest among

all the P(C |X) for all the k classes

- Practical difficulty: requires initial knowledge of many probabillities,
significant computational cost

Andrea G. B. Tettamanzi, 2017
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Towards Naive Bayes Classifiers

Let D be a training set of tuples and their associated class labels, and
each tuple is represented by an n-D attribute vector X = (x1, X2, ..., Xn)

Suppose there are m classes C1, C2, ..., Cm.

Classification is to derive the maximum posteriori, I.e., the maximal
P(Ci|X)

This can be derived from Bayes’ theorem

p(c; | x) = DX LGIPC)

P(X)

Since P(X) is constant for all classes, we need only maximize

P(X| C;)P(C5)

Andrea G. B. Tettamanzi, 2017
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Derivation of Naive Bayes Classifier

A simplified assumption: attributes are conditionally
Independent (i.e., no dependence relation between attributes):

P(X’Ci):HP(Xk’Ci)
This greatly reduces the compﬁ?&tion cost: Only counts the

class distribution
If A, IS categorical, P(X,|C)) is the # of tuples in C, having value
X, for A, divided by [C, ;| (# of tuples of C, in D)

If A, IS continous-valued, P(X,|C) is usually computed based on
Gaussian distribution with a mean u and standard deviation o

1 (x—p)?
N(x;p,0) = e 202
and P(x,|C) is vamo

P(X | C;) = N(Xy; pey,0c;)

Andrea G. B. Tettamanzi, 2017
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Naive Bayesian Classifier: Training Datasegv

age | income studentredit rating com

Class:

Cl:buys computer =
'yes'

C2:buys computer = ‘no

Data sample

X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

Andrea G. B. Tettamanzi, 2017



Naive Bayesian Classifier: An Example

* P(C): P(buys_computer = “yes”) =9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

* Compute P(X|C) for each class
P(age = “<=30" | buys_computer = “yes”) =2/9 =0.222
P(age = “<= 30" | buys_computer = “n0”) = 3/5=0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5=0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “n0”) = 1/5=10.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) =2/5=0.4

. X = (age <= 30, income = medium, student = yes, credit_rating = fair)

P(X|C) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|C)*P(C,) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”)

Andrea G. B. Tettamanzi, 2017
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Avoiding the 0-Probability Problem

Naive Bayesian prediction requires each conditional prob. be non-zero.
Otherwise, the predicted prob. will be zero

mn
P(X’Ci):HP(Xk’Ci)
k=1

EX. Suppose a dataset with 1000 tuples, income=low (0), income=
medium (990), and income = high (10),
Use Laplacian correction (or Laplacian estimator)
— Adding 1 to each case

* Prob(income = low) = 1/1003

» Prob(income = medium) = 991/1003

* Prob(income = high) = 11/1003

— The “corrected” prob. estimates are close to their “uncorrected”
counterparts

Andrea G. B. Tettamanzi, 2017



Naive Bayesian Classifier: Comments

Advantages
— Easy to implement
— Good results obtained in most of the cases
Disadvantages
— Assumption: class conditional independence, therefore loss of accuracy
— Practically, dependencies exist among variables
- E.g., hospitals: patients: Profile: age, family history, etc.
« Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

« Dependencies among these cannot be modeled by Naive Bayesian
Classifier

How to deal with these dependencies?
— Bayesian Belief Networks

Andrea G. B. Tettamanzi, 2017
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Bayesian Belief Networks

* Bayesian belief network allows a subset of the variables
conditionally independent

* A graphical model of causal relationships
— Represents dependency among the variables

— Gives a specification of joint probability distribution

4 Nodes: random variables

\ 4 Links: dependency
d X and Y are the parents of Z, and
Y is the parent of P
4 No dependency between Z and P
d Has no loops or cycles

Andrea G. B. Tettamanzi, 2017
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Bayesian Belief Network: An Example L
The conditional probability
table (CPT) for variable
LungCancer:
S

CPT shows the conditional probability
for each possible combination of its

N parents
PositiveXRa yamen Deri_vation of th_e prpbability of a
particular combination of values
of X, from CPT:
P(x,,..., X, ) = 1r_1[ P(xj | Parents(Y ;))

