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Séance 3

Classification and Prediction
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Modélisation

x

y z = M(x, y)

M est la loi qui lie les variables x, y et z.
Étant donné un échantillon de n-uplets (x, y, z),
on cherche la loi qui les “explique”.

prédiction

Variables connues



Andrea G. B. Tettamanzi, 2017

4

• Classification  
– predicts categorical class labels (discrete or nominal)

– classifies data (constructs a model) based on the training set and the 
values (class labels) in a classifying attribute and uses it in classifying new 
data

• Prediction  
– models continuous-valued functions, i.e., predicts unknown or missing 

values 

• Typical applications
– Credit approval

– Target marketing

– Medical diagnosis

– Fraud detection

Classification vs. Prediction
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Step 1: Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’ 

Classifier
(Model)
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Step 2: Using the Model in Prediction 

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?
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Supervised vs. Unsupervised Learning

• Supervised learning (classification)
– Supervision: The training data (observations, measurements, etc.) are 

accompanied by labels indicating the class of the observations

– New data is classified based on the training set

• Unsupervised learning (clustering)
– The class labels of training data is unknown

– Given a set of measurements, observations, etc. with the aim of 
establishing the existence of classes or clusters in the data
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Evaluating Classification Methods

• Accuracy
– classifier accuracy: predicting class label

– predictor accuracy: guessing value of predicted attributes

– More sophisticated measures: Confusion matrix, ROC curve

• Speed
– time to construct the model (training time)

– time to use the model (classification/prediction time)

• Robustness: handling noise and missing values

• Scalability: efficiency in disk-resident databases 

• Interpretability
– understanding and insight provided by the model

• Other measures, e.g., goodness of rules, such as decision tree size or 
compactness of classification rules
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Confusion Matrix

Predicted value

Actual
value

y

y*
Pr[y* | y]
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Classifier Accuracy Measures

• Accuracy of a classifier M, acc(M): percentage of test set tuples that are correctly 
classified by the model M

– Error rate (misclassification rate) of M = 1 – acc(M)

– Given m classes, CM
i,j
, an entry in a confusion matrix, indicates # of tuples in class i  that 

are labeled by the classifier as class j

• Alternative accuracy measures (e.g., for cancer diagnosis)
– sensitivity = t-pos/pos             /* true positive recognition rate */

– specificity = t-neg/neg             /* true negative recognition rate */

– precision =  t-pos/(t-pos + f-pos)

– accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg) 

– This model can also be used for cost-benefit analysis

classes buy_computer = yes buy_computer = no total recognition(%)

buy_computer = yes 6954 46 7000 99.34

buy_computer = no 412 2588 3000 86.27

total 7366 2634 10000 95.52

C1 C2

C1 True positive False negative

C2 False positive True negative
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Predictor Error Measures

• Measure predictor accuracy: measure how far off the predicted value is 
from the actual known value

• Loss function: measures the error b/w yi and the predicted value yi’

– Absolute error:

– Squared error: 

• Test error (generalization error): the average loss over the test set

– Mean abs error:                       Mean squared error:

– Relative abs error:                       Relative sq error:

The mean squared-error exaggerates the presence of outliers
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Predictor (I)

• Holdout method
– Given data is randomly partitioned into two independent sets

• Training set (e.g., 2/3) for model construction

• Test set (e.g., 1/3) for accuracy estimation

– Random sampling: a variation of holdout

• Repeat holdout k times, accuracy = avg. of the accuracies obtained

• Cross-validation (k-fold, where k = 10 is most popular)
– Randomly partition the data into k mutually exclusive subsets, each 

approximately equal size

– At i-th iteration, use Di as test set and others as training set

– Leave-one-out: k folds where k = # of tuples, for small sized data

– Stratified cross-validation: folds are stratified so that class distribution in 
each fold is approx. the same as that in the initial data
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Predictor (II)

• Bootstrap

– Works well with small data sets

– Samples the given training tuples uniformly with replacement

• i.e., each time a tuple is selected, it is equally likely to be 
selected again and re-added to the training set

• Several boostrap methods, and a common one is .632 boostrap
– Suppose we are given a data set of d tuples.  The data set is sampled d 

times, with replacement, resulting in a training set of d samples.  The data 
tuples that did not make it into the training set end up forming the test set.  
About 63.2% of the original data will end up in the bootstrap, and the 
remaining 36.8% will form the test set (since (1 – 1/d)d ≈ e-1 = 0.368)

– Repeat the sampling procedue k times, overall accuracy of the 
model:

))(368.0)(632.0()( _
1

_ settraini

k

i
settesti MaccMaccMacc 


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Model Selection: ROC Curves
 ROC (Receiver Operating Characteristics) 

curves: for visual comparison of 
classification models

 Originated from signal detection theory
 Shows the trade-off between the true 

positive rate and the false positive rate
 The area under the ROC curve is a 

measure of the accuracy of the model
 Rank the test tuples in decreasing order: 

the one that is most likely to belong to the 
positive class appears at the top of the list

