

Logic for Al Master 1 Informatique

Andrea G. B. Tettamanzi
Laboratoire I3S — Pôle SPARKS
andrea.tettamanzi@univ-cotedazur.fr

Unit 11

Belief Revision

Agenda

- Introduction
- Preliminaries
- Rationality Postulates
- Models and Representation
- Epistemic Entrenchment

Motivating Example

- Suppose we have a knowledge base containing:
 - A: Gold can only be stained by aqua regia
 - B: The acid in the bottle is sulfuric acid
 - C: Sulfuric acid is not aqua regia
 - D: My wedding ring is made of gold
- The following fact is derivable from A–D:
 - E: My wedding ring will not be stained by the acid in the bottle
- Now, suppose that, as a matter of fact, the wedding ring is indeed stained by the acid: you want to add ¬E to the KB
- However, the KB would become inconsistent: you have to revise
- Instead of giving up all your beliefs, you have to choose

Methodological Questions

- How are the beliefs in the knowledge base represented?
- What is the relation between the elements explicitly represented in the database and the beliefs that may be derived from these elements?
- How are the choices concerning how to retract made?

When beliefs are represented by sentences in a belief system K, one can distinguish three main kinds of belief changes:

- Expansion: a new sentence A together with its logical consequences is added to K: K' = K + A
- Revision: a new sentence A is added but others must be retracted to maintain consistency: K' = K*A
- Contraction: a sentence is retracted: K' = K A

Expansion

- Expansion of beliefs can be handled comparatively easily
- K + A can simply be defined as the logical closure of K with A:

$$K + A = \{B : K \cup \{A\} \models B\}$$

Introduction

- It is not possible to give a similar explicit definition of revision and contraction
- When tackling the problem of Belief Revision (and contraction), there are two general strategies to follow:
 - To present explicit constructions of the revision process
 - To formulate postulates for such constructions
- Constructions and postulates can be connected via a number of representation theorems
- [Peter Gärdenfors. Belief Revision: A vade-mecum, META 1992]

Preliminaries

- To simplify things, we may work in propositional logic
- The simplest way of modeling a belief state is to represent it as a set of sentences
- We define a belief set as a set K of sentences such that

$$\text{if } K \models B \quad \text{ then } B \in K$$

$$Cn(K) = \{A : K \models A\}$$

There is exactly one inconsistent belief set, namely the set of all sentences in the language

Rationality Postulates (AGM)

- AGM = Alchourrón, Gärdenfors, and Makinson
- Let us assume belief sets are used as models of belief states
- AGM Postulates for rational functions of
 - Revision (*)
 - Contraction (–)
- The postulates state conditions that any rational function should satisfy
 - For all belief sets K
 - For all sentences A and B

AGM Basic Postulates for Revision

(K*1)
$$K*A$$
 is a belief set

(K*2)
$$A \in K * A$$

(K*3)
$$K*A \subseteq K+A$$

(K*4) If
$$\neg A \notin K$$
 then $K+A \subseteq K*A$

(K*5)
$$K*A=K_{\perp}$$
 if and only if $\models \neg A$

(K*6) If
$$\models A \Leftrightarrow B$$
 then $K*A = K*B$

AGM Postulates for Composite Revision

(K*7)
$$K*(A \wedge B) \subseteq (K*A) + B$$

(K*8) If
$$\neg B \notin K * A$$
 then $(K * A) + B \subseteq K * (A \wedge B)$

AGM Basic Postulates for Contraction

(K-1)
$$K-A$$
 is a belief set

(K-2)
$$K - A \subseteq K$$

(K-3) If
$$A \notin K$$
 then $K-A=K$

(K-4) If
$$\not\models A$$
 then $A \notin K - A$

(K-5) If
$$A \in K$$
 then $K \subseteq (K-A) + A$

(K-6) If
$$\models A \Leftrightarrow B$$
 then $K-A=K-B$

AGM Postulates for Composite Contraction

(K-7)
$$K-A\cap K-B\subseteq K-(A\wedge B)$$

(K-8) If
$$A \notin K - (A \wedge B)$$
 then $K - (A \wedge B) \subseteq K - B$

Revision as Contraction and Expansion

Theorem: If a contraction function '–' satisfies (K-1) to (K-4) and (K-6), then the revision function '*' defined as

$$K * A = (K - \neg A) + A$$

satisfies (K*1) to (K*6). This is called the **Levi Identity** Furthermore,

- if (K-7) is also satisfied, (K*7) will be satisfied
- if (K–8) is also satisfied, (K*8) will be satisfied

If we define contraction, this will also give us a revision function!

Contraction as Revision by the Negation

Theorem: If a revision function '*' satisfies (K*1) to (K*6), then the contraction function '–' defined as

$$K - A = K \cap K * \neg A$$

satisfies (K-1) to (K-6).