Andrea G. B. Tettamanzi, 2017 i =1



- 33

Training Bayesian Networks

« Several scenarios:

Given both the network structure and all variables observable: learn only
the CPTs

Network structure known, some hidden variables: gradient descent
(greedy hill-climbing) method, analogous to neural network learning

Network structure unknown, all variables observable: search through the
model space to reconstruct network topology

Unknown structure, all hidden variables: No good algorithms known for this
purpose

« Ref. D. Heckerman: Bayesian networks for data mining

Andrea G. B. Tettamanzi, 2017



Using IF-THEN Rules for Classification

Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
— Rule antecedent/precondition vs. rule consequent

Assessment of a rule: coverage and accuracy
- n = # of tuples covered by R

covers

- N = # of tuples correctly classified by R

/ID] [/* D: training data set */

correct

coverage(R) = n

covers

/n

correct covers

accuracy(R) =n

If more than one rule is triggered, need conflict resolution

34

— Size ordering: assign the highest priority to the triggering rules that has the

“toughest” requirement (i.e., with the most attribute test)

— Class-based ordering: decreasing order of prevalence or misclassification

cost per class

— Rule-based ordering (decision list): rules are organized into one long
priority list, according to some measure of rule quality or by experts

Andrea G. B. Tettamanzi, 2017
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Rule Extraction from a Decision Tree

Rules are easier to understand than large trees

One rule is created for each path from the root
to a leaf

Each attribute-value pair along a path forms a o g oo
conjunction: the leaf holds the class prediction

p1..40

. . excel
Rules are mutually exclusive and exhaustive

yes (2/2) yes (2/2)

Example: Rule extraction from our buys _computer decision-tree

IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = yes
IF age = young AND credit_rating = fair ~ THEN buys_computer = no

Andrea G. B. Tettamanzi, 2017
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Rule Extraction from the Training Data

Sequential covering algorithm: Extracts rules directly from training data
Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
Rules are learned sequentially, each for a given class C_will cover many

tuples of C_but none (or few) of the tuples of other classes

Steps:
— Rules are learned one at a time
— Each time a rule is learned, the tuples covered by the rules are removed

— The process repeats on the remaining tuples unless termination condition,
e.g., when no more training examples or when the quality of a rule returned is
below a user-specified threshold

Comp. w. decision-tree induction: learning a set of rules simultaneously

Andrea G. B. Tettamanzi, 2017



37
How to Learn-One-Rule?

Start with the most general rule possible: condition = empty

Adding new attributes by adopting a greedy depth-first strategy
— Picks the one that most improves the rule quality

Rule-Quality measures: consider both coverage and accuracy

— Foil-gain (in FOIL & RIPPER): assesses info_gain by extending condition
poSs POS

/
FOIL_Gain = pos’ - | 1 —1
Al = pos ( 052 pos’ + neg’ 052 pos + neg)

- |t favors rules that have high accuracy and cover many positive tuples

Rule pruning based on an independent set of test tuples

FOIL_Prune(R) = 222 — Y
pos + neg

« Pos/neg are # of positive/negative tuples covered by R.
 If FOIL_Prune is higher for the pruned version of R, prune R

Andrea G. B. Tettamanzi, 2017



Ensembles Flous

« Un ensemble « classique » est completement spécifié par une
fonction caractéristique X : U - {0, 1}, telle que, pour tout x € U,

— X(X) = 1, si et seulement si x appartient a I'ensemble
— X(x) = 0, autrement.

