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Agenda

• From Propositional to Predicate Logic

• Relational Logic (= Predicate Logic without Functions)

– Syntax

– Semantics

• Predicate Logic with Functions

– Syntax

– Herbrand Semantics (→ Herbrand Logic)

– Tarskian Semantics (→ First-Order Logic)

• Deductive systems will be treated in the following lectures
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From Propositional to Predicate Logic

• Propositional Logic

– Premises:

• If Jack knows Jill, then Jill knows Jack.

• Jack knows Jill.

– Conclusion:

• Is it the case that Jill knows Jack?

• What about

– Premises:

• If one person knows another, then the second person 
knows the first.

• Jack knows Jill

– Conclusion:
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Relational Logic

• We need to introduce new features

– Variables

– Quantifiers

• Sample sentence
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Relational Logic: Syntax

• Object constants (individuals): Joe, Nice, France, 0, 2345, 3.1415

• Relation constants (predicates): knows, loves, same

• Predicates have an arity:

– Unary – 1 argument

– Binary – 2 arguments

– Ternary – 3 arguments

– n-ary – n arguments

• Signature:

– Set of object constants

– Set of predicates together with a specification of their arity

• Variables: x, y, z, etc. 
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Terms and Sentences

• A term is a either a variable or an object constant

• Terms represent objects

• Terms are analogous to noun phrases in natural language

• Sentences

– Relational sentences (atoms, ≈ simple propositions):

• A predicate of arity n applied to n terms

– Logical sentences (≈ complex propositions):

• Combinations of sentences using logical operators

– Quantified sentences:

• Sentences with quantified variables
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Definition (Sentence)

Sentence ::=

• A relation constant with arity n applied to n terms.

• (¬ φ) where φ is a sentence.

• (φ  ψ), where φ and ψ are sentences.∨ ψ), where φ and ψ are sentences.
• (φ  ψ), where φ and ψ are sentences.∧ ψ), where φ and ψ are sentences.
• (φ  ψ), where φ and ψ are sentences.⇒ ψ), where φ and ψ are sentences.
• (φ  ψ), where φ and ψ are sentences.⇔ ψ), where φ and ψ are sentences.
• ( x φ), where φ is a sentence.∀x φ), where φ is a sentence.
• ( x φ), where φ is a sentence.∃x φ), where φ is a sentence.
Only expressions produced by the above rules are sentences. 
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Some Nomenclature

• An atom is a relation constant with arity n applied to n terms

• A literal is either an atom or the negation of an atom

• A ground sentence has no variables or quantifiers

• A variable is bound if and only if it lies within the scope of a 
quantifier of that variable

• A variable is free if it is not bound

• A closed sentence has no free variables

• An open sentence does have free variables

• We treat free variables in an open sentence as being implicitly 
universally quantified.
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Relational Logic: Semantics

• The classical semantics of relational logic is based on seminal 
work by Polish logician Alfred Tarski in the 1930s

• Tarski, "Pojęcie prawdy w językach nauk dedukcyjnych" 1933, → 
"Der Wahrheitsbegriff in den formalisierten Sprachen", 1935

• We will refer to his approach as “Tarskian semantics” 

• An alternative approach stems from the work by 
French mathematician Jacques Herbrand (who died 
at age 23 while mountain-climbing on the Alps)

• We will refer to this approach as “Herbrand 
semantics” 
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Herbrand Base

• The Herbrand base for a Relational language is the set of all 
ground relational sentences that can be formed from the 
vocabulary of the language

• Example:

– Object constants: a, b

– Unary predicate: P

– Binary predicate: R

– Herbrand base: { P(a), P(b), R(a,a), R(a,b), R(b,a), R(b,b) }
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Interpretation

• An interpretation is a mapping from the Herbrand base (i.e., the 
ground atoms) to the truth values {F, T}.

• We will use 1 as a synonym for T and 0 as a synonym for F.

Example: let

Equivalent view: interpretation as a subset of the Herbrand base 
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Sentential Interpretation

• A sentential interpretation is an extension of an interpretation 
mapping every sentence to the truth values 0 or 1.

