Logic for Al Master 1 IFI

Andrea G. B. Tettamanzi

Nice Sophia Antipolis University Computer Science Department andrea.tettamanzi@unice.fr

Session 3

Natural Deduction

Agenda

- Non-Compactness and Incompleteness of Herbrand Logic
- Natural Deduction
- The Fitch System

Non-Compactness

Theorem: Herbrand Logic is not compact

Proof:

- Consider the following infinite set of sentences: P(a), P(f(a)), P(f(f(a))), ...
- Assume the vocabulary is {P, a, f}. Hence, the ground terms are a, f(a), f(f(a)),
- This set of sentences entails $\forall x P(x)$.
- Add in the sentence $\exists x \neg P(x)$.
- Clearly, this infinite set is unsatisfiable.
- However, every finite subset is satisfiable.
- Thus, compactness does not hold.

Infinite Proofs

Corollary: In Herbrand Logic, some entailed sentences have only infinite proofs.

Proof.

- The above proof demonstrates a set of sentences that entail ∀x.p(x).
- The set of premises in any finite proof will be missing one of the above sentences.
- Thus, those premises do not entail $\forall x.p(x)$.
- Therefore, no finite proof can exist for $\forall x.p(x)$.

Natural Deduction

- A kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning.
- This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.
- In natural deduction, a proposition is deduced from a collection of premises by repeatedly applying inference rules.
- Gerhard Gentzen and Dag Prawitz laid its foundations
- Fitch notation is a popular notational system for constructing formal proofs in natural deduction

Rule of Inference

- A *schema* is an expression satisfying the grammatical rules of our language except for the occurrence of metavariables (written here as Greek letters) in place of various subparts of the expression.
- Example:

$$\phi \Rightarrow \psi$$

A rule of inference:

Premises

Conclusions

Linear and Structured Proofs

- A linear proof of a conclusion from a set of premises is a sequence of sentences terminating in the conclusion in which each item is either
 - 1) a premise
 - 2) an instance of an axiom schema, or
 - 3) the result of applying a rule of inference to earlier items in sequence
- Structured proofs differ from linear proofs in that sentences can be grouped into subproofs nested within outer superproofs
 - we can make assumptions within subproofs
 - we can prove conclusions from those assumptions
 - from those derivations, we derive implications in superproofs

Fitch

- Fitch is a proof system that is particularly popular in the Logic community.
- It is as powerful as many other proof systems and is far simpler to use.
- Fitch achieves this simplicity through its support for structured proofs and its use of structured rules of inference in addition to ordinary rules of inference.
- Fitch has fifteen rules of inference in all.
 - Nine of these are ordinary rules of inference.
 - One rule (Implication Introduction) is a structured rule of inference.
 - Five more rules deal with quantifiers

And Introduction and Elimination

And Introduction

 ϕ_1

•

$$\frac{\phi_n}{\phi_1 \wedge \ldots \wedge \phi_n}$$

And Elimination

$$\frac{\phi_1 \wedge \ldots \wedge \phi_n}{\phi_i}$$

Or Introduction and Elimination

Or Introduction

$$\frac{\phi_i}{\phi_1 \vee \ldots \vee \phi_n}$$

Or Elimination

$$\begin{array}{c}
\phi_1 \lor \dots \lor \phi_n \\
\phi_1 \Rightarrow \psi \\
\vdots \\
\phi_n \Rightarrow \psi \\
\hline
\psi
\end{array}$$

Negation Introduction and Elimination

Negation Introduction

Negation Elimination

$$\begin{array}{c}
\phi \Rightarrow \psi \\
\phi \Rightarrow \neg \psi \\
\hline
\neg \phi
\end{array}$$

$$\frac{\neg\neg\phi}{\phi}$$

Implication Introduction and Elimination

Implication Introduction

$$\frac{\phi \vdash \psi}{\phi \Rightarrow \psi} \text{subproof}$$

Implication Elimination

$$\begin{array}{c}
\phi \Rightarrow \psi \\
\phi \\
\hline
\psi
\end{array}$$

Biconditional Introduction and Elimination

Biconditional Introduction

$$\phi \Rightarrow \psi$$

$$\frac{\psi \Rightarrow \phi}{\phi \Leftrightarrow \psi}$$

Biconditional Elimination

$$\begin{array}{c}
\phi \Leftrightarrow \psi \\
\phi \Rightarrow \psi \\
\psi \Rightarrow \phi
\end{array}$$

$$\phi \Rightarrow \psi$$

$$\psi \Rightarrow \phi$$

Rules for Universal Quantifier

Universal Introduction

$$\frac{\phi}{\forall \nu. \phi}$$

$$\frac{\forall \nu. \phi[\nu]}{\phi[\tau]}$$

Where ν does not occur free in both ϕ and an active assumption

Rules for Existential Quantifier

Existential Introduction

$$\frac{\phi[\tau]}{\exists \nu. \phi[\nu]}$$

Existential Elimination

$$\frac{\exists \nu. \phi[\nu_1, \dots, \nu_n, \nu]}{\phi[sk(\nu_1, \dots, \nu_n)]}$$

(special case)

$$\frac{\exists \nu. \phi[\nu]}{\phi[\tau']}$$

Domain Closure

For languages with finite Herbrand base

$$\phi[\sigma_1]$$

•

$$\frac{\phi[\sigma_n]}{\forall \nu.\phi[\nu]}$$

For languages with infinite Herbrand base, we need induction!

Constructing Proofs with the Fitch System

- Constructing proofs using the Fitch system can often be hard and unintuitive, especially for those who encounter it for the first time
- Here are a few guidelines/strategies one can follow
- Based on the properties
 - of the Goal (what is to be proved, the thesis)
 - of the Premises (the assumptions, the hypothesis)

Guidelines Based on the Goal

- Goal is of the form $\phi \Rightarrow \psi$
 - Assume φ
 - Prove ψ
 - Apply Implication Introduction to prove $\phi \Rightarrow \psi$
- Goal is of the form ¬φ
 - Assume φ (per absurdum)
 - Find a sentence ψ s.t. you can prove φ ⇒ ψ and φ ⇒ ¬ψ
 - Apply Negation Introduction to prove ¬φ
- Goal is of the form φ (with no negation on the outside)
 - Assume $\neg \varphi$ and proceed in a similar manner to prove $\neg \neg \varphi$
 - Apply Negation Elimination on the result $\neg\neg\phi$ to prove ϕ

Guidelines Based on the Goal

- Goal is of the form $\phi_1 \vee \phi_2 \dots \vee \phi_n$
 - Prove any $φ_i$ (1 ≤ i ≤ n)
 - Apply OR Introduction to prove $\varphi_1 \vee \varphi_2 \dots \vee \varphi_n$
- Goal is of the form $\varphi_1 \wedge \varphi_2 \dots \wedge \varphi_n$
 - Prove ϕ_i for every i, 1 ≤ i ≤ n
 - Apply AND Introduction to prove $\phi_1 \wedge \phi_2 \dots \wedge \phi_n$

Guidelines Based on the Premises

- There exists a Premise of the form $\phi \Rightarrow \psi$ and the Goal is ψ
 - Prove φ
 - Apply Implication Elimination on φ and φ ⇒ ψ to prove ψ
- There exists a Premise of the form ϕ_1 v ϕ_2 ... v ϕ_n and the Goal is ψ
 - Prove ϕ_i ⇒ ψ for every i, $1 \le i \le n$
 - − Apply OR Elimination to prove $\phi_1 \lor \phi_2 ... \lor \phi_n \Rightarrow \psi$
 - Apply Implication Elimination on the above result and the premise to prove ψ

Thank you for your attention