« Pour définir un ensemble « flou », on remplace x par une fonction
d'appartenance p : U - [0, 1], telle que, pour tout x € U,

— 0 < u(x) £1 estle degré auquel x appartient a I'ensemble

Puisque la fonction p spécifie completement I'ensemble, on peut
dire que P « est » I'ensemble

« Un ensemble classique est un cas particulier d'ensemble flou !
* L'univers U est le référentiel de I'ensemble p

Andrea G. B. Tettamanzi, 2017
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Representation

Réferentiel fini : A=

Réféerentiel infini ; A = /
X

—+ 00
Chaud = /
t=—273,15

Andrea G. B. Tettamanzi, 2017
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Ensembles flous

noyau

coupe de niveau o

support
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Opeérations sur les ensembles flous

* Extension des opérations sur les ensembles classiques
* Normes et co-normes triangulaires
* Min et max sont un choix populaire

B
|

max{A(z), B(z)}
ming A(z), B(z)}
1 — A(x)

(AU
(AN

/Dﬁgg
SN

&

Andrea G. B. Tettamanzi, 2017
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Systemes de regles floues

Variables et valeurs linguistiques

Clause floue :
XIS A

Regle :
IF antécendant THEN conséquant

Méthodes de « déflouification »

Andrea G. B. Tettamanzi, 2017
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Inférence dans les
systemes de regles floues

Soit un ensemble de regles

IF Pl(xlw”axn) THEN Ql(yla"'aym)ﬂ

IF P.(x1,...,2,) THEN Q-(y1,...,Ym),

L’ensemble flou des valeurs des variables dépendantes est :

TR(Y1s - s Ym; L1y, Tp)

= SUPj <<, MIN{7Q, (Y1, -+ s Ym ), TP (T1, ..., Tn)

Andrea G. B. Tettamanzi, 2017
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[\ [\
IF  xisl/A, AND yis|B, THEN zisC,
\ A
N/ \ //\\ /\
IF  xisA, AND yisB, THEN zisC, l

Andrea G. B. Tettamanzi, 2017
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Réseaux de Neurones Artificiaux

/.
synapse
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Reseau Feed-Forward

Input Layer 1 Layer 2 Layer 3
N N 4 A\ 4 A
L] Hlj at .fu.-il] | Hfl a: .I’H.@:] l u-‘l a*
1.1 1 | : 1 ) 7
, [ > S A
: b b b3
| | 1
1 1
P, . ar n az " —_ @
o M= 2 ] A >
pf ‘{?.L l ‘f,ﬁ . l b3 :
: = ] = s ] = .
P HLSJ al Hfsz {’FS: H-‘Ss - u35_=
—p /! e —12 S— 22—
fﬂsl 5.8 lfﬁsz 5.5 lf?-‘s.l
1 1 1
—/ J . J - J

at = f1(IWLip +b)

a2 = F2(LWziai +h2)

a3 =13 (LWs3z2az+h3)

as =13 (LWa2 £2 (LW2if1 (IWwL1p +b1)+ b2)+ h3)
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Neural Network as a Classifier

« Weakness

Long training time
Require a number of parameters typically best determined empirically, e.qg.,
the network topology or "“structure.”

Poor interpretability: Difficult to interpret the symbolic meaning behind the
learned weights and of “"hidden units" in the network

« Strength

High tolerance to noisy data

Ability to classify untrained patterns

Well-suited for continuous-valued inputs and outputs
Successful on a wide array of real-world data
Algorithms are inherently parallel

Techniques have recently been developed for the extraction of rules from
trained neural networks

Andrea G. B. Tettamanzi, 2017
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Backpropagation @ F

Iteratively process a set of training tuples & compare the network's
prediction with the actual known target value

For each training tuple, the weights are modified to minimize the mean
squared error between the network's prediction and the actual target
value

Modifications are made in the “backwards” direction: from the output
layer, through each hidden layer down to the first hidden layer, hence
“backpropagation”
Steps

— Initialize weights (to small random #s) and biases in the network

— Propagate the inputs forward (by applying activation function)

— Backpropagate the error (by updating weights and biases)

— Terminating condition (when error is very small, etc.)

Andrea G. B. Tettamanzi, 2017



& WEKA

The University
of Waikato

« Collection d'algorithmes d'apprentissage automatique pour la
fouille de données, open source

- Les algorithmes peuvent étre utilisés comme ils sont ou appelés a
partir d'un programme Java

« Weka contient des outils de
— pré-élaboration de données
— Classification
— Régression
— Regroupement (clustering)
— Regles d'association
— Visualisation

Adapte pour développer des nouveaux algorithmes
Andrea G. B. Tettamanzi, 2017
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Merci de votre attention
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