• Each interpretation is extended to a sentential interpretation 
based on the type of sentence.
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Logical Sentences

if and only if

if and only if and

if and only if or

if and only if or

if and only if
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Quantified Sentences

• A universally quantified sentence is true under an interpretation if 
and only if every instance of the scope of the quantified sentence 
is true under that interpretation.

• An existentially quantified sentence is true under an interpretation 
if and only if some instance of the scope of the quantified 
sentence is true under that interpretation.

• An interpretation satisfies a sentence with free variables if and 
only if it satisfies every instance of that sentence.
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Alternative (Equivalent) View

• An interpretation (or model) M is a subset of H

• |=M P(t1,...,tn) if and only if P(t1,...,tn)  M.∈ M.

• |=M ¬ ψ if and only if |≠M ψ.

• |=M φ  ψ if and only if |=∧ ψ), where φ and ψ are sentences. M φ and |=M ψ.

• |=M φ  ψ if and only if |=∨ ψ), where φ and ψ are sentences. M φ or |=M ψ.

• |=M φ  ψ if and only if |⇒ ψ), where φ and ψ are sentences. ≠M φ or |=M ψ.

• |=M φ  ψ if and only if |=⇐ ψ if and only if |= M ψ  φ.⇒ ψ), where φ and ψ are sentences.

• |=M φ  ψ if and only if either |=⇔ ψ), where φ and ψ are sentences. M φ ψ or |=∧ ψ), where φ and ψ are sentences. M ¬φ  ¬ψ.∧ ψ), where φ and ψ are sentences.

• |=M x.φ(x) if and only if |=∀x φ), where φ is a sentence. M φ(t) for all ground terms t.

• |=M x.φ(x) if and only if |=∃x φ), where φ is a sentence. M φ(t) for some ground term t. 
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Quantificational Tautologies

Negation Distribution:

Common Quantifier Reversal:

Existential Distribution:
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(Herbrand) Entailment

• Let Δ be a set of closed sentences and V a vocabulary that is a 
superset of the vocabulary of Δ.

• Let φ be a closed sentence.

• Δ entails φ with respect to vocabulary V if and only if every 
Herbrand model for V that satisfies Δ also satisfies φ.

Δ |= φ wrt V if and only if |=M Δ implies |=M φ,

where M is a Herbrand model for V

• If no vocabulary is named in satisfaction or entailment, it is 
assumed the minimal vocabulary is used, i.e. the vocabulary that 
includes just the constants in the sentences given. 
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Mapping Relational Sentences
to Propositional Sentences

There is a simple procedure for mapping Relational Logic sentences 
to equivalent Propositional Logic sentences.

1) Convert to Prenex form.

2) Compute the grounding.

3) Consider each ground atom as a propositional constant.

Since satisfiability and entailment in Propositional Logic are 
decidable, then satisfiability and entailment in Relational Logic are 
decidable too.
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Prenex Form

• A sentence is in prenex form if and only if

1) it is closed and

2) all of the quantifiers are outside of all logical operators.

• Sentence in Prenex Form:

– ∀x φ), where φ is a sentence.x. y. z.(p(x,y)  q(z))∃x φ), where φ is a sentence. ∀x φ), where φ is a sentence. ∨ ψ), where φ and ψ are sentences.
• Sentences not in Prenex Form:

– ∀x φ), where φ is a sentence.x. y.p(x,y)  y.q(y)∃x φ), where φ is a sentence. ∨ ψ), where φ and ψ are sentences. ∃x φ), where φ is a sentence.
– ∀x φ), where φ is a sentence.x.(p(x,y)  q(x))∨ ψ), where φ and ψ are sentences.
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Conversion to Prenex Form

1) Rename duplicate variables.

– ∀x φ), where φ is a sentence.y.p(x,y)  y.q(y) → y.p(x,y)  z.q(z)∨ ψ), where φ and ψ are sentences. ∃x φ), where φ is a sentence. ∀x φ), where φ is a sentence. ∨ ψ), where φ and ψ are sentences. ∃x φ), where φ is a sentence.
2) Distribute logical operators over quantifiers.

– ∀x φ), where φ is a sentence.y.p(x,y)  z.q(z) → y. z.(p(x,y)  q(z))∨ ψ), where φ and ψ are sentences. ∃x φ), where φ is a sentence. ∀x φ), where φ is a sentence. ∃x φ), where φ is a sentence. ∨ ψ), where φ and ψ are sentences.
3) Quantify any free variables.

