

Andrea G. B. Tettamanzi

Nice Sophia Antipolis University Computer Science Department andrea.tettamanzi@unice.fr

Session 3

Natural Deduction

Agenda

- Non-Compactness and Incompleteness of Herbrand Logic
- Natural Deduction
- The Fitch System

Non-Compactness

Theorem: Herbrand Logic is not compact

Proof:

- Consider the following infinite set of sentences: P(a), P(f(a)), $P(f(f(a))), ...$
- Assume the vocabulary is {P, a, f}. Hence, the ground terms are $a, f(a), f(f(a)), \ldots$
- This set of sentences entails $\forall x P(x)$.
- Add in the sentence $\exists x \neg P(x)$.
- Clearly, this infinite set is unsatisfiable.
- However, every finite subset is satisfiable.
- Thus, compactness does not hold.

Infinite Proofs

Corollary: In Herbrand Logic, some entailed sentences have only infinite proofs.

Proof.

- The above proof demonstrates a set of sentences that entail $\forall x.p(x)$.
- The set of premises in any finite proof will be missing one of the above sentences.
- Thus, those premises do not entail $\forall x.p(x)$.
- Therefore, no finite proof can exist for $\forall x. p(x)$.

Natural Deduction

- A kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning.
- This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.
- In natural deduction, a proposition is deduced from a collection of premises by repeatedly applying inference rules.
- Gerhard Gentzen and Dag Prawitz laid its foundations
- Fitch notation is a popular notational system for constructing formal proofs in natural deduction

Rule of Inference

- A *schema* is an expression satisfying the grammatical rules of our language except for the occurrence of metavariables (written here as Greek letters) in place of various subparts of the expression.
- Example:

$$
\phi \Rightarrow \psi
$$

• A rule of inference:

Premises

Conclusions

Linear and Structured Proofs

- A linear proof of a conclusion from a set of premises is a sequence of sentences terminating in the conclusion in which each item is either
	- 1) a premise
	- 2) an instance of an axiom schema, or
	- 3) the result of applying a rule of inference to earlier items in sequence
- Structured proofs differ from linear proofs in that sentences can be grouped into subproofs nested within outer superproofs
	- we can make assumptions within subproofs
	- we can prove conclusions from those assumptions
	- from those derivations, we derive implications in superproofs

Fitch

- Fitch is a proof system that is particularly popular in the Logic community.
- It is as powerful as many other proof systems and is far simpler to use.
- Fitch achieves this simplicity through its support for structured proofs and its use of structured rules of inference in addition to ordinary rules of inference.
- Fitch has fifteen rules of inference in all.
	- Nine of these are ordinary rules of inference.
	- One rule (Implication Introduction) is a structured rule of inference.
	- Five more rules deal with quantifiers

And Introduction and Elimination

And Introduction **And Elimination**

 $\phi_1 \wedge \ldots \wedge \phi_n$ ϕ_i

Or Introduction and Elimination

Or Introduction **Or Elimination**

$$
\begin{aligned}\n\phi_1 \lor \dots \lor \phi_n \\
\phi_1 &\Rightarrow \psi \\
\vdots \\
\phi_n &\Rightarrow \psi \\
\psi\n\end{aligned}
$$

$$
\frac{\phi_i}{\phi_1 \vee \ldots \vee \phi_n}
$$

Negation Introduction and Elimination

Negation Introduction **Negation Elimination**

$$
\phi \Rightarrow \psi
$$

$$
\phi \Rightarrow \neg \psi
$$

$$
\neg \phi
$$

$$
\frac{\neg \neg \phi}{\phi}
$$

Implication Introduction and Elimination

Implication Introduction **Implication Elimination**

$$
\frac{\phi \vdash \psi \iff \text{subproof}}{\phi \Rightarrow \psi}
$$

$$
\begin{array}{c}\n\phi \Rightarrow \psi \\
\phi \\
\hline\n\psi\n\end{array}
$$

Biconditional Introduction and Elimination

Biconditional Introduction Biconditional Elimination

$$
\begin{array}{c}\n\phi \Rightarrow \psi \\
\psi \Rightarrow \phi \\
\hline\n\phi \Leftrightarrow \psi\n\end{array}
$$

$$
\begin{array}{c}\n\phi \Leftrightarrow \psi \\
\hline\n\phi \Rightarrow \psi \\
\psi \Rightarrow \phi\n\end{array}
$$

Rules for Universal Quantifier

Universal Introduction Universal Elimination

 $\frac{\forall \nu.\phi[\nu]}{\phi[\tau]}$

Where *ν* does not occur free in both ϕ and an active assumption

Rules for Existential Quantifier

Existential Introduction Existential Elimination

 $\frac{\phi[\tau]}{\exists \nu.\phi[\nu]}$

$$
\frac{\exists \nu.\phi[\nu_1,\ldots,\nu_n,\nu]}{\phi[sk(\nu_1,\ldots,\nu_n)]}
$$

(special case)

$$
\frac{\exists \nu.\phi[\nu]}{\phi[\tau']}
$$

Domain Closure

For languages with finite Herbrand base

For languages with infinite Herbrand base, we need induction!

Constructing Proofs with the Fitch System

- Constructing proofs using the Fitch system can often be hard and unintuitive, especially for those who encounter it for the first time
- Here are a few guidelines/strategies one can follow
- Based on the properties
	- of the Goal (what is to be proved, the thesis)
	- of the Premises (the assumptions, the hypothesis)

Guidelines Based on the Goal

- Goal is of the form $\varphi \Rightarrow \psi$
	- Assume φ
	- Prove ψ
	- Apply Implication Introduction to prove $\varphi \Rightarrow \psi$
- Goal is of the form $\neg \phi$
	- Assume φ (*per absurdum*)
	- Find a sentence ψ s.t. you can prove $\varphi \Rightarrow \psi$ and $\varphi \Rightarrow \neg \psi$
	- Apply Negation Introduction to prove ¬φ
- Goal is of the form φ (with no negation on the outside)
	- Assume ¬φ and proceed in a similar manner to prove ¬¬φ
	- Apply Negation Elimination on the result ¬¬φ to prove φ

Guidelines Based on the Goal

- Goal is of the form $φ_1$ ν $φ_2$... ν $φ_n$
	- $-$ Prove any φ _i (1 ≤ i ≤ n)
	- $-$ Apply OR Introduction to prove φ $_1$ ν φ $_2$... ν φ $_{\mathsf{n}}$
- Goal is of the form φ_1 Λ φ_2 ... Λ φ_n
	- _ Prove φ_i for every i, 1 ≤ i ≤ n
	- $-$ Apply AND Introduction to prove $\boldsymbol{\phi}_{1}$ Λ $\boldsymbol{\phi}_{2}$... Λ $\boldsymbol{\phi}_{\sf n}$

Guidelines Based on the Premises

- There exists a Premise of the form $\varphi \Rightarrow \psi$ and the Goal is ψ
	- Prove φ
	- Apply Implication Elimination on φ and φ ⇒ ψ to prove ψ
- There exists a Premise of the form ϕ_1 **v** ϕ_2 ... **v** ϕ_n and the Goal is ψ
	- $=$ Prove φ $_i$ ⇒ ψ for every i, 1 ≤ i ≤ n</sub>
	- $-$ Apply OR Elimination to prove φ₁ ν φ₂ ... ν φ_n ⇒ ψ
	- Apply Implication Elimination on the above result and the premise to prove ψ

Thank you for your attention

