

Andrea G. B. Tettamanzi

Nice Sophia Antipolis University Computer Science Department andrea.tettamanzi@unice.fr

Session 6

Possibility Theory

Agenda

- Introduction
- Logic and Uncertainty
- Possibility Distribution
- Possibility Measures
- Possibilistic Logic

Introduction

- Uncertainty pervades information and knowledge
- The handling of uncertainty in inference systems has been an issue for a long time in AI
- Logical formalisms have dominated AI for several decades
 - Modal logic
 - Non-monotonic logic
 - Many-valued logic (e.g., fuzzy logic)
- Bayesian networks have become prominent in AI
 - They avoid the problem of incomplete knowledge
 - The self-duality of probabilities cannot distinguish the lack of belief in a proposition and the belief in its negation

Logic and Uncertainty

- These has been a divorce between logic and probability in the early 20th century
 - Logic as a foundation for Mathematics
 - Probability instrumental to represent statistical data
- Attempts at logical probability have been unsuccessful
 - Degrees of belief cannot be additive and self-dual
 - Deductions lead to incompatible probabilities or, at best, at interval-valued probabilities
- Some theories have emerged to overcome this problem
 - Walley's imprecise probability theory
 - Dempster-Shafer theory of evidence
 - Possibility theory

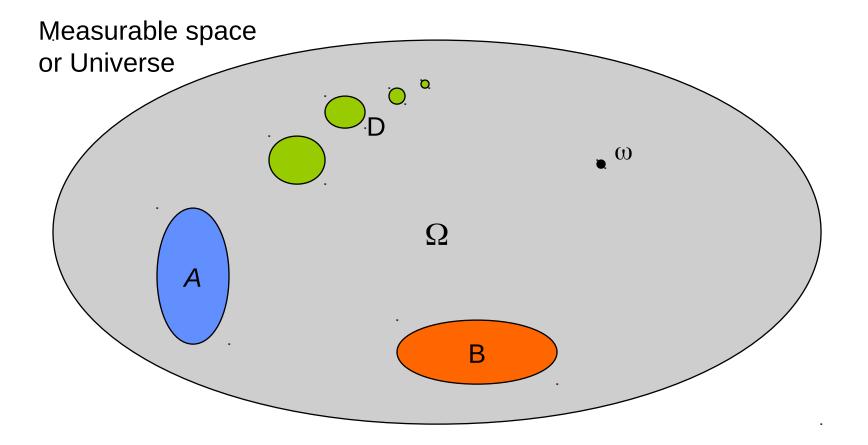
Representing Beliefs

When knowledge is incomplete, we may speak of **Beliefs**

There appears to be three traditions for representing beliefs

- Set-Functions
- Multiple-Valued Logic
- Modal Logic

Interpretations / Events



Set Functions

- A set function is used to assign degrees of beliefs to propositions
- A proposition is represented by the set of its models

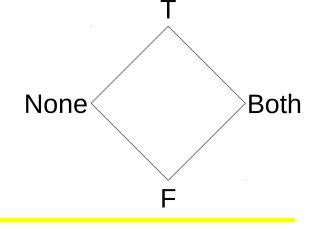
$$f: 2^{\Omega} \to [0, 1]$$
 But Spohn:
 $\kappa: 2^{\Omega} \to \mathbb{N}$

$$A \subseteq B \Leftrightarrow f(A) \le f(B)$$
$$f(\emptyset) = 0$$
$$f(\Omega) = 1$$

Probability Possibility and Necessity Belief and Plausibility Upper and Lower Probability

Multiple-Valued Logic

- Three-valued logics (Łukasiewicz, Kleene):
 - True
 - False
 - Possible, Unknown, or Indeterminate
- Four-valued logic (Belnap):
 - T, F, Both, None
 - None means unknown
 - Both means conflicting information



Modal Logic

- Represent the belief modality at the syntactic level
- Necessity symbol (modality) $\Box P$
- Clear distinction between $\neg \Box P$ $\Box \neg P$
- Doxastic Logic (von Wright, Hintikka, Fagin et al.)
- Axioms:
 - $\mathsf{K} \quad \Box(P \Rightarrow Q) \Rightarrow (\Box P \Rightarrow \Box Q)$
 - $\mathsf{D} \quad \Box P \Rightarrow \neg \Box \neg P$
 - $T \quad \Box P \Rightarrow P$
 - $-4 \quad \Box P \Rightarrow \Box \Box P$
 - $-5 \neg \Box P \Rightarrow \Box \neg \Box P$

Possibility Distribution

 $\pi:\Omega\to[0,1]$

 $\pi(\omega) = 0$ Outright impossible $\pi(\omega) = 1$ Fully possible, not surprising at all Normalized: $\exists \omega^* \in \Omega : \pi(\omega^*) = 1$

Remark: this is the fuzzy set of possible states of affairs!

Possibility and Necessity Measures

$$\Pi(A) = \max_{\omega \in A} \pi(\omega);$$

$$N(A) = 1 - \Pi(\overline{A}) = \min_{\omega \in \overline{A}} \{1 - \pi(\omega)\}.$$

$$\Pi(\phi) = \max_{\substack{\omega \models \phi}} \pi(\omega);$$

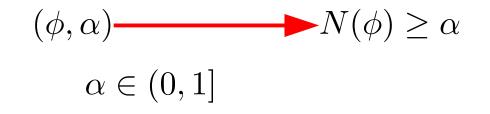
$$N(\phi) = 1 - \Pi(\neg \phi) = \min_{\substack{\omega \not\models \phi}} \{1 - \pi(\omega)\}.$$

Properties

Given a **normalized** possibility distribution on a finite universe:

$$\begin{split} \Pi(\bot) &= N(\bot) = 0 & \Pi(\top) = N(\top) = 1 \\ \Pi(\phi \lor \psi) &= \max\{\Pi(\phi), \Pi(\psi)\} \\ N(\phi \land \psi) &= \min\{N(\phi), N(\psi)\} \\ \Pi(\phi) &= 1 - N(\neg \phi) & N(\phi) = 1 - \Pi(\neg \phi) \\ N(\phi) &\leq \Pi(\phi) \\ \Pi(\phi) &< 1 \Rightarrow N(\phi) = 0 & N(\phi) > 0 \Rightarrow \Pi(\phi) = 1 \end{split}$$

Possibilistic Logic



Inference Rules

 $\begin{array}{ll} (\phi,\alpha) \vdash (\phi,\beta) & \text{if} \quad \beta \leq \alpha \\ (\phi \Rightarrow \psi,\alpha), (\phi,\alpha) \vdash (\psi,\alpha) \end{array}$

(Certainty Weakening) (Modus Ponens)

Weakest-Link Resolution

 $(\neg \phi \lor \psi, \alpha), (\phi \lor \xi, \beta) \vdash (\psi \lor \xi, \min\{\alpha, \beta\})$

Semantics

$$\Sigma = \{(\phi_i, a_i)\}_{i=1,...,n}$$
$$\pi_{\Sigma}(\omega) = 1 - \max\{a_i : (\phi_i, a_i) \in \Sigma \text{ and } \omega \notin [\phi_i]\}$$

Thank you for your attention