– ∀x φ), where φ is a sentence.y. z.(p(x,y)  q(z)) → x. y. z.(p(x,y)  q(z))∃x φ), where φ is a sentence. ∨ ψ), where φ and ψ are sentences. ∀x φ), where φ is a sentence. ∀x φ), where φ is a sentence. ∃x φ), where φ is a sentence. ∨ ψ), where φ and ψ are sentences.
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Substitution

• A substitution is a finite set of the form

where

– Every vi is a variable

– Every ti is a term different from vi

– All variables vi are different

• When t1, …, tn are ground terms, the substitution is called a 

ground substitution.

• We denote by φ[θ] the application of substitution θ to sentence φ 
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Grounding

• Replace each universally quantified sentence with the set of its 
instances

• Replace each existentially quantified sentence with the 
disjunction of its instances

• Until all sentences are quantifier-free (and, therefore, ground)
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Compactness

• A logic is compact if and only if every unsatisfiable set of 
sentences (including infinite sets) has a finite subset that is

unsatisfiable.

• Propositional Logic is compact.

• Given our mapping, we know that Relational Logic must also be 
compact.
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Predicate Logic (with Functions)

• The syntax is an extension of the syntax of Relational Logic

• Function constants with their arity: f(.), g(., .), etc.

• The definition of a term becomes:

– A variable

– An object constant

– A function constant with arity n applied to n terms.

• Only expressions produced by the the above rules are terms.

• As a result, the set of terms will be infinite, even though the 
vocabulary of the language is finite. 
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Avoiding Constants and Functions

• It is possible to entirely avoid function symbols and constant 
symbols, rewriting them via predicate symbols in an appropriate 
way.

• For example, instead of using a constant symbol 0 one may use a 
predicate 0(x), interpreted as x = 0, and replace every predicate 
such as P(0, y) with x(0(x) ∀x φ), where φ is a sentence. ⇒ ψ), where φ and ψ are sentences. P(x, y)).

• A function such as f(x1, x2, …, xn) will similarly be replaced by a 

predicate F(x1, x2, …, xn, y) interpreted as y = f(x1, x2, …, xn).

• This change comes at a cost: additional axioms must be added to 
the theory at hand, so that interpretations of the predicate 
symbols used have the correct semantics.



Andrea G. B. Tettamanzi, 2018 27

Herbrand Semantics

• Same definition as for the Relational Logic but...

• In the presence of functions, the Herbrand base is infinite!

• However, every interpretation (or model) M, as subset of H, is a 
finite set of atoms.
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Undecidability

• Satisfiability and logical entailment for Herbrand Logic are 
undecidable.

• Proof sketch:

– We can reduce a problem that is generally accepted to be 
non-semidecidable to a question of satisfiability / logical 
entailment in Herbrand Logic

– If Herbrand logic were semidecidable, then such question 
would be semidecidable as well

– Since it is known not to be semidecidable, then Herbrand 
Logic must not be semidecidable either.
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Tarskian Semantics

• Herbrand logic differs from first-order logic solely in the structures 
it considers to be models.

• The semantics of a given set of sentences is defined to be the set 
of Herbrand models that satisfy it, for a given vocabulary.

• In Tarskian semantics, we map all the elements of the language 
to the element of an (external) domain D

• A first-order model M consists of a domain D and a mapping ∙M 
such that

– For each n-ary predicate P an n-ary relation PM over D

– For each n-ary function constant f an n-ary function fM over D

– For each object constant c an element cM from D 
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First-Order Model

• In a model M, a variable assignment is a mapping of all the 
variables in the vocabulary to elements in D.

• Given an arbitrary model and a variable assignment for that 
model, every term in the language is assigned an element in that 
model's universe:

– Let v be a variable assignment and M a first-order model

– ev maps a term to an element of D.