 The closer to the diagonal line (i.e., the 
closer the area is to 0.5), the less accurate 
is the model

●Vertical axis represents the 
true positive rate
●Horizontal axis rep. the false 
positive rate
●The plot also shows a 
diagonal line
●A model with perfect accuracy 
will have an area (AUC) of 1.0
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Decision Tree Induction: Training Dataset

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Output: A Decision Tree for “buys_computer”

age

student
credit
rating

≤ 30 > 40

yes (4/4)

31..40

no (3/3)

no

yes (2/2)

yes

no (2/2) yes (2/2)

excellent fair
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Algorithm for Decision Tree Induction

• Basic algorithm (a greedy algorithm)
– Tree is constructed in a top-down recursive divide-and-conquer manner

– At start, all the training examples are at the root

– Attributes are categorical (if continuous-valued, they are discretized in 
advance)

– Examples are partitioned recursively based on selected attributes

– Test attributes are selected on the basis of a heuristic or statistical measure 
(e.g., information gain)

• Conditions for stopping partitioning
– All samples for a given node belong to the same class

– There are no remaining attributes for further partitioning – majority voting is 
employed for classifying the leaf

– There are no samples left
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Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain
 Let pi be the probability that an arbitrary tuple in D 

belongs to class Ci, estimated by |Ci, D|/|D|
 Expected information (entropy) needed to classify a 

tuple in D:

 Information needed (after using A to split D into v 
partitions) to classify D:

 Information gained by branching on attribute A:
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Gini index (CART, IBM IntelligentMiner)

• If a data set D contains examples from n classes, gini index, gini(D) is 
defined as

    
     where pj is the relative frequency of class j in D

• If a data set D  is split on A into two subsets D1 and D2, the gini index 

gini(D) is defined as

• Reduction in Impurity:

• The attribute provides the smallest ginisplit(D) (or the largest reduction in 

impurity) is chosen to split the node
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Other Attribute Selection Measures

• CHAID: a popular decision tree algorithm, measure based on χ2 test for 
independence

• C-SEP: performs better than info. gain and gini index in certain cases

• G-statistics: has a close approximation to χ2 distribution 

• MDL (Minimal Description Length) principle (i.e., the simplest solution is 
preferred): 
– The best tree as the one that requires the fewest # of bits to both (1) encode 

the tree, and (2) encode the exceptions to the tree

• Multivariate splits (partition based on multiple variable combinations)
– CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?
–  Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

• Overfitting:  An induced tree may overfit the training data 
– Too many branches, some may reflect anomalies due to noise or outliers

– Poor accuracy for unseen samples

• Two approaches to avoid overfitting 
– Prepruning: Halt tree construction early—do not split a node if this would 

result in the goodness measure falling below a threshold

• Difficult to choose an appropriate threshold

– Postpruning: Remove branches from a “fully grown” tree—get a sequence of 
progressively pruned trees

• Use a set of data different from the training data to decide which is the 
“best pruned tree”
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Bayesian Classification: Why?

• A statistical classifier: performs probabilistic prediction, i.e., predicts 
class membership probabilities

• Foundation: Based on Bayes’ Theorem. 

• Performance: A simple Bayesian classifier, naïve Bayes classifier, has 
comparable performance with decision tree and selected neural 
network classifiers

• Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is correct — prior 
knowledge can be combined with observed data

• Standard: Even when Bayesian methods are computationally 
intractable, they can provide a standard of optimal decision making 
against which other methods can be measured
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Bayes' Theorem: Basics

• Let X be a data sample (“evidence”): class label is unknown

• Let H be a hypothesis that X belongs to class C 

• Classification is to determine P(H|X), the probability that the hypothesis 
holds given the observed data sample X

• P(H) (prior probability), the initial probability
– E.g., X will buy computer, regardless of age, income, …

• P(X): probability that sample data is observed

• P(X|H) (posteriori probability), the probability of observing the sample X, 
given that the hypothesis holds
– E.g., Given that X will buy computer, the prob. that X is 31..40, medium 

income
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Bayes' Theorem

• Given training data X, posterior probability of hypothesis H, P(H|X), 
follows Bayes' Theorem

Informally, this can be written as 

posterior = likelihood x prior/evidence

• Predicts X belongs to C
i
 iff the probability P(C

i
|X) is the highest among 

all the P(C
k
|X) for all the k classes

• Practical difficulty: requires initial knowledge of many probabilities, 
significant computational cost
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Towards Naïve Bayes Classifiers

• Let D be a training set of tuples and their associated class labels, and 
each tuple is represented by an n-D attribute vector X = (x1, x2, …, xn)

• Suppose there are m classes C1, C2, …, Cm.