Furthermore,

- if (K*7) is also satisfied, (K-7) will be satisfied
- if (K*8) is also satisfied, (K–8) will be satisfied

Constructing Contraction

- A general idea is to start from K and then give some recipe for choosing which propositions to delete from K so that K – A does not contain A as a logical consequence.
- We should look for as large a subset of K as possible.
- A belief set K' is a maximal subset of K that fails to imply A if and only if
 - 1) $K' \subset K$
 - 2) $A \notin K'$
 - 3) For any sentence B that is in K but not in K', $B \Rightarrow A \in K'$
- The set of all belief subsets of K that fail to imply A is denoted $K \perp A$ (also called the remainder set of K by A)

Selection Function and Maxichoice

- A first tentative solution to the problem of constructing a contraction function is to identify K-A with one of the maximal subsets in $K\perp A$
- Technically, this can be done with the aid of a selection function S
- S picks out an element $S(K \perp A)$ of $K \perp A$ for any K and any A whenever $K \perp A$ is nonempty

(Maxichoice) $K - A = S(K \perp A)$ when $\neq A$, and K - A = K otherwise.

Any maxichoice contraction function satisfies (K–1) to (K–6), but they also satisfy the fullness condition

(K-F) If $B \in K$ and $B \not\in K-A$, then $B \Rightarrow A \in K-A$ for any belief set

Maximal Belief Set

- In a sense, maxichoice contraction functions in general produce contractions that are too large
- Let us say that a belief set K is **maximal** iff, for every sentence B, either $B \in K$ or $\neg B \in K$

Theorem: If a revision function '*' is defined from a maxichoice contraction function '—' by means of the Levi identity, then, for any A such that $\neg A \in K$, K * A will be maximal.

Full Meet Contraction

• The idea of full meet contraction is to assume that K-A contains only the propositions that are common to all of the maximal subsets in $K \perp A$

(Meet)
$$K-A=\left\{ egin{array}{ll} \bigcap K\bot A, & K\bot A
eq\emptyset \\ K, & {
m otherwise}. \end{array} \right.$$

Any full meet contraction function satisfies (K-1) to (K-6), but they also satisfy the intersection condition

$$(K-I) K - (A \wedge B) = (K-A) \cap (K-B)$$

Partial Meet Contraction

 The drawback of full meet contraction is that it results in contracted belief sets that are far too small.

Theorem: If a revision function '*' is defined from a full meet contraction function '—' by means of the Levi identity, then, for any A such that $\neg A \in K$, $K * A = Cn(\{A\})$.

We can have the selection function S pick the "best" elements of $K \perp A$ and then take their intersection:

(Partial meet)
$$K - A = \bigcap S(K \perp A)$$

Transitively Relational Partial Meet Contraction

- What does "best" mean?
- We must be given a transitive and reflexive ordering relation ≤ on K⊥A
- Then we can define the selection function as follows

$$S(K \perp A) = \{ K' \in K \perp A : \forall K'' \in K \perp A, K'' \leq K' \}$$

Theorem: For any belief set K, '–' satisfies (K-1) - (K-8) iff '–' is a transitively relational partial meet contraction function.

Computational Considerations

- Thus far, we have found a way of connecting the rationality postulates with a general way of modeling contraction functions
- The drawback of the partial meet construction is that the computational costs involved in determining what is in the relevant maximal subsets of a belief set K are so overwhelming that other solutions to the problem of constructing belief revisions and contractions should be considered.
- As a generalization of the AGM postulates several authors have suggested postulates for revisions and contractions of bases for belief sets rather than the belief sets themselves

Epistemic Entrenchment

- A second way of modeling contractions is based on the idea that some sentences in a belief system have a higher degree of epistemic entrenchment than others.
- The guiding idea for the construction of a contraction function is that when a belief set K is revised or contracted, the sentences in K that are given up are those having the lowest degrees of epistemic entrenchment.
- If A and B are sentences, the notation A ≤ B will be used as a shorthand for "B is at least as epistemically entrenched as A".

Postulates for Epistemic Entrenchment

(EE1) If $A \le B$ and $B \le C$, then $A \le C$ (transitivity) (EE2) If $A \models B$, then $A \le B$ (dominance) (EE3) For any A and B, $A \le A \land B$ or $B \le A \land B$ (conjunctiveness) (EE4) When $K \ne K \perp$, $A \not\in K$ iff $A \le B$, for all B (minimality)

(EE5) If $B \le A$ for all B, then |= A (maximality)

 $(C \le) A \le B$ if and only if $A \notin K - A \land B$ or $|= A \land B$.

(C–) $B \in K - A$ if and only if $B \in K$ and either $A < A \lor B$ or |= A.

Theorem: if \leq satisfies (EE1) to (EE5), then the contraction uniquely determined by (C \rightarrow) satisfies (K \rightarrow 1) to (K \rightarrow 8) as well as (C \leq) and viceversa

Thank you for your attention

