

Andrea G. B. Tettamanzi

Nice Sophia Antipolis University Computer Science Department andrea.tettamanzi@unice.fr

Session 4

Unification and Resolution

Agenda

- Substitution
- Unification
- Resolution for Predicate Logic

Introduction

- In the first session, we introduced resolution in propositional logic
- We shall now extend it to (first-order/Herbrand) predicate logic
- The most important part of applying the resolution principle is finding a literal in a clause that is complementary to a literal in another clause
- For clauses containing no variables, this is very simple
- However, for clauses containing variables, it is more complicated

Motivating Example

Clause 1*: $P(f(x)) \lor Q(f(x))$ Clause 2*: $\neg P(f(x)) \lor R(x)$

Andrea G. B. Tettamanzi, 2019

Substitution

• A **substitution** is a finite set of the form

$$\{t_1/v_1,\ldots,t_n/v_n\}$$

where

- Every v_i is a variable
- Every t_i is a term different from v_i
- All variables v_i are different
- When t₁, ..., t_n are ground terms, the substitution is called a ground substitution.
- We denote by $\phi\theta$ the application of substitution θ to sentence ϕ

Composition of Substitutions

Let

$$\theta = \{t_1/x_1, \dots, t_n/x_n\}$$
$$\lambda = \{u_1/y_1, \dots, u_m/y_m\}$$

Then

 $\theta \circ \lambda = \{t_1\lambda/x_1, \dots, t_n\lambda/x_n, u_1/y_1, \dots, u_m/y_m\}$ by deleting any element $t_j\lambda/x_j$ such that $t_j\lambda = x_j$ and any element u_i/y_i such that $y_i \in \{x_1, \dots, x_n\}$

In other words: $\phi[\theta \circ \lambda] = (\phi \theta) \lambda$

Example

Let

$$\theta = \{f(y)/x, z/y\}$$
$$\lambda = \{a/x, b/y, y/z\}$$

Then

$$\theta \circ \lambda = \{f(b)/x, y/y, a/x, b/y, y/z\}$$
$$= \{f(b)/x, y/z\}$$

Monoid of Substitutions

• The composition of substitutions is associative

$$(\theta \circ \lambda) \circ \mu = \theta \circ (\lambda \circ \mu)$$

• The empty substitution is both a left and right neutral element

$$\epsilon \circ \theta = \theta \circ \epsilon = \theta$$

Unifier

- A substitution θ is called a **unifier** for a set { ϕ_1 , ..., ϕ_n } if and only if $\phi_1 \theta = ... = \phi_n \theta$
- The set $\{\phi_1, ..., \phi_n\}$ is said to be **unifiable** if there exists a unifier for it
- A unifier σ for a set {φ₁, ..., φ_n} of sentences is a most general unifier (MGU) if and only if, for each unifier θ for the set, there exists a substitution λ such that

$$\theta = \sigma \circ \lambda$$

Disagreement Set

The **disagreement set** of a nonempty set W of sentences is obtained by:

- Locating the first symbol (counting from the left) at which not all the sentences in W have exactly the same symbol
- Extracting from each expression in W the subexpression that begins with the symbol occupying that position

The set of these respective subexpressions is the disagreement set of W.

Example: W = { P(x, f(y, z)), P(x, a), P(x, g(h(k(x)))) } Disagreement set: { f(y, z), a, g(h(k(x))) }.

Unification Algorithm

- 1) Set k = 0, $W_k = W$, and $\sigma_k = \epsilon$
- 2) If W_k is a singleton, then **STOP**: σ_k is a MGU for W Else find the disagreement set D_k of W_k
- 3) If there exist elements v_k and t_k in D_k such that v_k is a variable that does not occur in t_k, then continue to Step 4.
 Else STOP: W is not unifiable
- 4) Let $\sigma_{k+1} = \sigma_k \circ \{t_k/v_k\}$ $W_{k+1} = W_k \{t_k/v_k\}$
- 5) Set k = k + 1 and go back to Step 2

Unification Theorem

If W is a finite nonempty unifiable set of expressions, then the unification algorithm will always terminate at Step 2 and the last σ_k is a MGU for W

Proof (sketch):

- Since W is unifiable, we let θ be any unifier for W
- We show by induction on k that there is a substitution λ_k such that

$$\theta = \sigma_k \circ \lambda_k$$

Factor

- If two or more literals (with the same sign) of a clause C have a MGU σ , then C σ is called a **factor** of C
- If $C\sigma$ is a unit clause, it is called a **unit factor** of C

Example:

$$C = \frac{P(x) \lor P(f(y))}{\sigma = \{f(y)/x\}} \lor \neg Q(x)$$

$$C\sigma = P(f(y)) \vee \neg Q(f(y))$$

Binary Resolvent

Resolvent

A resolvent of (parent) clauses C_1 and C_2 is one of the following binary resolvents:

- A binary resolvent of C₁ and C₂
- A binary resolvent of C_1 and a factor of C_2
- A binary resolvent of a factor of C_1 and C_2
- A binary resolvent of a factor of C₁ and a factor of C₂

Lifting Lemma

If C_1 ' and C_2 ' are instances of C_1 and C_2 , respectively, and if C' is a resolvent of C_1 ' and C_2 ', then there exists a resolvent C of C_1 and C_2 such that C' is an instance of C.

Completeness of Resolution

A set S of clauses is unsatisfiable if and only if there is a deduction of the empty clause F from S.

Proof (sketch):

- [⇒]: Suppose S is unsatisfiable; let T be a complete semantic tree for S; T has a finite closed semantic tree T'. Use structural induction on T' together with the Lifting Lemma to show that there is a deduction of the empty clause from S
- [⇐]: Suppose there is a deduction of F. Let R₁, ..., R_k be the resolvents in the deduction. Assume S is satisfiable. Then, there is a model M of S. If M |= C₁ and C₂, it also |= any resolvent; then M |= R₁, ..., R_k; then M |= F, which is impossible!

Thank you for your attention