• Classification is to derive the maximum posteriori, i.e., the maximal 
P(Ci|X)

• This can be derived from Bayes’ theorem

• Since P(X) is constant for all classes, we need only maximize
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Derivation of Naïve Bayes Classifier 

• A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between attributes):

• This greatly reduces the computation cost: Only counts the 
class distribution

• If Ak is categorical, P(Xk|Ci) is the # of tuples in Ci having value 
Xk for Ak divided by |Ci, D| (# of tuples of Ci in D)

• If Ak is continous-valued, P(Xk|Ci) is usually computed based on 
Gaussian distribution with a mean μ and standard deviation σ

and P(xk|Ci) is 
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Naïve Bayesian Classifier: Training Dataset

Class:
C1:buys_computer = 
‘yes’
C2:buys_computer = ‘no’

Data sample 
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

age income studentcredit_ratingbuys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Naïve Bayesian Classifier:  An Example

• P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643
                    P(buys_computer = “no”) = 5/14= 0.357

• Compute P(X|Ci) for each class
     P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222
     P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
     P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
     P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
     P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
     P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
     P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
     P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

•  X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

 P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
                P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

             P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X belongs to class (“buys_computer = yes”)
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Avoiding the 0-Probability Problem

• Naïve Bayesian prediction requires each conditional prob. be non-zero. 
 Otherwise, the predicted prob. will be zero

• Ex. Suppose a dataset with 1000 tuples, income=low (0), income= 
medium (990), and income = high (10), 

• Use Laplacian correction (or Laplacian estimator)
– Adding 1 to each case

• Prob(income = low) = 1/1003

• Prob(income = medium) = 991/1003

• Prob(income = high) = 11/1003

– The “corrected” prob. estimates are close to their “uncorrected” 
counterparts
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Naïve Bayesian Classifier: Comments

• Advantages 
– Easy to implement 

– Good results obtained in most of the cases

• Disadvantages
– Assumption: class conditional independence, therefore loss of accuracy

– Practically, dependencies exist among variables 

• E.g.,  hospitals: patients: Profile: age, family history, etc. 

•  Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc. 

• Dependencies among these cannot be modeled by Naïve Bayesian 
Classifier

• How to deal with these dependencies?
– Bayesian Belief Networks 



Andrea G. B. Tettamanzi, 2017

31

Bayesian Belief Networks

• Bayesian belief network allows a subset of the variables 

conditionally independent

• A graphical model of causal relationships

– Represents dependency among the variables 

– Gives a specification of joint probability distribution 

X Y

Z
P

 Nodes: random variables
 Links: dependency
 X and Y are the parents of Z, and 

Y is the parent of P
 No dependency between Z and P
 Has no loops or cycles
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Bayesian Belief Network: An Example

Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

The conditional probability 
table (CPT) for variable 
LungCancer:





n

i
YParents ixiPxxP n

1
))(|(),...,( 1

CPT shows the conditional probability 
for each possible combination of its 
parents

Derivation of the probability of a 
particular combination of values 
of X, from CPT:
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Training Bayesian Networks

• Several scenarios:
– Given both the network structure and all variables observable: learn only 

the CPTs

– Network structure known, some hidden variables: gradient descent 
(greedy hill-climbing) method, analogous to neural network learning

– Network structure unknown, all variables observable: search through the 
model space to reconstruct network topology 

– Unknown structure, all hidden variables: No good algorithms known for this 
purpose

• Ref. D. Heckerman: Bayesian networks for data mining
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• Represent the knowledge in the form of IF-THEN rules

R:  IF age = youth AND student = yes  THEN buys_computer = yes

– Rule antecedent/precondition vs. rule consequent

• Assessment of a rule: coverage and accuracy 

– ncovers = # of tuples covered by R

– ncorrect = # of tuples correctly classified by R

coverage(R) = ncovers /|D|   /* D: training data set */

accuracy(R) = ncorrect / ncovers

• If more than one rule is triggered, need conflict resolution

– Size ordering: assign the highest priority to the triggering rules that has the 
“toughest” requirement (i.e., with the most attribute test)

– Class-based ordering: decreasing order of prevalence or misclassification 
cost per class

– Rule-based ordering (decision list): rules are organized into one long 
priority list, according to some measure of rule quality or by experts
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• Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no             THEN buys_computer = no

IF age = young AND student = yes            THEN buys_computer = yes

IF age = mid-age     THEN buys_computer = yes

IF age = old AND credit_rating = excellent  THEN buys_computer = yes

IF age = young AND credit_rating = fair     THEN buys_computer = no

Rule Extraction from a Decision Tree

 Rules are easier to understand than large trees

 One rule is created for each path from the root 
to a leaf

 Each attribute-value pair along a path forms a 
conjunction: the leaf holds the class prediction 

