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Session 4 

Unification and Resolution
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Agenda

• Substitution

• Unification

• Resolution for Predicate Logic
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Introduction

• In the first session, we introduced resolution in propositional logic

• We shall now extend it to (first-order/Herbrand) predicate logic

• The most important part of applying the resolution principle is 
finding a literal in a clause that is complementary to a literal in 
another clause

• For clauses containing no variables, this is very simple

• However, for clauses containing variables, it is more complicated



Andrea G. B. Tettamanzi, 2018 5

Motivating Example

Clause 1:

Clause 2:

Clause 1’:

Clause 2’:

Clause 1*:

Clause 2*:
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Substitution

• A substitution is a finite set of the form

where

– Every vi is a variable

– Every ti is a term different from vi

– All variables vi are different

• When t1, …, tn are ground terms, the substitution is called a 

ground substitution.

• We denote by φθ the application of substitution θ to sentence φ 
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Composition of Substitutions

Let

Then

by deleting any element such that

and any element such that

In other words:
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Example

Let

Then
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Monoid of Substitutions

• The composition of substitutions is associative

• The empty substitution is both a left and right neutral element
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Unifier

• A substitution θ is called a unifier for a set {φ1, …, φn} if 

and only if φ1θ = … = φnθ

• The set {φ1, …, φn} is said to be unifiable if there exists 

a unifier for it

• A unifier σ for a set {φ1, …, φn} of sentences is a most 

general unifier (MGU) if and only if, for each unifier θ for 
the set, there exists a substitution λ such that
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Disagreement Set

The disagreement set of a nonempty set W of sentences is 
obtained by:

• Locating the first symbol (counting from the left) at which not all 
the sentences in W have exactly the same symbol

• Extracting from each expression in W the subexpression that 
begins with the symbol occupying that position

The set of these respective subexpressions is the disagreement set 
of W.

Example: W = { P(x, f(y, z)), P(x, a), P(x, g(h(k(x)))) }

Disagreement set: { f(y, z), a, g(h(k(x))) }.
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Unification Algorithm

1) Set k = 0, Wk = W, and σk = ε

2) If Wk is a singleton, then STOP: σk is a MGU for W

Else find the disagreement set Dk of Wk

3) If there exist elements vk and tk in Dk such that vk is a variable that 

does not occur in tk, then continue to Step 4.

Else STOP: W is not unifiable

4) Let

5) Set k = k + 1 and go back to Step 2
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Unification Theorem

If W is a finite nonempty unifiable set of expressions, then the 
unification algorithm will always terminate at Step 2 and the last σk is 

a MGU for W

Proof (sketch):

• Since W is unifiable, we let θ be any unifier for W

• We show by induction on k that there is a substitution λk such that
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Factor

• If two or more literals (with the same sign) of a clause C have a 
MGU σ, then Cσ is called a factor of C

• If Cσ is a unit clause, it is called a unit factor of C

Example:



Andrea G. B. Tettamanzi, 2018 15

Binary Resolvent

No variables in common!
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Resolvent

A resolvent of (parent) clauses C1 and C2 is one of the following 

binary resolvents:

• A binary resolvent of C1 and C2

• A binary resolvent of C1 and a factor of C2

• A binary resolvent of a factor of C1 and C2

• A binary resolvent of a factor of C1 and a factor of C2
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Lifting Lemma

If C1’ and C2’ are instances of C1 and C2, respectively, and if C’ is a 

resolvent of C1’ and C2’, then there exists a resolvent C of C1 and C2 

such that C’ is an instance of C.
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Completeness of Resolution

A set S of clauses is unsatisfiable if and only if there is a deduction 
of the empty clause F from S.

Proof (sketch):

• [⇒]: Suppose S is unsatisfiable; let T a complete semantic tree for 
S; T has a finite closed semantic tree T’. Use structural induction 
on T’ together with the Lifting Lemma to show that there is a 
deduction of the empty clause from S  

• [⇐]: Suppose there is a deduction of F. Let R1, …, Rk be the 

resolvents in the deduction. Assume S is satisfiable. Then, there 
is a model M of S. If M |= C1 and C2, it also |= any resolvent; then 

M |= R1, …, Rk; then M |= F, which is impossible!
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Thank you for your attention
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