• For variable x, ev(x) = v(x)

• For object constant c, ev(c) = cM

• For terms t1, …, tn, ev(f(t1, …, tn)) = fM(ev(t1),...,ev(tn)) 
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First-Order Satisfaction

Given M and v, |=M φ is defined as follows:

• |=M P(t1,...,tn)[v] if and only if <ev(t1),...,ev(tn)>  P∈ M. M

• |=M ¬ ψ[v] if and only if |≠M ψ[v]

• |=M (φ  ψ)[v] if and only if |=∧ ψ), where φ and ψ are sentences. M φ[v] and |=M ψ[v]

• |=M (φ  ψ)[v] if and only if |=∨ ψ), where φ and ψ are sentences. M φ[v] or |=M ψ[v]

• |=M (φ  ψ)[v] if and only if |⇒ ψ), where φ and ψ are sentences. ≠M φ[v] or |=M ψ[v]

• |=M (φ  ψ)[v] if and only if either |=⇔ ψ), where φ and ψ are sentences. M (φ ψ)[v] or |=∧ ψ), where φ and ψ are sentences. M (¬φ  ¬ψ)[v]∧ ψ), where φ and ψ are sentences.

• |=M x.φ[v] if and only if for every d  D |=∀x φ), where φ is a sentence. ∈ M. M φ[v][d/x]

• |=M x.φ[v] if and only if for some d  D |=∃x φ), where φ is a sentence. ∈ M. M φ[v][d/x] 
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Comparison of the Two Semantics

• Given vocabulary {P(∙), a, b},

• Sentence P(a):

– Has exactly 2 Herbrand models:

• { P(a) }

• { P(a), P(b) }

– Has infinitely many First-Order models:

• D = {1}, PM = {<1>}, aM = 1, bM = 1,

• D = {1, 2, 3, …}, PM = {<17>,<63>}, aM = 17, bM = 51,

• D = Reals, PM = {<3.14159...>, <17.0>},
aM = 3.14159..., bM = 0.33333...

• …
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Comparison of the Two Semantics

• Given vocabulary {P(∙), a},

• Sentences P(a), ∃x φ), where φ is a sentence.x.¬P(x):

– Are Herbrand-unsatisfiable

– Are always satisfiable in First-Order Logic:

• D = {1, 2}, PM = {<1>}, aM = 1

• …

• We have to extend the vocabulary to {P(∙), a, b} for them to be 
Herbrand-satisfiable:

• M = { P(a) } 
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Skolem Standard Form

We can obtain the Skolem Standard form of a sentence by applying 
the following procedure:

1) Transform the sentence into prenex normal form

2) Transform the matrix of the prenex normal form into CNF

3) Eliminate the existential quantifiers in the prefix by using Skolem 
functions:

1) For each quantifier ∃x φ), where φ is a sentence.x in the prefix, let m be the number of ’s∀x φ), where φ is a sentence.  
preceding it;

2) Replace every occurrence of x in the matrix with the term 
sx(x1, …, xm), where sx is a new function constant of arity m 

and x1, …, xm are the universally quantified variables 

occurring before x in the prefix.
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Semantic Trees

• Checking the Herbrand-satisfiability of a set of clauses  (obtained 
from the matrix of a Skolem Standard Form) can be done by 
constructing a semantic tree

• Given a set S of clauses, a semantic tree for S is a tree where 
each edge is labeled with a finite set of literals of atoms of S in 
such a way that

– The disjunction of all the labels of the outgoing edges of a 
node is a tautology

– The labels on the path from the root to node N constitute a 
partial interpretation I(N).

• A semantic tree is complete iff for every leaf N, I(N) contains 
either A or ¬A for every atom in S
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Semantic Trees (continued)

• A node N is a failure node if I(N) falsifies some ground instance 
of a clause in S, but I(N’) does not falsify any ground instance of a 
clause in S for every ancestor N’ of N.

• A semantic tree is closed if and only if every branch terminates at 
a failure node

• A node N of a closed semantic tree is an inference node if all the 
children of N are failure nodes.
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Example
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Herbrand’s Theorem

A set S of clauses is unsatisfiable if and only if corresponding to 
every complete semantic tree of S, there is a finite closed semantic 
tree

Proof:

• [⇒]: Suppose that S is unsatisfiable. Then for every path in a 
complete semantic tree of S, there must be a failure node at a 
finite depth.

• [⇐]: If corresponding to every complete semantic tree of S there 
is a finite closed semantic tree, then every branch contains a 
failure node. This means that every interpretation falsifies S. 
Hence S is unsatisfiable.
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Thank you for your attention
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