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Unit 4 

Predicate Logic:
Herbrand Entailment
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Agenda

• Herbrand Entailment
• Prenex Form
• Grounding
• Predicate Logic with Functions

– Syntax
– Herbrand Semantics (→ Herbrand Logic)
– Tarskian Semantics (→ First-Order Logic)

• Deductive systems will be treated in the following lectures
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(Herbrand) Entailment

• Let Δ be a set of closed sentences and V a vocabulary that is a 
superset of the vocabulary of Δ.

• Let φ be a closed sentence.
• Δ entails φ with respect to vocabulary V if and only if every 

Herbrand model for V that satisfies Δ also satisfies φ.
Δ |= φ wrt V if and only if |=M Δ implies |=M φ,
where M is a Herbrand model for V

• If no vocabulary is named in satisfaction or entailment, it is 
assumed the minimal vocabulary is used, i.e. the vocabulary that 
includes just the constants in the sentences given. 
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Mapping Relational Sentences
to Propositional Sentences

There is a simple procedure for mapping Relational Logic sentences 
to equivalent Propositional Logic sentences.
1) Convert to Prenex form.
2) Compute the grounding.
3) Consider each ground atom as a propositional constant.

Since satisfiability and entailment in Propositional Logic are 
decidable, then satisfiability and entailment in Relational Logic are 
decidable too.
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Prenex Form

• A sentence is in prenex form if and only if
1) it is closed and
2) all of the quantifiers are outside of all logical operators.

• Sentence in Prenex Form:
– ∀x. y. z.(p(x,y)  q(z))∃ ∀ ∨

• Sentences not in Prenex Form:
– ∀x. y.p(x,y)  y.q(y)∃ ∨ ∃
– ∀x.(p(x,y)  q(x))∨
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Conversion to Prenex Form

1) Rename duplicate variables.
– ∀y.p(x,y)  y.q(y) → y.p(x,y)  z.q(z)∨ ∃ ∀ ∨ ∃

2) Distribute logical operators over quantifiers.
– ∀y.p(x,y)  z.q(z) → y. z.(p(x,y)  q(z))∨ ∃ ∀ ∃ ∨

3) Quantify any free variables.
– ∀y. z.(p(x,y)  q(z)) → x. y. z.(p(x,y)  q(z))∃ ∨ ∀ ∀ ∃ ∨
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Substitution

• A substitution is a finite set of the form

where
– Every vi is a variable
– Every ti is a term different from vi

– All variables vi are different
• When t1, …, tn are ground terms, the substitution is called a 

ground substitution.
• We denote by φ[θ] the application of substitution θ to sentence φ 
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Grounding

• Replace each universally quantified sentence with the set of its 
instances

• Replace each existentially quantified sentence with the 
disjunction of its instances

• Until all sentences are quantifier-free (and, therefore, ground)
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Compactness

• A logic is compact if and only if every unsatisfiable set of 
sentences (including infinite sets) has a finite subset that is
unsatisfiable.

• Propositional Logic is compact.
• Given our mapping, we know that Relational Logic must also be 

compact.
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Predicate Logic (with Functions)

• The syntax is an extension of the syntax of Relational Logic
• Function constants with their arity: f(.), g(., .), etc.
• The definition of a term becomes:

– A variable
– An object constant
– A function constant with arity n applied to n terms.

• Only expressions produced by the the above rules are terms.

• As a result, the set of terms will be infinite, even though the 
vocabulary of the language is finite. 
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Avoiding Constants and Functions

• It is possible to entirely avoid function symbols and constant 
symbols, rewriting them via predicate symbols in an appropriate 
way.

• For example, instead of using a constant symbol 0 one may use a 
predicate 0(x), interpreted as x = 0, and replace every predicate 
such as P(0, y) with x(0(x) ∀ ⇒ P(x, y)).

• A function such as f(x1, x2, …, xn) will similarly be replaced by a 
predicate F(x1, x2, …, xn, y) interpreted as y = f(x1, x2, …, xn).

• This change comes at a cost: additional axioms must be added to 
the theory at hand, so that interpretations of the predicate 
symbols used have the correct semantics.
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Herbrand Semantics

• Same definition as for the Relational Logic but...
• In the presence of functions, the Herbrand base is infinite!
• However, every interpretation (or model) M, as subset of H, is a 

finite set of atoms.
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Undecidability

• Satisfiability and logical entailment for Herbrand Logic are 
undecidable.

• Proof sketch:
– We can reduce a problem that is generally accepted to be 

non-semidecidable to a question of satisfiability / logical 
entailment in Herbrand Logic

– If Herbrand logic were semidecidable, then such question 
would be semidecidable as well

– Since it is known not to be semidecidable, then Herbrand 
Logic must not be semidecidable either.
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Tarskian Semantics

• Herbrand logic differs from first-order logic solely in the structures 
it considers to be models.