 Rules are mutually exclusive and exhaustive

age

student
credit
rating

≤ 30 > 40

yes (4/4)

31..40

no (3/3)

no

yes (2/2)

yes

no (2/2) yes (2/2)

excellent fair
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Rule Extraction from the Training Data

• Sequential covering algorithm: Extracts rules directly from training data

• Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

• Rules are learned sequentially, each for a given class C
i
 will cover many 

tuples of C
i
 but none (or few) of the tuples of other classes

• Steps: 
– Rules are learned one at a time

– Each time a rule is learned, the tuples covered by the rules are removed

– The process repeats on the remaining tuples unless termination condition, 
e.g., when no more training examples or when the quality of a rule returned is 
below a user-specified threshold

• Comp. w. decision-tree induction: learning a set of rules simultaneously



Andrea G. B. Tettamanzi, 2017

37

How to Learn-One-Rule?

• Start with the most general rule possible: condition = empty

• Adding new attributes by adopting a greedy depth-first strategy
– Picks the one that most improves the rule quality

• Rule-Quality measures: consider both coverage and accuracy
– Foil-gain (in FOIL & RIPPER): assesses info_gain by extending condition

• It favors rules that have high accuracy and cover many positive tuples

• Rule pruning based on an independent set of test tuples

• Pos/neg are # of positive/negative tuples covered by R.

• If FOIL_Prune is higher for the pruned version of R, prune R
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Ensembles Flous

• Un ensemble « classique » est complètement spécifié par une 
fonction caractéristique χ : U → {0, 1}, telle que, pour tout x ∈ U,
– χ(x) = 1, si et seulement si x appartient à l'ensemble

– χ(x) = 0, autrement.

• Pour définir un ensemble « flou », on remplace χ par une fonction 
d'appartenance μ : U → [0, 1], telle que, pour tout x ∈ U,
– 0 ≤ μ(x) ≤ 1 est le degré auquel x appartient à l'ensemble

• Puisque la fonction μ spécifie complètement l'ensemble, on peut 
dire que μ « est » l'ensemble

• Un ensemble classique est un cas particulier d'ensemble flou !

• L'univers U est le référentiel de l'ensemble μ
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Représentation

Référentiel fini :

Référentiel infini :

MarqueAutoSportive = 0.8/BMW + 1/Ferrari + 0/Fiat + 0.5/Mercedes  + …
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Ensembles flous

1

0



noyau

coupe de niveau 

support
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Opérations sur les ensembles flous

• Extension des opérations sur les ensembles classiques

• Normes et co-normes triangulaires

• Min et max sont un choix populaire
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Systèmes de règles floues

• Variables et valeurs linguistiques

• Clause floue :
X is A

• Règle :
IF antécendant THEN conséquant

• Méthodes de « déflouification »
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Inférence dans les
systèmes de règles floues

Soit un ensemble de règles

L’ensemble flou des valeurs des variables dépendantes est :
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IF THENANDx is A1 y is B1 z is C1

IF THENANDx is A2 y is B2 z is C2

z
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Réseaux de Neurones Artificiaux

axon

dendrite

synapse



1x

2x

nx

1w

2w

nw

y
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Réseau Feed-Forward
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Neural Network as a Classifier

• Weakness
– Long training time 

– Require a number of parameters typically best determined empirically, e.g., 
the network topology or ``structure." 

– Poor interpretability: Difficult to interpret the symbolic meaning behind the 
learned weights and of ``hidden units" in the network

• Strength
– High tolerance to noisy data 

– Ability to classify untrained patterns 

– Well-suited for continuous-valued inputs and outputs

– Successful on a wide array of real-world data

– Algorithms are inherently parallel

– Techniques have recently been developed for the extraction of rules from 
trained neural networks
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Backpropagation

• Iteratively process a set of training tuples & compare the network's 
prediction with the actual known target value

• For each training tuple, the weights are modified to minimize the mean 
squared error between the network's prediction and the actual target 
value 

• Modifications are made in the “backwards” direction: from the output 
layer, through each hidden layer down to the first hidden layer, hence 
“backpropagation”

• Steps
– Initialize weights (to small random #s) and biases in the network

– Propagate the inputs forward (by applying activation function) 

– Backpropagate the error (by updating weights and biases)

– Terminating condition (when error is very small, etc.)
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• Collection d'algorithmes d'apprentissage automatique pour la 
fouille de données, open source

• Les algorithmes peuvent être utilisés comme ils sont ou appelés à 
partir d'un programme Java

• Weka contient des outils de

– pré-élaboration de données

– Classification

– Régression

– Regroupement (clustering)

– Règles d'association

– Visualisation

• Adapté pour développer des nouveaux algorithmes 
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Merci de votre attention
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