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Introduction

Fuzzy Logic:
— In the broad sense: a mathematical theory to treat imprecision
and the vague notions of natural language

— In the narrow sense: a many-valued logic based on this theory
Introduced by Lotfi A. Zadeh in 1965

Basic idea: replace the two truth values T and F with a continuous
truth degree taking values between 0 (outright false) et 1 (fully
true)

Fuzzy set theory

— The extension of classical Logic is based on the definition of a
set
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Fuzzy Sets

A “classic” or “crisp” set is completely specified by a characteristic
function x : U - {0, 1}, such that, for all x € U,

— X(x) = 1, if and only if x belongs to the set
— X(x) = 0, otherwise.

To define a “fuzzy” set, we replace x by a membershi function p :
U - [0, 1], such that, for all x € U,

— 0 < u(x) < 1isthe degree to which x belongs to the set

Since function y completely specifies the set, we can say that p is
the set

A crisp set is a special case of a fuzzy set!
The set U is the universe of set
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Representation

Finite universe: A = _
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Fuzzy Sets
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Operations on Fuzzy Sets

* Extension of the operations on crisp sets
* Triangular Norms and Co-Norms
* Min and max are a popular choice
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Fuzzy Relations

« An n-ary relation is a subset of the Cartesian product of n sets
R(Xl,XQ,...Xn) C X1 X X2 X oo X Xn

- Likewise, a fuzzy relation is a fuzzy subset of the Cartesian
product of sets

R(x1,x2,...x,) € [0,1]

- Example: let X = {NYC, London, Paris} and let’s define binary
relation “very far’” on X2
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Fuzzy Cartesian Product

« LetAs, Ao, ..., An be fuzzy sets Iin X1, Xo, ..., Xn, respectively

« The fuzzy Cartesian product of A1, Az, ..., Anis a fuzzy relation on
the product space, defined by its membership function

(A X Ag X -+ X Ap)(x1,T2,...2n) = min{Ay (1), Ao (x2),..., An(xyn)}

« Of course, the “min” operator can be replaced by any triangular
norm
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Extension Principle

Let U and V be two universes and f: U —» V a mapping
Let A be a fuzzy setin U

We can then define a fuzzy set B = f(A) such that,
forally e V:

— B(y) = max{A(x) : x € U, f(x) =y}
— B(y) =0, if y does not belong in the image of f

This principle makes it possible to “fuzzify” (= define a fuzzy
extension) of “crisp” theories

Example: fuzzy numbers - fuzzy arithmetic
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Fuzzy Logic (in the narrow sense)

Fuzzy set theory allows us to introduce fuzzy propositions and
predicates

For propositions, it suffices to reason in terms of interpretations:

— An interpretation is defined as the set of propositions that are
true

— Fuzzy proposition: partial truth

For predicates, we consider the identity between a predicate and
the set of logical constants (or terms) that satisfy it (its extension)

— A fuzzy predicate will thus be a predicate whose extensions is
a fuzzy set

Logical connectives are defined accordingly
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Logical Operators

Let T be the function assigning to a proposition its truth value

Let P, Q, and R be propositions

- (P A Q) =min {1(P), 1(Q)}

- (P v Q) = max {t(P), 1(Q)}

- 1(=-P)=1-1(P)

Implication has no univocous definition:

— (P - Q) =max{1l - 1(P), 1(Q)}, since P - Q=-P Vv QI[K.-D|]
— (P - Q) = min{t(P), 1(Q)} [Mamdani]

— 1(P) £ 1(Q) [Zadeh]

— Etc.
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Fuzzy-Rule-BAsed System

* Linguistic Variables and Values

* Fuzzy Clause:
XIS A

* Fuzzy Rule:
IF antecedent THEN consequent

 Defuzzification methods
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Inference Iin Fuzzy Rule-Based Systems

Given a set of fuzzy rules

IF Pi(z1,...,2,) THEN Qi(y1,...,Ym),

IF P.(x1,...,2,) THEN Q(y1,...,Ym),

The fuzzy set of the values of the dependent variables is given by:

TR(Y1s -+ Ym; L1y, Tpy)
= SUPj<j<, MIN{TQ, (Y1, -+, Ym), TP (T1, ..., ZTn)}.
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Fuzzy Set Theory and Probability

* Degrees of membership and probabilities both defined in [0, 1].
* Very similar algebra (e.g., lattice, De Morgan Laws).
* However, they represent two distinct and independent notions:
— Membership degrees: imprecision.
— Probability: uncertainty.
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Fuzzy Sets and Probabilities

* The key to understand the difference is the notion of event:
— A set of elementary events (points in a measurable space);
— Given an event A:
* Probability = integral on A of a probability measure;

* Membership degree = degree to which the result of an
experiment or a member of a sample “is” A.
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Example (Bezdek 1993)

95%
95% membership
probability In the set of
of being healthful
healthful and good
and good drinks
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Thank you for your attention
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