• The semantics of a given set of sentences is defined to be the set 
of Herbrand models that satisfy it, for a given vocabulary.

• In Tarskian semantics, we map all the elements of the language 
to the elements of an (external) domain D

• A first-order model M consists of a domain D and a mapping ∙M 
such that
– For each n-ary predicate P an n-ary relation PM over D
– For each n-ary function constant f an n-ary function fM over D
– For each object constant c an element cM from D 
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First-Order Model

• In a model M, a variable assignment is a mapping of all the 
variables in the vocabulary to elements in D.

• Given an arbitrary model and a variable assignment for that 
model, every term in the language is assigned an element in that 
model's universe:
– Let v be a variable assignment and M a first-order model
– ev maps a term to an element of D.

• For variable x, ev(x) = v(x)
• For object constant c, ev(c) = cM

• For terms t1, …, tn, ev(f(t1, …, tn)) = fM(ev(t1),...,ev(tn)) 
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First-Order Satisfaction

Given M and v, |=M φ is defined as follows:
• |=M P(t1,...,tn)[v] if and only if <ev(t1),...,ev(tn)>  P∈ M

• |=M ¬ ψ[v] if and only if |≠M ψ[v]
• |=M (φ  ψ)[v] if and only if |=∧ M φ[v] and |=M ψ[v]
• |=M (φ  ψ)[v] if and only if |=∨ M φ[v] or |=M ψ[v]
• |=M (φ  ψ)[v] if and only if |⇒ ≠M φ[v] or |=M ψ[v]
• |=M (φ ⇔ ψ)[v] if and only if either |=M (φ ψ)[v] or |=∧ M (¬φ  ¬ψ)∧

[v]
• |=M x.φ[v] if and only if for every d  D |=∀ ∈ M φ[v][d/x]
• |=M x.φ[v] if and only if for some d  D |=∃ ∈ M φ[v][d/x] 
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Comparison of the Two Semantics

• Given vocabulary {P(∙), a, b},
• Sentence P(a):

– Has exactly 2 Herbrand models:
• { P(a) }
• { P(a), P(b) }

– Has infinitely many First-Order models:
• D = {1}, PM = {<1>}, aM = 1, bM = 1,
• D = {1, 2, 3, …}, PM = {<17>,<63>}, aM = 17, bM = 51,
• D = Reals, PM = {<3.14159...>, <17.0>},

aM = 3.14159..., bM = 0.33333...
• …
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Comparison of the Two Semantics

• Given vocabulary {P(∙), a},
• Sentences P(a), ∃x.¬P(x):

– Are Herbrand-unsatisfiable
– Are always satisfiable in First-Order Logic:

• D = {1, 2}, PM = {<1>}, aM = 1
• …

• We have to extend the vocabulary to {P(∙), a, b} for them to be 
Herbrand-satisfiable:

• M = { P(a) } 
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Skolem Standard Form

We can obtain the Skolem Standard form of a sentence by applying 
the following procedure:
1) Transform the sentence into prenex normal form
2) Transform the matrix of the prenex normal form into CNF
3) Eliminate the existential quantifiers in the prefix by using Skolem 

functions:
1) For each quantifier ∃x in the prefix, let m be the number of ’s∀  

preceding it;
2) Replace every occurrence of x in the matrix with the term 

sx(x1, …, xm), where sx is a new function constant of arity m 
and x1, …, xm are the universally quantified variables 
occurring before x in the prefix.
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Semantic Trees

• Checking the Herbrand-satisfiability of a set of clauses  (obtained 
from the matrix of a Skolem Standard Form) can be done by 
constructing a semantic tree

• Given a set S of clauses, a semantic tree for S is a tree where 
each edge is labeled with a finite set of literals of atoms of S in 
such a way that
– The disjunction of all the labels of the outgoing edges of a 

node is a tautology
– The labels on the path from the root to node N constitute a 

partial interpretation I(N).
• A semantic tree is complete iff for every leaf N, I(N) contains 

either A or ¬A for every atom in S
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Semantic Trees (continued)

• A node N is a failure node if I(N) falsifies some ground instance 
of a clause in S, but I(N’) does not falsify any ground instance of a 
clause in S for every ancestor N’ of N.

• A semantic tree is closed if and only if every branch terminates at 
a failure node

• A node N of a closed semantic tree is an inference node if all the 
children of N are failure nodes.
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Example
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Herbrand’s Theorem

A set S of clauses is unsatisfiable if and only if corresponding to 
every complete semantic tree of S, there is a finite closed semantic 
tree
Proof:
• [⇒]: Suppose that S is unsatisfiable. Then for every path in a 

complete semantic tree of S, there must be a failure node at a 
finite depth.

• [⇐]: If corresponding to every complete semantic tree of S there 
is a finite closed semantic tree, then every branch contains a 
failure node. This means that every interpretation falsifies S. 
Hence S is unsatisfiable.
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Thank you for your attention
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