
Andrea G. B. Tettamanzi, 2025 1

Logic for AILogic for AI
Master 1 InformatiqueMaster 1 Informatique

Andrea G. B. Tettamanzi
Laboratoire I3S – Pôle SPARKS

andrea.tettamanzi@univ-cotedazur.fr

Andrea G. B. Tettamanzi, 2025 2

Unit 4

Predicate Logic:
Herbrand Entailment

Andrea G. B. Tettamanzi, 2025 3

Agenda

• Herbrand Entailment
• Prenex Form
• Grounding
• Predicate Logic with Functions

– Syntax
– Herbrand Semantics (→ Herbrand Logic)
– Tarskian Semantics (→ First-Order Logic)

• Deductive systems will be treated in the following lectures

Andrea G. B. Tettamanzi, 2025 4

(Herbrand) Entailment

• Let Δ be a set of closed sentences and V a vocabulary that is a
superset of the vocabulary of Δ.

• Let φ be a closed sentence.
• Δ entails φ with respect to vocabulary V if and only if every

Herbrand model for V that satisfies Δ also satisfies φ.
Δ |= φ wrt V if and only if |=M Δ implies |=M φ,
where M is a Herbrand model for V

• If no vocabulary is named in satisfaction or entailment, it is
assumed the minimal vocabulary is used, i.e. the vocabulary that
includes just the constants in the sentences given.

Andrea G. B. Tettamanzi, 2025 5

Mapping Relational Sentences
to Propositional Sentences

There is a simple procedure for mapping Relational Logic sentences
to equivalent Propositional Logic sentences.
1) Convert to Prenex form.
2) Compute the grounding.
3) Consider each ground atom as a propositional constant.

Since satisfiability and entailment in Propositional Logic are
decidable, then satisfiability and entailment in Relational Logic are
decidable too.

Andrea G. B. Tettamanzi, 2025 6

Prenex Form

• A sentence is in prenex form if and only if
1) it is closed and
2) all of the quantifiers are outside of all logical operators.

• Sentence in Prenex Form:
– ∀x. y. z.(p(x,y) q(z))∃ ∀ ∨

• Sentences not in Prenex Form:
– ∀x. y.p(x,y) y.q(y)∃ ∨ ∃
– ∀x.(p(x,y) q(x))∨

Andrea G. B. Tettamanzi, 2025 7

Conversion to Prenex Form

1) Rename duplicate variables.
– ∀y.p(x,y) y.q(y) → y.p(x,y) z.q(z)∨ ∃ ∀ ∨ ∃

2) Distribute logical operators over quantifiers.
– ∀y.p(x,y) z.q(z) → y. z.(p(x,y) q(z))∨ ∃ ∀ ∃ ∨

3) Quantify any free variables.
– ∀y. z.(p(x,y) q(z)) → x. y. z.(p(x,y) q(z))∃ ∨ ∀ ∀ ∃ ∨

Andrea G. B. Tettamanzi, 2025 8

Substitution

• A substitution is a finite set of the form

where
– Every vi is a variable
– Every ti is a term different from vi

– All variables vi are different
• When t1, …, tn are ground terms, the substitution is called a

ground substitution.
• We denote by φ[θ] the application of substitution θ to sentence φ

Andrea G. B. Tettamanzi, 2025 9

Grounding

• Replace each universally quantified sentence with the set of its
instances

• Replace each existentially quantified sentence with the
disjunction of its instances

• Until all sentences are quantifier-free (and, therefore, ground)

Andrea G. B. Tettamanzi, 2025 10

Compactness

• A logic is compact if and only if every unsatisfiable set of
sentences (including infinite sets) has a finite subset that is
unsatisfiable.

• Propositional Logic is compact.
• Given our mapping, we know that Relational Logic must also be

compact.

Andrea G. B. Tettamanzi, 2025 11

Predicate Logic (with Functions)

• The syntax is an extension of the syntax of Relational Logic
• Function constants with their arity: f(.), g(., .), etc.
• The definition of a term becomes:

– A variable
– An object constant
– A function constant with arity n applied to n terms.

• Only expressions produced by the the above rules are terms.

• As a result, the set of terms will be infinite, even though the
vocabulary of the language is finite.

Andrea G. B. Tettamanzi, 2025 12

Avoiding Constants and Functions

• It is possible to entirely avoid function symbols and constant
symbols, rewriting them via predicate symbols in an appropriate
way.

• For example, instead of using a constant symbol 0 one may use a
predicate 0(x), interpreted as x = 0, and replace every predicate
such as P(0, y) with x(0(x) ∀ ⇒ P(x, y)).

• A function such as f(x1, x2, …, xn) will similarly be replaced by a
predicate F(x1, x2, …, xn, y) interpreted as y = f(x1, x2, …, xn).

• This change comes at a cost: additional axioms must be added to
the theory at hand, so that interpretations of the predicate
symbols used have the correct semantics.

Andrea G. B. Tettamanzi, 2025 13

Herbrand Semantics

• Same definition as for the Relational Logic but...
• In the presence of functions, the Herbrand base is infinite!
• However, every interpretation (or model) M, as subset of H, is a

finite set of atoms.

Andrea G. B. Tettamanzi, 2025 14

Undecidability

• Satisfiability and logical entailment for Herbrand Logic are
undecidable.

• Proof sketch:
– We can reduce a problem that is generally accepted to be

non-semidecidable to a question of satisfiability / logical
entailment in Herbrand Logic

– If Herbrand logic were semidecidable, then such question
would be semidecidable as well

– Since it is known not to be semidecidable, then Herbrand
Logic must not be semidecidable either.

Andrea G. B. Tettamanzi, 2025 15

Tarskian Semantics

• Herbrand logic differs from first-order logic solely in the structures
it considers to be models.

• The semantics of a given set of sentences is defined to be the set
of Herbrand models that satisfy it, for a given vocabulary.

• In Tarskian semantics, we map all the elements of the language
to the elements of an (external) domain D

• A first-order model M consists of a domain D and a mapping ∙M
such that
– For each n-ary predicate P an n-ary relation PM over D
– For each n-ary function constant f an n-ary function fM over D
– For each object constant c an element cM from D

Andrea G. B. Tettamanzi, 2025 16

First-Order Model

• In a model M, a variable assignment is a mapping of all the
variables in the vocabulary to elements in D.

• Given an arbitrary model and a variable assignment for that
model, every term in the language is assigned an element in that
model's universe:
– Let v be a variable assignment and M a first-order model
– ev maps a term to an element of D.

• For variable x, ev(x) = v(x)
• For object constant c, ev(c) = cM

• For terms t1, …, tn, ev(f(t1, …, tn)) = fM(ev(t1),...,ev(tn))

Andrea G. B. Tettamanzi, 2025 17

First-Order Satisfaction

Given M and v, |=M φ is defined as follows:
• |=M P(t1,...,tn)[v] if and only if <ev(t1),...,ev(tn)> P∈ M

• |=M ¬ ψ[v] if and only if |≠M ψ[v]
• |=M (φ ψ)[v] if and only if |=∧ M φ[v] and |=M ψ[v]
• |=M (φ ψ)[v] if and only if |=∨ M φ[v] or |=M ψ[v]
• |=M (φ ψ)[v] if and only if |⇒ ≠M φ[v] or |=M ψ[v]
• |=M (φ ⇔ ψ)[v] if and only if either |=M (φ ψ)[v] or |=∧ M (¬φ ¬ψ)∧

[v]
• |=M x.φ[v] if and only if for every d D |=∀ ∈ M φ[v][d/x]
• |=M x.φ[v] if and only if for some d D |=∃ ∈ M φ[v][d/x]

Andrea G. B. Tettamanzi, 2025 18

Comparison of the Two Semantics

• Given vocabulary {P(∙), a, b},
• Sentence P(a):

– Has exactly 2 Herbrand models:
• { P(a) }
• { P(a), P(b) }

– Has infinitely many First-Order models:
• D = {1}, PM = {<1>}, aM = 1, bM = 1,
• D = {1, 2, 3, …}, PM = {<17>,<63>}, aM = 17, bM = 51,
• D = Reals, PM = {<3.14159...>, <17.0>},

aM = 3.14159..., bM = 0.33333...
• …

Andrea G. B. Tettamanzi, 2025 19

Comparison of the Two Semantics

• Given vocabulary {P(∙), a},
• Sentences P(a), ∃x.¬P(x):

– Are Herbrand-unsatisfiable
– Are always satisfiable in First-Order Logic:

• D = {1, 2}, PM = {<1>}, aM = 1
• …

• We have to extend the vocabulary to {P(∙), a, b} for them to be
Herbrand-satisfiable:

• M = { P(a) }

Andrea G. B. Tettamanzi, 2025 20

Skolem Standard Form

We can obtain the Skolem Standard form of a sentence by applying
the following procedure:
1) Transform the sentence into prenex normal form
2) Transform the matrix of the prenex normal form into CNF
3) Eliminate the existential quantifiers in the prefix by using Skolem

functions:
1) For each quantifier ∃x in the prefix, let m be the number of ’s∀

preceding it;
2) Replace every occurrence of x in the matrix with the term

sx(x1, …, xm), where sx is a new function constant of arity m
and x1, …, xm are the universally quantified variables
occurring before x in the prefix.

Andrea G. B. Tettamanzi, 2025 21

Semantic Trees

• Checking the Herbrand-satisfiability of a set of clauses (obtained
from the matrix of a Skolem Standard Form) can be done by
constructing a semantic tree

• Given a set S of clauses, a semantic tree for S is a tree where
each edge is labeled with a finite set of literals of atoms of S in
such a way that
– The disjunction of all the labels of the outgoing edges of a

node is a tautology
– The labels on the path from the root to node N constitute a

partial interpretation I(N).
• A semantic tree is complete iff for every leaf N, I(N) contains

either A or ¬A for every atom in S

Andrea G. B. Tettamanzi, 2025 22

Semantic Trees (continued)

• A node N is a failure node if I(N) falsifies some ground instance
of a clause in S, but I(N’) does not falsify any ground instance of a
clause in S for every ancestor N’ of N.

• A semantic tree is closed if and only if every branch terminates at
a failure node

• A node N of a closed semantic tree is an inference node if all the
children of N are failure nodes.

Andrea G. B. Tettamanzi, 2025 23

Example

Andrea G. B. Tettamanzi, 2025 24

Herbrand’s Theorem

A set S of clauses is unsatisfiable if and only if corresponding to
every complete semantic tree of S, there is a finite closed semantic
tree
Proof:
• [⇒]: Suppose that S is unsatisfiable. Then for every path in a

complete semantic tree of S, there must be a failure node at a
finite depth.

• [⇐]: If corresponding to every complete semantic tree of S there
is a finite closed semantic tree, then every branch contains a
failure node. This means that every interpretation falsifies S.
Hence S is unsatisfiable.

Andrea G. B. Tettamanzi, 2025 25

Thank you for your attention

	Slide 1
	Titre
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Fin

